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Abstract

Allogeneic hematopoietic cell transplantation (HCT) effectively treats high-risk hematologic diseases but can entail
HCT-specific complications, which may be minimized by appropriate patient management, supported by accurate,
individual risk estimation. However, almost all HCT risk scores are limited to a single risk assessment before HCT
without incorporation of additional data. We developed machine learning models which integrate both baseline
patient data and time-dependent laboratory measurements to individually predict mortality and cytomegalovirus
(CMV) reactivation after HCT at multiple time points per patient. These gradient boosting machine models provide
well-calibrated, time-dependent risk predictions and achieved areas under the receiver-operating characteristic of 0.92
and 0.83 and areas under the precision-recall curve of 0.58 and 0.62 for prediction of mortality and CMV reactivation,
respectively, in a 21-day time window. Both models were successfully validated in a prospective, non-interventional
study and performed on par with expert hematologists in a pilot comparison.

Introduction

Allogeneic hematopoietic cell transplantation (HCT)
is an effective and potentially curative treatment for
patients suffering from high-risk hematological malig-
nancies and other non-malignant and congenital disor-
ders [1]. Despite its success and continuous improve-
ment over the past decades [2, 3], the treatment-related
non-relapse mortality (NRM) after HCT remains high.
HCT recipients are at risk for multiple potentially life-
threatening complications, such as graft-versus-host dis-
ease (GVHD) or cytomegalovirus (CMV) reactivation.
Accurate risk assessment and an appropriate choice of
prophylactic and pre-emptive treatments are crucial to
minimize these risks [4, 5].

Registries, such as the databases of the European So-
ciety for Blood and Marrow Transplantation (EBMT) or
of the Center for International Blood and Marrow Trans-
plant Research (CIBMTR) collect individual patients’
pre-HCT and outcome data from centers via standard-
ized reporting forms [6, 7]. Using these databases, the
prevalence and risk factors of HCT complications can
be analyzed on a large scale. Due to the data collec-
tion process, registry data per patient is limited to a set
of categorical variables. While time-dependent endpoint
data is available regarding the time of relapse or death,

continuously measured laboratory values from electronic
health records (EHR) or unstructured data from reports
can not yet be integrated into these registries.

Since the 2000s, a number of relevant predictive
risk scores have been developed utilizing static reg-
istry data to improve outcome assessment before HCT
and to adjust the toxicity of the intervention by re-
ducing the conditioning intensity. The Hematopoietic
Cell Transplantation-specific Comorbidity Index (HCT-
CI) [8] is to date the most relevant and utilized score
to predict NRM. Other Cox-regression models based
on categorical, pre-HCT variables, such as the EBMT
risk score [9] or the disease risk index [10] have addi-
tionally improved pre-HCT and relapse risk assessment
for different hematologic malignancies. However, the
overwhelming majority of existing methods for assessing
such HCT-specific risks offer only a single risk assessment
before HCT.

Across medical areas, machine learning (ML) tech-
niques have proven their value as powerful tools for di-
agnosis [11, 12, 13, 14] or risk assessment [15, 16, 17].
ML models are ideally suited to discover associations in
large datasets and can automatically identify important
parameters and relationships between them without the
need for a predefined model shape. In recent years, sev-
eral ML models have been proposed for HCT-specific
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risk assessment at a single point in time [18, 19, 20].
For instance, an alternating decision tree model pro-
duced more accurate predictions of 100-day mortality
after HCT than the EBMT score for acute leukemia pa-
tients [18], demonstrating that ML can improve standard
scores for pre-HCT risk assessment.

The Endothelial Activation and Stress Index (EASIX)
measured before conditioning therapy is associated with
overall survival after HCT, highlighting the potential of
including laboratory parameters in pre-HCT risk assess-
ment [21]. Additionally, EASIX measured at the onset
of acute GVHD predicts overall survival after GVHD
onset [22]. Despite its added value, EASIX is calcu-
lated from a limited set of three parameters (creatinine,
platelets, LDH) using a predefined formula, and each
study only evaluated its prognostic value at a single
point in time.

Integrating time-dependent measurements into ML
models can not only improve predictive performance, but
also allows to update risk assessments whenever new data
becomes available. For instance, early-warning systems
developed for intensive care units (ICU) continuously
monitor patient data and predict critical events such as
acute kidney injury [16] or circulatory failure [17], which
may help physicians to react earlier to critical events or
to prevent them. Given the high variability of individual
outcomes after HCT and the importance of optimal pa-
tient management, we hypothesized that ML-based mod-
els for precise, time-dependent risk prediction after HCT
may provide a valuable tool to support treatment deci-
sions.

Compared to the large, annotated, public EHR
datasets of ICU patients [17, 23], time-dependent HCT
data is scarce. Its use in ML models is further chal-
lenged by a high variability in laboratory measurement
frequencies and a characteristic nonlinear development
of laboratory values after HCT, which requires context-
dependent evaluation of identical numerical results. In
addition, longer observation times may entail missing
values and censored data. Major national and interna-
tional efforts are currently directed towards digitizing
medicine [24, 25], developing unified standards for data
management and facilitating the increasingly widespread
use of EHR systems. As a consequence, we expect the
accessibility and usability of health data to improve,
with impacts on different fields of medicine including
HCT care.

In this article, we describe the development and
prospective validation of ML models which accurately
predict death and early CMV reactivation at multi-
ple time points after HCT. These are the first models
for continuous time-dependent risk assessment of these
outcomes after HCT.

Results

Using gradient boosting machines (GBM) and L2-
regularized logistic regression (LR), we developed ML
models to predict at multiple time points after HCT
whether an event, i.e., death or CMV reactivation,
would occur in a subsequent time window of 21 or 7

days (Fig. 1a–c). Each model received a combination
of routinely collected static and time-dependent HCT
data as input and was trained to predict a continuous
risk score for one specific event. We then validated
these ML models in the prospective non-interventional
XplOit study, which also included a pilot comparison be-
tween ML model predictions and prospectively collected
outcome expectations of experienced HCT physicians
(Fig. 1d).

Assembling an extensive longitudinal HCT
dataset

Utilizing the XplOit data integration platform for med-
ical research [26], we assembled an extensive, well-
annotated retrospective dataset incorporating static and
time-dependent data of 1710 HCT patients to form the
basis of model development. Based on their relevance,
we selected 60 parameters as input features for the ML
models (Fig. 1), including static pre-HCT constellations,
such as diagnosis, conditioning regimen and donor infor-
mation, as well as the day of the prediction and current
laboratory values (Supplementary Table S1). During
the non-interventional XplOit validation study, we ad-
ditionally recruited 403 patients for prospective model
validation.

Relevant baseline characteristics were balanced be-
tween the development and validation cohort and are
detailed in Table 1. As expected, the largest fraction of
patients presented with acute myeloid leukemia for HCT.
Cyclosporin A (CSA) was the predominant calcineurin
inhibitor for baseline immunosuppression. Following
changes in HCT practices, such as the introduction of
post-transplant cyclophosphamide, the prospective co-
hort had a higher proportion of patients with tacrolimus-
based immunosuppression. Time-dependent laboratory
values were available at 163,425 and 31,889 time points
in the retrospective and prospective cohort, respectively,
comprising more than 5.4 million individual measure-
ments in total. In accordance with international best-
practice HCT guidelines, the measurement intervals were
shortest during the inpatient care of 35-40 days and were
extended for outpatients (Supplementary Fig. S1).

The endpoints of this study were adequately covered
by the analyzed data. The time of death was known for
1134 patients (53.7%), and 925 patients (43.8%) devel-
oped an early CMV reactivation (within 100 days after
HCT), with the median first episode of CMV reactivation
at day +34. After 24 months, the overall survival (OS)
rate was 55% in the retrospective cohort (Fig. 2a), which
is representative of HCT outcomes across different risk
groups in real-world data. After a median follow up of
14.4 months the median overall survival was not reached
in the prospective XplOit study (Fig. 2b). While the cu-
mulative incidence of NRM was comparable between the
retrospective and prospective cohort, overall survival dif-
fered significantly consistent with reduced relapse rates
in recent HCT (Fig. 2c).
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The GBM predicts 21-day mortality with
an AUROC of 0.92 and an event-AUPRC
of 0.58

We evaluated model performance using the standard area
under the receiver-operating characteristic (AUROC)
and two versions of the area under the precision-recall
curve (AUPRC), event-AUPRC and sample-AUPRC.
While sample-AUPRC is based on the standard recall
on individual samples, event-AUPRC defines recall as
the fraction of correctly predicted events and specifically
addresses time-dependent event prediction [17]. Fol-
lowing data preprocessing, as detailed in the Methods
section, the retrospective dataset for the development of
21-day mortality models contained 143,669 time points
of 1695 patients, 7354 of these time points (5.14%) were
labeled positive (death occurred within 21 days).

The developed GBM model for 21-day mortality pre-
diction achieved a very high AUROC of 0.918 and good
event-AUPRC of 0.584 (Fig. 3a,b). It outperformed the
LR model, which had an AUROC of 0.900 and an event-
AUPRC of 0.524. To assess the value of including time-
dependent data for outcome prediction, we compared
these models to a baseline LR model receiving only static
input data. The time-dependent GBM and LR models
both vastly outperformed the static LR baseline, which
achieved an AUROC of only 0.594 and event-AUPRC of
0.085. The same trend was observed in sample-AUPRC
(Supplementary Fig. S2). After calibration, we obtained
very close agreement between predicted and observed
risk, with areas of 0.04 and 0.06 between the line rep-
resenting ideal calibration and the calibration curve of
the GBM and the LR model, respectively (Supplemen-
tary Fig. S3).

We then analyzed the performance of the GBM model
for 21-day mortality prediction over time in more detail.
As expected, the fraction of correctly predicted events
increased with shorter time to the event (Fig. 3c). This
finding was independent of the exact threshold chosen to
convert continuous risks into binary event predictions.
With a threshold chosen to obtain an overall event re-
call of 0.8, the majority of events was predicted at least
two weeks in advance. The predicted continuous risks
evolved similarly with a steady increase as patients ap-
proached an event (Fig. 3d), which supports the plausi-
bility of the model. Compared to the average risk pre-
dicted for negatively labeled time points, i.e., without
any event in the subsequent 21 days, this increase was
detectable as early as 85 days before the event. Although
the GBM model recognized initial signs of an impending
event much earlier than 21 days before, these were not
yet sufficient for a confident event prediction. Analyzing
GBM model performance as a function of the prediction
day after HCT, we found that AUROC increased slightly
over time (Fig. 3e). Sample-AUPRC varied more notice-
ably, it was lower early after HCT and highest between
day 80 and 150. This correlated with the fraction of pos-
itive labeled samples at different times after HCT since
a small positive fraction makes it difficult to achieve a
high precision score.

Prediction day, CRP and urea nitrogen
had the highest impact on mortality pre-
dictions

Using SHapley Additive exPlanations (SHAP values) [27],
we analyzed the impact of individual features on GBM
model predictions (Fig. 4). SHAP values indicate how
much the value of a feature has contributed to the pre-
diction generated for a specific sample. High values
(>0) indicate that the feature value increased the pre-
dicted risk, low values (<0) indicate that it reduced the
predicted risk. For the GBM model predicting 21-day
mortality, the most important features were the day of
the prediction (in days after HCT), C-reactive protein
(CRP), blood urea nitrogen, glutamate oxaloacetate
transaminase (GOT) and protein levels (Fig. 4a). Es-
pecially high blood levels of CRP, urea nitrogen and
GOT as compared to other patients at the same time
after HCT led the model to predict an increased mor-
tality risk. In contrast, high values of total protein led
to a lower predicted risk. These features are markers
of inflammation or infection, or reflect liver or kidney
function. For the prediction day after HCT, the re-
lationship between feature value and SHAP value was
more complex. Within the first year after HCT, the
prediction day appeared to increase the predicted risk,
while after one year the SHAP values continuously de-
creased, falling below zero about three years after HCT
(Fig. 4b). A closer inspection of the first year after HCT
revealed that prediction days up to day +40 decreased
the predicted risk, while all later prediction days of the
first year had constantly high SHAP values (Fig. 4c).

For 7-day mortality prediction, the GBM and LR
models both had a higher AUROC and lower event- and
sample-AUPRC than the corresponding 21-day models
(Supplementary Fig. S4). As a consequence of the nar-
rower time window, fewer samples were labeled positive
(1.88% for 7-day prediction), which can partially explain
the lower event- and sample-AUPRC. Detailed results
for the 7-day prediction models are provided in the sup-
plementary material (Supplementary Fig. S4 and S5).
While these models focused on all-cause mortality to
enable prediction for all HCT patients, independently
of their relapse status, we also tested if our modeling
approach would result in comparable prediction perfor-
mance for NRM, which was indeed confirmed (Supple-
mentary Table S8b).

The performance of 21-day mortality pre-
diction remained high on prospective data

In a second step, we validated the developed ML mod-
els on an independent prospectively recruited cohort
(n=403) from the same HCT center (Table 2a). De-
pending on the time window for prediction, we observed
specific differences in the performance of mortality pre-
diction on prospective data. The models for 21-day
mortality prediction remained relatively stable, AU-
ROC and event-AUPRC of the GBM model faded only
slightly from 0.918 to 0.895 and from 0.584 to 0.522,
respectively. Responding to changes in HCT practices,
we additionally compared subgroups of the two main
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distinct immunosuppressive regimens (CSA and TAC)
within the prospective cohort (Table 2b), and found no
major differences between these subgroups. However,
for 7-day prediction we observed a quite pronounced
decrease in model performance on prospective data,
with AUROC and event-AUPRC of the GBM model
dropping from 0.951 to 0.931 and from 0.525 to 0.372,
respectively. Here, model performance was noticeably
higher for patients with CSA instead of TAC immuno-
suppression, which were better represented in the retro-
spective cohort. Model calibration remained appropriate
on prospective data (Supplementary Fig. S6).

Despite some differences between retrospective and
prospective patient outcomes and model performance,
the AUROC of both GBM and LR models remained
high on prospective data. Event- and sample-AUPRC
were also acceptable given the low fraction of positive la-
beled time points. Next, we tested if the models trained
to predict all-cause mortality could also be leveraged to
predict NRM. The validation of the GBM model for 21-
day mortality on the subgroup of 361 prospectively re-
cruited patients without relapse resulted in a compara-
bly high AUROC of 0.900, an event-AUPRC of 0.536 and
a sample-AUPRC of 0.428 (Supplementary Table S8a).
Thus, the developed ML models were successfully vali-
dated on the prospective dataset for both all-cause mor-
tality and NRM.

For 21-day mortality prediction the GBM
performed similar to HCT physicians

In a pilot study, which was part of the prospective vali-
dation, we additionally compared the predictive perfor-
mance of the final GBM and LR models during the first
100 days after HCT to the outcome expectations of ex-
perienced HCT physicians. Within the last year of the
prospective XplOit study, each treating physician was
requested once per week to estimate their patients’ ex-
pected Eastern Cooperative Oncology Group (ECOG)
performance score and risk of CMV reactivation (low,
medium, high) in 7 and 21 days. In total, we collected
649 forms containing post-HCT assessments for 91 pa-
tients. In parallel, we executed GBM and LR models
at the time of each assessment with the latest available
time-dependent data. All physicians were blinded for the
model predictions.

The results of this comparison are displayed in Ta-
ble 3. For 21-day mortality prediction, GBM model and
physicians showed a similar performance, as measured by
Matthews correlation coefficients (MCC) of 0.461±0.086
and 0.488±0.089, respectively. Although the differences
were small compared to the standard deviation derived
from bootstrapping, trends showed a slight advantage of
the physicians’ expectations over the GBM model pre-
dictions and of the GBM model over the LR model. For
7-day prediction, the physicians achieved a very high
MCC and F1 score of 0.796 ± 0.180 and 0.767 ± 0.214,
respectively, outperforming both ML models. However,
the dataset for comparing predictive performance over
a 7-day window in this pilot sub-study was limited due
a low number of fatalities preceded by prospective as-
sessments. In addition, these deceased patients were less

representative of the training cohort since they received
TAC immunosuppression.

The GBM for 21-day CMV prediction had
AUROC 0.83 and event-AUPRC 0.62

For two reasons, the dataset for the development of mod-
els predicting early CMV reactivation was smaller than
for mortality prediction: First, we focused on the first
100 days after HCT, where the earliest episode of CMV
reactivation almost exclusively occurs in the absence of
prophylaxis. Second, we excluded patients without CMV
testing during the first 30 days after HCT since the earli-
est CMV episode could have been missed without regular
tests. For CMV prediction over 21 days, the dataset con-
tained 52,008 time points from 1561 patients, of which
12,413 (23.87%) were labeled positive.

Here, the GBM model also had the best performance
with an AUROC of 0.825 compared to 0.793 and 0.779
for LR and baseline, respectively (Fig. 5a). The same
trend was observed in event-AUPRC (Fig. 5b), which
was 0.620, 0.532 and 0.473 for GBM, LR and baseline
model, respectively, and in sample-AUPRC (Supplemen-
tary Fig. S2). For CMV prediction, the gap between
models using time-dependent data (GBM and LR) and
the static baseline was much smaller than for mortal-
ity prediction. The primary reason is that even the
CMV models with access to time-dependent data re-
lied on static features for their predictions while time-
dependent laboratory values had only a minor impact
(Fig. 6). Calibrated predictions agreed closely with the
observed risk, GBM and LR model both had an area of
0.05 between the calibration curve and the line repre-
senting perfect calibration (Supplementary Fig. S7).

We performed the same analysis of GBM model per-
formance over time for 21-day CMV prediction as de-
scribed for 21-day mortality prediction. Again, the frac-
tion of correctly predicted events increased while ap-
proaching the event, and this trend was independent of
the exact decision threshold chosen (Fig. 5c). With a
threshold offering an event recall of 0.8, the GBM model
predicted 60% of events at least two weeks before they
occurred. For patients approaching a CMV event, the
mean predicted risk rose almost linearly, starting about
40 days beforehand (Fig. 5d). While AUROC remained
nearly constant over time after HCT, sample-AUPRC
dropped after day +40 post-HCT as fewer events oc-
curred (Fig. 5e).

The CMV predictions were mainly based
on prediction day and static features

SHAP value analysis of the GBM model for 21-day CMV
prediction revealed that patient CMV serostatus had the
highest impact on model predictions, followed by predic-
tion day after HCT and underlying hematologic disorder
(Fig. 6a). Conditioning regimen, anti-thymocyte glob-
ulin as GVHD prophylaxis, donor CMV serostatus and
patient age were also relevant. Interestingly, the time-
dependent laboratory values had only a minor role in
the predictions of this CMV model, with the exception
of the percentage of lymphocytes, which ranked among
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the top 10 features. Consequently, the CMV model re-
lied predominantly on static data. The joint analysis of
feature values and SHAP values confirmed that a posi-
tive patient CMV serostatus led to a strongly increased
risk prediction while a negative serostatus reduced the
predicted risk (Fig. 6b). This dichotomy was even more
pronounced among patients who received additional T
cell depletion with anti-thymocyte globulin as GVHD
prophylaxis. The SHAP values for the prediction day
after HCT peaked between days +20 and +50, indicat-
ing a typical timing for early CMV reactivation events
(Fig. 6c). This peak was most pronounced for patients
with recipient positive CMV serostatus. Interestingly,
donor age did not have a differential impact on the risk
of CMV reactivation predicted by the GBM model, ex-
cept for very young donor donors (<17 years) (Fig. 6d).
However, these samples were limited in our dataset and
were also associated with young patient age.

For prediction of CMV reactivation over 7 days, the
GBM and LR model both had a similar AUROC but
considerably lower event- and sample-AUPRC than the
corresponding models for prediction over 21 days. Again,
this may be influenced by the lower positive fraction of
7.50% with the narrower 7-day time window. An analysis
of model performance over time and of the impact of
individual features on predictions of the 7-day GBM are
included in the supplementary material (Supplementary
Fig. S8 and S9).

CMV models were successfully validated
and performed similar to HCT physicians

In the prospective validation cohort (n = 398), the
performance of all CMV models remained very close
to their performance on retrospective data (Table 2a).
Compared to the retrospective cohort, the AUROC of
the GBM model for 21-day CMV prediction increased
slightly from 0.825 to 0.846, while its event-AUPRC de-
creased slightly from 0.620 to 0.574. This performance
remained stable across patient subgroups with distinct
immunosuppressive regimens (Table 2b). In contrast,
the 21-day LR model had a higher performance for
patients who received CSA instead of TAC immuno-
suppression. For prediction over 7 days, both models
demonstrated very similar performance on retrospective
and prospective data, and a trend towards higher perfor-
mance for patients with CSA immunosuppression. All
CMV models remained well calibrated on prospective
data, concluding the successful prospective validation
(Supplementary Fig. S6).

In a pilot study, we compared the predictive perfor-
mance of the ML models to the risk of CMV reactiva-
tion estimated by experienced HCT physicians. The re-
sults are shown in Table 3. For 21-day prediction, the
GBM model had the best performance, with an MCC of
0.329±0.062 compared to 0.266±0.023 and 0.234±0.051
for LR model and physicians, respectively. On the other
hand, the physicians had a small lead over both ML mod-
els for prediction over 7 days. In both cases, these dif-
ferences in average performance were not decisive given
the limited dataset for this comparison.

Discussion

In response to persisting difficulties to predict relevant
complications in HCT patients and to support clinical
assessment, we developed and validated the first ML
models for time-dependent prediction of mortality and
CMV reactivation after HCT. These ML models accu-
rately predict patient-specific event risks within a speci-
fied time window and at multiple time points after HCT
and pave the way towards clinical decision support sys-
tems for transplantation medicine. While existing pre-
dictive models [18, 19, 20] and scores [8, 9, 28] for HCT-
specific risk assessment predominantly focus on pre-HCT
assessment to support treatment and donor selection,
time-dependent risk assessment may enable physicians to
refine and individually adjust treatments and preventive
measures after HCT to obtain the best possible outcome
for each patient.

Our ML models combine static patient information as
used in previous HCT ML models [18] with longitudinal
laboratory data and update their predictions whenever
new time-dependent data becomes available. Although
this study builds on previous research on ICU data [17],
our ML models prove the applicability of this new ap-
proach in the field of HCT and on a much larger time
scale with varying data granularity, which underlines the
relevance of this study beyond the field of transplanta-
tion.

Recent ML models in patients with leukemia com-
bined static patient data at diagnosis with time series of
laboratory measurements to predict patient outcome at
a single point in time [29]. While these models included
HCT as an input parameter, they neither predicted the
outcome after HCT nor at multiple time points. An-
other ML study using longitudinal HCT data integrated
patients’ vital signs and predicted graft-versus-host dis-
ease by day +100 with a modest AUROC of 0.66 [30],
allowing for a single prediction on day +10 after HCT.
Personalized ML survival models for HCT patients re-
fined prognosis at the time of HCT but exclusively re-
lied on static pre-HCT data as input parameters without
adapting to complications occurring after HCT [31].

Although our final models update their predictions
whenever new data becomes available, they use only the
most recent laboratory result for each prediction. On
large EHR databases, recurrent deep neural networks,
e.g., using long short-term memory (LSTM) units, have
demonstrated high prediction performances utilizing en-
tire time series as model input [32, 16, 33]. A limitation
of LSTMs is, however, their dependence on very large
training data, which are not available in all medical do-
mains. For instance, LSTMs did not outperform GBM
models for the time-dependent prediction of circulatory
failure based on a large single-center ICU dataset [17].
Since additional features describing the history of labo-
ratory values did not improve performance of our GBM
models (Supplementary Fig. S11), we did not pursue
more complex approaches for time-series data.

In this article, we considered multiple endpoints and
time windows for prediction. Across these tasks, GBM
models consistently outperformed LR and provided well-
calibrated time-dependent risk predictions. Prediction
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performance was best for prediction of 21-day mortality,
where we obtained very high AUROC and high event-
AUPRC. High predictive performance, in addition to
validity and independent replication, is a core require-
ment for the clinical use of predictive models in deci-
sion support systems [34] since it is a first indicator of
health impact and effectiveness. Yet, identifying the op-
timal performance threshold for effectiveness and impact
is also subject to medical [35], technical, and ethical [36]
considerations relating to the predicted outcome, poten-
tial consequences of false predictions, and implementa-
tion issues. Our pilot comparison to physicians’ expec-
tations indicates that the developed models will likely
provide relevant practical use, e.g., as a risk screening
tool for post-HCT outpatients. Given the possibilities
of intervening via anti-infective or immunosuppressive
drugs and hospitalization, such warning systems might
prevent fatal outcomes. The immediate availability of
the features used by our models in most HCT centers,
including both the static HCT parameters and the con-
tinuously measured standardized laboratory variables is
a major advantage for its clinical application for deci-
sion support. Finally, successful implementation in clin-
ical practice can also be influenced by physicians’ trust
in ML models, which may be increased by providing un-
derstandable explanations for individual predictions [35],
e.g., via SHAP values.

Since a direct comparison to existing scores designed
for pre-HCT risk assessment is not possible, we com-
pared our models to a baseline model, which was trained
for the time-dependent prediction task but used only
static input features. Interestingly, time-dependent in-
put features proved highly valuable for mortality predic-
tion but only offered modest improvement for CMV pre-
diction, indicating that time-dependent outcome predic-
tion may improve HCT-specific risk assessment beyond
current standards, but possibly not for all endpoints in
equal measure.

The final ML models were successfully validated on
an independent, prospectively recruited cohort, as shown
by the overall high predictive performance of the devel-
oped models on prospective data. For mortality predic-
tion, model performance decreased slightly compared to
the retrospective cohort, which was in part explained
by changes in immunosuppression strategies. However,
the slight performance drop also in patients with identi-
cal baseline immunosuppression indicates a dataset shift
over time. This is well in line with a recent EBMT anal-
ysis of HCT data up to the year 2016 showing decreasing
NRM over time [3]. Given the small differences in predic-
tion performance between the retrospective and prospec-
tive cohort, the applicability of the mortality prediction
models remains unaffected. The importance of prospec-
tive validation has been previously shown [37] and is also
reflected in our study design. Indeed, predictive models
developed for use in clinical practice require continuous
monitoring, and, if necessary, refinement. Possibly due
to the large impact of static features, the performance of
models predicting CMV reactivation was not affected by
this dataset shift and remained stable.

Our exploratory head-to-head comparison with ex-
perienced HCT physicians revealed that GBM models

performed approximately on par for 21-day prediction of
mortality and CMV reactivation. Despite the limitations
of this pilot comparison, trends showed that the physi-
cians performed slightly better in mortality prediction
while the GBM model was better in predicting CMV re-
activation. Since the physicians had direct contact to
their patients, and therefore access to more information
than the 60 input features of the ML models, these re-
sults underline the promising potential for future use of
such GBM models in clinical practice. Integrating ad-
ditional features, such as vital signs or current medica-
tion, could potentially increase model performance fur-
ther. However, the current feature set used by our final
models is readily available in most HCT centers, which
is a prerequisite for the implementation as a clinical de-
cision support system.

Although this is a topic of active discussion in the sci-
entific community [38], better interpretability or explain-
ability of ML models in healthcare may improve trust
into model predictions [39] and even the quality of de-
cision support systems [40]. Here, SHAP values provide
insight into the impact of specific features on model pre-
dictions and offer a comprehensive approach to explore
underlying biological mechanisms. In the GBM mod-
els for mortality prediction, mainly features related to
organ function and inflammation (CRP, urea nitrogen,
GOT, protein) affected the predicted risk. In contrast,
the GBM models predicting CMV reactivation strongly
relied on static patient data (CMV serostatus, diagnosis,
conditioning regimen). For both endpoints, the predic-
tion day after HCT had a large impact on the predicted
risks indicating a typical time period for potential com-
plications after HCT, which is in line with previous re-
ports [1]. While SHAP values can provide valuable in-
sight into the features contributing to individual model
predictions, it is important to note that they do not rep-
resent causal relationships.

The time-dependent prediction problems we con-
sidered were imbalanced, meaning that our data con-
tained few samples with positive label. In this situation,
AUPRC is a more informative performance measure than
AUROC [17]. However, the exact positive fraction in our
data varied across prediction tasks and we observed that
event- and sample-AUPRC were strongly correlated with
it. This made it difficult to compare models for different
endpoints and time windows directly. Sampling meth-
ods could be used to adjust the positive fraction for such
comparisons, but then performances would no longer be
measured on the data distribution of a realistic applica-
tion scenario, where the positive fraction is determined
by the prevalence of events.

By design, the positive fraction for 21-day prediction
tasks was higher than for 7-day prediction. Quite un-
expectedly, this made 21-day prediction the easier task
for ML methods, leading to more robust results even
though the distance from positive labeled prediction days
to the event was longer. In addition, the 21-day predic-
tion models have a greater potential clinical applicability
because they may enable an earlier intervention to pre-
vent or treat complications.

This study has limitations and strengths. It included
only data from a single center, which may limit the gen-
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eral applicability of the developed models. However, the
models were built on a homogeneous and large dataset
of several million data points and the patient charac-
teristics and HCT practice standards reflected those of
major international centers. The precise predictions of
our models using standard laboratory features available
in all HCT centers pave the way towards the implemen-
tation of decision support systems in HCT. Ultimately,
its routine use as a medical device requires a prospec-
tive clinical trial for safety and efficacy, according to,
e.g., the EU medical device regulation (EU 2017/745).
As in many previous studies [41, 42], we defined CMV
reactivation events only based on detectability, combin-
ing data of different quantitative and qualitative CMV
tests. However, more recent studies have demonstrated
that the severity of CMV disease may be revealed by viral
load kinetics [43, 44]. It would be interesting for future
work to attempt time-dependent prediction of CMV re-
activation with a narrower event definition based on a
threshold for the viral load.

The developed ML models predict mortality and
CMV reactivation for HCT patients reliably and in a
time-dependent manner, and therefore may potentially
improve patient outcomes once implemented as decision
support systems in post-HCT care.

Methods

Patients

Between January 2005 and June 2020, 2191 patients
with hematologic malignancies, inherited stem cell dis-
orders or acquired bone marrow failure underwent al-
logeneic HCT in the Department of Hematology and
Stem Cell Transplantation of the West-German Cancer
Center at University Hospital Essen (UHE). Patients
with HCT before September 1, 2017 were included in
the retrospective cohort. Patients with HCT between
September 2017 and June 2020 were prospectively re-
cruited into the non-interventional XplOit validation
study. Donors were HLA-matched related donors (MRD,
23.0%), haploidentical related donors (haplo, 3.8%),
10/10 HLA-A-, -B, -C, -DRB1, -DQB1 matched unre-
lated donors (MUD, 53.6%), or mismatched unrelated
donors (MMUD, 19.6%; Table 1). HLA-DPB1 was
not considered for donor-recipient matching. Typically,
patients were followed up for 60 months after trans-
plantation. Long-term surviving patients were censored.
Early supportive and follow-up care was identical for all
patients. In the retrospective cohort, the predominant
calcineurin inhibitor based GVHD prophylaxis consisted
of Ciclosporin A plus Methotrexate. Patients with higher
GVHD risk were assigned to additional in vivo T cell de-
pletion using anti-T-Lymphocyte globulin (ATG) based
on standardized clinical treatment protocols.

We excluded patients with multiple allogeneic HCTs,
with the rare diagnosis hemoglobinopathy or without
data on relevant laboratory tests, resulting in retrospec-
tive and prospective cohort sizes of 1710 and 403 pa-
tients, respectively (Fig. 7). For models and analyses
related to CMV reactivation, we additionally excluded
patients without CMV data before day +30 after HCT.

Ethics

This study was conducted in accordance with Ger-
man legislation and the revised Helsinki Declaration.
Study design and data acquisition were evaluated by
the institutional review board (IRB) of the Univer-
sity Duisburg-Essen (Protocol N◦ 17-7576-BO) and
by the IRB of the medical association of the Saar-
land (Protocol N◦ 33/17). All patients included in the
prospective, non-interventional XplOit study (registered
in the German Clinical Trials Register (DRKS), regis-
tration N◦ DRKS00026643) have given written consent
to collection, electronic storage and scientific analysis of
pseudonymized HCT-specific patient data.

Data preparation

The collected data types include static patient data
on pre-HCT constellations including comorbidities and
conditioning regimen, overall survival, laboratory tests
in blood and urine, virological tests inlcuding CMV
serostatus, and medical letters. Baseline data concerning
patient-, donor-, HCT characteristics and HCT-outcome
were documented prospectively in electronic forms. Lab-
oratory and virological tests of each study patient was
collected from first presentation at the Department of
Hematology and Stem Cell Transplantation until death
or data cutoff in February 2021 and June 2020, respec-
tively.

We first collected all data on UHE servers, pseudo-
nymized each data type using Mainzelliste (version 1.5)
[45] and converted absolute dates into days relative to
HCT. Using the de-identification pipeline developed by
Averbis [46], we removed further identifying information
from medical letters. The pseudonymized patient data
was uploaded into the XplOit platform [26] installed in a
secure environment at Saarland University Medical Cen-
ter to be accessed by model developers.

The data collected and used in this study was het-
erogeneous, routine, clinical data, which was in part ex-
tracted from EHRs and in part manually documented
and curated. We used data preparation scripts specific
to each data type to create one coherent and machine-
readable dataset (cf. Supplementary Material). In ad-
dition, we dedicated considerable time and effort to en-
suring good data quality, e.g., by manually comparing
subsets of the provided measurements to records in the
internal data management system of UHE and by per-
forming plausibility checks. Given the extensive size of
the dataset, not every single data point was manually
verified; the possibility of human errors remains.

Endpoint assessment and statistical anal-
ysis

For predictive ML modeling, we considered two clinically
relevant events, death and first CMV reactivation. While
the date of death was documented in the EHR, CMV re-
activation events were defined using data of virological
tests. As in previous publications [41], we use the term
CMV reactivation for both reactivation events and de-
novo infections in seronegative patients throughout this
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article. Over the study period, a set of different types of
CMV detection assays from whole blood, such as quanti-
tative PCR or CMV phosphoprotein (pp65)-antigen tests
were utilized in HCT patient care. In order to com-
bine them for model development, we first binarized the
results of each type of test individually, considering all
numerical results above the detection limit as positive.
Then, we aggregated the tests by considering a patient
CMV positive whenever at least one of these tests pro-
duced a positive result. Following this aggregation, we
defined the day of a patient’s first CMV reactivation as
the first day after HCT on which they were CMV posi-
tive and which was not followed by a subsequent negative
result.

Surviving patients were censored on the day of their
last laboratory test. For CMV reactivation, we consid-
ered patients without detected event censored on the
day of their last CMV test or at the first gap of 50
days or more between CMV tests. For statistical anal-
ysis of HCT outcome, we analyzed overall survival and
the cumulative incidences of CMV reactivation, of re-
lapse and of NRM. Overall survival was calculated by
the Kaplan-Meier method [47]; differences between co-
horts were compared using the log-rank test. The cu-
mulative relapse incidence was calculated as time from
HCT to relapse or persistence of malignancy with death
as competing event. NRM was determined as the time
from HCT to death with relapse as competing event.
The cumulative incidence of CMV before day +100 was
calculated with death as competing event. Cumulative
incidence functions were calculated using the Fine and
Gray method and compared with the Gray test [48]. All
tests were two-sided and p-values <0.05 were considered
statistically significant. Calculations were performed in
R (https://www.r-project.org/, version 3.6.3) using the
packages survival [49], survminer [50] and cmprsk [51].

Preprocessing

We selected 60 features for model development, includ-
ing all static features available in structured format, the
prediction day and 34 of the most frequently performed
laboratory tests (Supplementary Table S1). For time-
dependent laboratory tests, we only used the most re-
cent value of each parameter at the time point of predic-
tion. Static and time-dependent features were prepro-
cessed separately and concatenated directly before model
training.

For categorical features we used a one-hot encoding
and aggregated rare levels which occurred with a fre-
quency of less than 1.5% in the retrospective cohort. We
treated missing values as an additional level if their fre-
quency was above this threshold and otherwise imputed
them with the most frequent level in the training data.
Since some categorical features contained redundant lev-
els (e.g. multiple diagnosis features with varying level of
detail), we iteratively dropped columns from the one-hot
encoded categorical features which were perfectly mul-
ticollinear, until no multicollinearity remained. For LR
models, we included explicit interaction terms for donor
relationship and HLA matching, as well as patient and
donor CMV serostatus. The GBM models can handle

interactions implicitly and do not require a one-hot en-
coding as they can operate directly on categorical data.
Here, we used the same aggregation and multicollinearity
removal but re-encoded the levels as categorical features
in the end.

To reduce sparsity in laboratory tests, we defined a
time period for which each measurement is considered
valid. For each laboratory test, `, we computed the me-
dian time between measurements after HCT, m`, based
on the retrospective cohort, and applied forward filling
for b1.5 m`e days (Supplementary Table S2).

We normalized static numerical features with robust
scaling based on the training median and interquartile
range (IQR). Since many laboratory values showed a
characteristic and nonlinear development after HCT, we
applied a time-dependent adaptation of robust scaling
to these parameters (Supplementary Fig. S10). Here,
we estimated the quartiles in time windows containing
at least 100 measurements and applied smoothing using
the tricube kernel,

K(x) =
70

81

(
1− |x|3

)3
for |x| ≤ 1, (1)

where we again chose the bandwidth adaptively so that
the kernel’s support always covered at least 5000 mea-
surements. We then used the smoothed time-dependent
median and IQR to scale each laboratory measurement.
The resulting normalized values describe the magnitude
of each measurement relative to other patients at the
same time after HCT. Measurements of basophils and
eosinophils were excluded from time-dependent robust
scaling because the first and third quartile coincided in
several time windows.

Finally, we imputed remaining missing values with
the (time-dependent) median and mode for numerical
and categorical features, respectively.

Prediction times and classification target

We aimed for the application scenario where models are
executed once per day whenever new time-dependent
data becomes available. Therefore, we considered all
days between HCT and the event of interest (or censor-
ing) where any laboratory measurements were reported
as potential prediction days.

For each event (death or CMV reactivation) we de-
fined binary classification targets based on two differ-
ent window sizes d of 7 and 21 days, respectively. Each
time point was labeled with 1 (positive) if the event oc-
curred within the following d days and 0 (negative) oth-
erwise. We excluded time points where patients were
censored in this time window or where more than 30% of
time-dependent features were missing after forward fill-
ing. For prediction of CMV reactivation we considered
only events in the first 100 days and excluded prediction
days after day 100− d. The final number of time points
is listed in Supplementary Table S3 for each prediction
task.

Machine learning models and training

We trained GBM models using LightGBM, which pro-
vides an efficient implementation of a gradient boosted
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ensemble of decision trees [52]. For the comparative LR
model and baseline we used the LogisticRegressionCV
class in scikit-learn [53].

For both model types, we optimized hyperparame-
ters with grid search and 5-fold cross-validation (CV).
CV folds were defined on patient level to ensure their
independence and were stratified by the maximum label
per patient. We selected the parameters producing the
highest mean sample-AUPRC and retrained on the full
training set with these parameters. For GBM models we
used early stopping during CV to determine the num-
ber of boosted trees in the ensemble. For each combi-
nation of hyperparameters, model training was stopped
early when the mean logistic loss over CV folds did not
improve for 50 iterations. When retraining on the full
training set, we used the number of boosted trees which
produced the lowest logistic loss during CV. The exact
parameter choices, grids and optimal values are provided
in Supplementary Table S4.

To evaluate model performance and variability on
retrospective data, we repeatedly split the patients of
the retrospective cohort into 2/3 training and 1/3 test set
(stratified by the maximum label per patient). We ran
the entire training process, including imputation, nor-
malization and hyperparameter search, on each train-
ing set independently and evaluated model performance
on the corresponding test set using AUROC, sample-
AUPRC and event-AUPRC. Here, sample-AUPRC is the
standard area under the precision recall curve, where re-
call is defined as the fraction of correctly predicted sam-
ples (i.e., time points) with positive label (sample recall).
In contrast, event-AUPRC defines recall as the fraction
of events which were correctly predicted on at least one
of the positive labeled time points (event recall) and was
previously introduced for time-dependent event predic-
tion [17]. Unless specified otherwise, model performance
on retrospective data is reported as mean and standard
deviation over 10 random splits into training and test set.
Using the same methodology, we additionally trained a
final model on the entire retrospective cohort for prospec-
tive validation.

Models with additional features

We evaluated whether additional information from un-
structured medical letters or information on the history
of laboratory values improved the performance of sur-
vival and CMV prediction. For this purpose, we trained
two further GBM models per task, which received ad-
ditional input features (supplementary material, Supple-
mentary Table S6). Since the added features led to lit-
tle or no performance improvement on the retrospective
data (Supplementary Fig. S11), we selected only the sim-
pler models with the initial feature set for prospective
validation. An overview of all developed models and the
included features is provided in Supplementary Table S7.

Model calibration

We calibrated all trained models as a postprocessing step
using isotonic regression. For this purpose, we trained
a separate calibrator for each split of the retrospective

cohort into training and test set, using the raw model
predictions on the test set. To apply calibration to any
of the models trained for these splits, we averaged the
output of the 9 calibrators trained on the remaining splits
(Fig. 1c). The predicted probabilities of the final model
trained on the entire retrospective cohort were calibrated
using the average over all 10 calibrators.

Prospective validation

In order to prospectively validate the developed mod-
els on an independent cohort, we recruited 408 patients
into the prospective non-interventional Xploit Study (in-
clusion criteria: 1st allogeneic HCT, ≥18 years, written
informed consent) from September 2017 to June 2020.
We applied the final GBM and LR models to generate
predictions on the prospective cohort, selecting predic-
tion times with the same methodology described for the
retrospective cohort. Throughout the prospective study,
both physicians and patients were blinded for the model
predictions.

We compared model predictions to the observed out-
come and measured performance with the same met-
rics used on retrospective data. To assess variability in
performance measures, we applied bootstrapping with
10,000 bootstrap samples on the prospective dataset.
During bootstrapping, we kept the total number of pos-
itive labeled samples fixed at its original value and ad-
justed the number of negative labeled samples to obtain
the same positive fraction as observed in the retrospec-
tive dataset to enable a direct performance comparison
between retrospective and prospective cohort.

Head-to-head comparison to physicians’
expectations

Within the last quarter of prospectively recruited pa-
tients, we performed a pilot study to compare the perfor-
mance of the developed ML models to the expectations
of experienced physicians regarding early complications
after HCT. For 91 patients in the prospective cohort, we
prospectively assessed the expectations of the treating
physicians regarding overall survival and CMV reactiva-
tion between day 0 and day +100 after HCT. Physicians
were requested to estimate each patient’s performance
status (ECOG, 0–5) and risk to have a CMV reactivation
(low, moderate, high) in 7 and 21 days after the assess-
ment date. Assessment was performed weekly between
day -7 and day +100 after HCT by physicians of the De-
partment of Hematology and Stem Cell Transplantation
at UHE. Whenever an assessment was made (starting at
HCT), the GBM and LR model were executed on the
most recent available data to allow for a head-to-head
comparison of the predictions. Treating and risk assess-
ing physicians were blinded for the model predictions.

To enable model predictions on the day of each as-
sessment, we used indefinite forward filling on laboratory
measurements for this analysis. Since the physicians’ as-
sessments were recorded as categories rather than prob-
abilities, we binarized their answers and the model pre-
dictions, and compared performance measures on these
binary predictions. Specifically, we compared MCC and
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F1 score, choosing the optimal binarization threshold for
models and physicians, respectively. To assess variabil-
ity, we repeated this evaluation on 10,000 bootstrap sam-
ples drawn from the dataset for this pilot comparison.
Here, we kept the positive fraction fixed by drawing the
same number of samples with positive and negative label,
respectively, as were originally in the dataset.

Implementation

Preprocessing was in part performed within the XplOit
platform (version 20201130 1700) using extract-transform-
load pipelines specific to each data type. All remaining
steps of preprocessing, model building and analysis were
implemented in python (version 3.8.2) using scikit-learn
(version 0.22.1) [53], numpy (version 1.18.1) [54] and
pandas (version 1.0.3) [55]. GBM models were trained
with LightGBM (version 2.3.1) [52] and SHAP values
for these models were computed using the TreeExplainer
implemented in shap (version 0.37.0) [27].

Data availability

The data used in this article contains sensitive personal
health information. Due to the high dimensionality
and the inclusion of longitudinal data, it cannot be
fully anonymized and published without the risk of re-
identification. Requests for access to the data may be
submitted to the University Hospital Essen and are sub-
ject to approval by data protection officer and ethics
committee.

Code availability

Source code may be obtained from the corresponding
authors upon request. To enable independent replica-
tion of our methods, we included detailed descriptions
of preprocessing and model development in the Methods
section and in the supplementary material.
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Fig. 1: Overview of model development and evaluation. a, Data preparation. Raw data tables were pseudonymized
and combined into one coherent dataset. After patient and variable selection, sparsity in laboratory values was reduced
by forward filling with variable-specific time limits and categorical features were converted into a binary representation.
b, Time points and targets for prediction. Of the two considered events, death was directly documented and CMV
reactivation was extracted from virological tests as the first positive CMV test which was not an isolated positive.
We selected all days between HCT and an event or censoring as prediction days where new laboratory values were
measured and < 30% of them were missing. Each prediction day was labeled positive if the event occurred in a
fixed subsequent time window, and negative otherwise. c, Machine learning. Models received static baseline data,
current laboratory values and the prediction day after HCT as inputs. We randomly split the retrospective cohort into
training and test set 10 times, and trained a separate model on the training set of each split and a final model on the
full retrospective cohort. We defined the splits on patient level and stratified the proportion of patients with at least
one positive labeled time point. Preprocessing included a time-dependent normalization and imputation of laboratory
values. We trained one calibrator for each split into training and test set. To calibrate each model, we averaged over
the calibrators trained on the remaining splits or over all calibrators in case of the final model. d, Model evaluation.
During model development, performance was evaluated on the test set of the 10 splits of the retrospective cohort.
In a prospective validation study, we additionally evaluated the performance of the final model on 403 prospectively
recruited patients and, in a subset of 91 patients, performed a pilot comparison with experienced HCT physicians.
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Fig. 2: Comparison of clinical outcomes in retrospective and prospective cohort. a, Probability of overall survival
including censoring for the first 36 months after HCT and comparison of strata with the logrank test. b, Cumulative
incidence of non-relapse mortality (NRM), with relapse as competing event. c, Cumulative incidence of relapse with
NRM as competing event. d, Cumulative incidence of early CMV reactivation up to day +100 after HCT. a–d,
The retrospective cohort is shown in blue and the prospective cohort in green, shaded areas indicate 95% confidence
intervals.
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Fig. 3: Performance of 21-day mortality prediction. a, Receiver-operating characteristic of GBM and LR model, which
received a combination of static and time-dependent input features, and a baseline model which received only static
features. b, Precision-recall curve for the same models shown in a based on event recall, i.e. the fraction of events which
were correctly predicted on any of the previous 21 days. c, Fraction of events that are correctly predicted by the GBM
model as a function of time to event for multiple thresholds. The legend displays overall event recall and precision.
d, Mean predicted risk of the GBM model as a function of time to event. For reference, the orange horizontal line
indicates the mean predicted risk over all time points labeled negative. Dashed horizontal lines indicate the thresholds
corresponding to the curves shown in c. e, AUROC and sample-AUPRC of the GBM model and fraction of samples
with positive label as functions of time after HCT. Bin size increases because fewer samples were available late after
HCT. a–e Lines and shaded areas show the mean ± standard deviation on the test set over 10 random splits into
training and test data.
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Fig. 4: Feature importance of the GBM model for 21-day mortality prediction. a, Layered violin plot of SHAP values of
the GBM model for the 20 features with highest mean absolute SHAP value. The thickness of the violins corresponds
to the estimated density of each feature’s SHAP values, colors show the magnitude of feature values (percentiles). For
categorical features, the colors are based on an integer representation and should not be interpreted as ordered. All
SHAP values were computed based on raw model output in log-odds space. b–d Scatter plots of individual SHAP
values over feature values. Shown are plots for the feature prediction day after HCT on the entire range of feature
values (b) and zoomed in on the first year after HCT (c), and for the feature C-reactive protein (d). a–d For features
marked with �, the feature value is the time-normalized score that the model received as input, not the raw value in
its original unit.
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Fig. 5: Performance of 21-day prediction of CMV reactivation. a, Receiver-operating characteristic of GBM and LR
model, which received a combination of static and time-dependent input features, and a baseline model which received
only static features. b, Precision-recall curve for the same models shown in a based on event recall, i.e. the fraction
of events which were correctly predicted on any of the previous 21 days. c, Fraction of events that are correctly
predicted by the GBM model as a function of time to event for multiple thresholds. The legend displays overall event
recall and precision. d, Mean predicted risk of the GBM model as a function of time to event. For reference, the
orange horizontal line indicates the mean predicted risk over all time points labeled negative. Dashed horizontal lines
indicate the thresholds corresponding to the curves shown in c. e, AUROC and sample-AUPRC of the GBM model
and fraction of samples with positive label as functions of time after HCT. Bin size increases because fewer samples
were available late after HCT. a–e Lines and shaded areas show the mean ± standard deviation on the test set over
10 random splits into training and test data.
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Fig. 6: Feature importance of the GBM model for 21-day prediction of CMV reactivation. a, Layered violin plot of
SHAP values of the GBM model for the 20 features with highest mean absolute SHAP value. The thickness of the
violins corresponds to the estimated density of each feature’s SHAP values, colors show the magnitude of feature values
(percentiles). For categorical features, the colors are based on an integer representation and should not be interpreted
as ordered. All SHAP values were computed based on raw model output in log-odds space. b–d, Scatter plots of
SHAP values over feature values. Samples are colored by the value of a second feature to reveal interactions, which
show as vertical color patterns. Displayed are plots for the feature patient CMV serostatus colored by anti-thymocyte
globulin (b), prediction day after HCT colored by patient CMV serostatus (c), and donor age colored by patient age
(d). a–d, For features marked with �, the feature value is the time-normalized score that the model received as input,
not the raw value in its original unit.

18

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 1, 2022. ; https://doi.org/10.1101/2021.09.14.21263446doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.14.21263446
http://creativecommons.org/licenses/by-nc/4.0/


Patients with allogeneic HCT

(n=1783)

Excluded:

• Patients with multiple allogeneic

HCTs (n=67)

• Patients with model relevant 

laboratory data not available (n=6)

Patients included in this study

(n=1710)

Patients included in this study

(n=403)

Excluded for specific models:

• Patients without CMV test between

day 0 and +30 (CMV: n=58)

Patients included in model development

(Mortality: n=1710, CMV: n=1652)

Patients included in model validation

(Mortality: n=403, CMV: n=398)

Excluded for specific models:

• Patients without CMV test between

day 0 and +30 (CMV: n=5)

Excluded:

• Patients with multiple allogeneic

HCTs in study period (n=1)

• Patients with diagnosis

hemoglobinopathy (n=4)

Patients with allogeneic HCT who

consented to participate in the study

(n=408)

Retrospective Cohort

(Allogeneic HCT between Jan 2005 and Aug 2017)

Prospective Cohort

(Recruitment and allogeneic HCT between Sept 2017 and June 2020)

Fig. 7: Flowchart of the patient selection process.

19

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 1, 2022. ; https://doi.org/10.1101/2021.09.14.21263446doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.14.21263446
http://creativecommons.org/licenses/by-nc/4.0/


Retrospective cohort Prospective cohort
(n = 1710) (n = 403)

Median 95% range Median 95% range

Patient age 54 20–70 58 21–73
Donor age 37 19–63 31 19–63
Months between diagnosis and HCT 9 3–137 7 2–150

Count % Count %

Patient sex Male 967 56.5 235 57.7
Female 743 43.4 168 41.3

Donor sex Male 1111 64.9 248 60.9
Female 599 35.0 155 38.1

Donor relationship Related 439 25.6 127 31.2
Unrelated 1271 74.2 276 67.8

HLA matching Identical (10/10) 1285 75.0 333 81.8
Not identical 425 24.8 70 17.2

Patient blood group 0 659 38.5 161 39.6
A 750 43.8 157 38.6
B 218 12.7 50 12.3
AB 79 4.6 28 6.9
Unknown 4 0.2 7 1.7

Donor blood group 0 663 38.7 167 41.0
A 730 42.6 163 40.0
B 220 12.8 52 12.8
AB 96 5.6 17 4.2
Unknown 1 0.1 4 1.0

Blood group matching Identical 711 41.5 167 41.0
Major 579 33.8 131 32.2
Minor 420 24.5 105 25.8

Diagnosis Acute myeloid leukemia 786 45.9 201 49.4
Acute lymphoblastic leukemia 176 10.3 37 9.1
Non-Hodgkin’s lymphoma 173 10.1 32 7.9
Myelodysplastic syndromes 152 8.9 48 11.8
Myeloproliferative Disorder 114 6.7 28 6.9
Chronic myeloid leukemia 91 5.3 17 4.2
Multiple Myeloma 73 4.3 6 1.5
Chronic lymphocytic leukemia 42 2.5 4 1.0
Non-malignant hematological diseases 34 2.0 10 2.5
Chronic myelomonocytic leukemia 32 1.9 9 2.2
Hodgkin’s lymphoma 18 1.1 3 0.7
Other hematologic malignancies 14 0.8 6 1.5
Congenital hematologic disorder 4 0.2 2 0.5
Non-hematologic malignant disorder 1 0.1 0 0.0

Disease stage before HCT Early 521 30.4 118 29.0
Advanced 964 56.3 195 47.9
Unknown 225 13.1 90 22.1

Comorbidity present Yes 316 18.4 324 79.6
No 170 9.9 73 17.9
Unknown 1224 71.5 6 1.5

Stem cells PHSC 1572 91.8 396 97.3
Bone marrow 127 7.4 7 1.7
Bone marrow and PHSC 10 0.6 0 0.0
Unknown 1 0.1 0 0.0

Patient CMV serostatus Negative 738 43.1 172 42.3
Positive 922 53.8 224 55.0
Unknown 50 2.9 7 1.7

Donor CMV serostatus Negative 945 55.2 172 42.3
Positive 717 41.9 224 55.0
Unknown 48 2.8 7 1.7

MAC/RIC Myeloablative conditioning 741 43.3 172 42.3
Reduced intensity conditioning 905 52.8 222 54.5
Other 64 3.7 9 2.2

Total body irradiation (TBI) Yes 692 40.4 158 38.8
No 954 55.7 236 58.0
Other 64 3.7 9 2.2

Anti-thymocyte globulin Yes 927 54.1 242 59.5
No 754 44.0 155 38.1
Unknown 29 1.7 6 1.5

Baseline immunosuppression CSA backbone 1569 91.6 275 67.6
TAC backbone 7 0.4 114 28.0
Triple suppression 85 5.0 6 1.5
Graft manipulation 27 1.6 2 0.5
Other 22 1.3 6 1.5

Table 1: Overview of most important patient characteristics.
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a Prediction task Model Performance metric Retrospective cohort Prospective cohort

Mortality 21 days GBM AUROC 0.918 ± 0.009 0.895 ± 0.005
event-AUPRC 0.584 ± 0.046 0.522 ± 0.023
sample-AUPRC 0.488 ± 0.042 0.414 ± 0.015

LR AUROC 0.900 ± 0.010 0.866 ± 0.006
event-AUPRC 0.524 ± 0.048 0.549 ± 0.021
sample-AUPRC 0.445 ± 0.043 0.413 ± 0.015

Mortality 7 days GBM AUROC 0.951 ± 0.006 0.931 ± 0.006
event-AUPRC 0.525 ± 0.038 0.372 ± 0.029
sample-AUPRC 0.410 ± 0.034 0.303 ± 0.021

LR AUROC 0.940 ± 0.008 0.894 ± 0.009
event-AUPRC 0.464 ± 0.038 0.348 ± 0.026
sample-AUPRC 0.375 ± 0.023 0.269 ± 0.020

CMV 21 days GBM AUROC 0.825 ± 0.006 0.846 ± 0.004
event-AUPRC 0.620 ± 0.040 0.574 ± 0.011
sample-AUPRC 0.565 ± 0.025 0.549 ± 0.009

LR AUROC 0.793 ± 0.013 0.818 ± 0.004
event-AUPRC 0.532 ± 0.050 0.515 ± 0.012
sample-AUPRC 0.502 ± 0.033 0.496 ± 0.009

CMV 7 days GBM AUROC 0.846 ± 0.010 0.875 ± 0.005
event-AUPRC 0.335 ± 0.023 0.323 ± 0.015
sample-AUPRC 0.295 ± 0.017 0.302 ± 0.012

LR AUROC 0.777 ± 0.014 0.802 ± 0.006
event-AUPRC 0.192 ± 0.017 0.176 ± 0.007
sample-AUPRC 0.188 ± 0.014 0.181 ± 0.006

b Prediction task Model Performance metric Prospective cohort (CSA only) Prospective cohort (TAC only)

Mortality 21 days GBM AUROC 0.890 ± 0.008 0.892 ± 0.007
event-AUPRC 0.512 ± 0.031 0.500 ± 0.040
sample-AUPRC 0.440 ± 0.020 0.363 ± 0.023

LR AUROC 0.844 ± 0.009 0.882 ± 0.008
event-AUPRC 0.541 ± 0.027 0.588 ± 0.033
sample-AUPRC 0.413 ± 0.020 0.405 ± 0.023

Mortality 7 days GBM AUROC 0.938 ± 0.008 0.919 ± 0.008
event-AUPRC 0.419 ± 0.039 0.323 ± 0.056
sample-AUPRC 0.369 ± 0.031 0.220 ± 0.028

LR AUROC 0.876 ± 0.014 0.908 ± 0.010
event-AUPRC 0.400 ± 0.037 0.296 ± 0.041
sample-AUPRC 0.312 ± 0.030 0.219 ± 0.029

CMV 21 days GBM AUROC 0.849 ± 0.005 0.847 ± 0.006
event-AUPRC 0.583 ± 0.016 0.589 ± 0.021
sample-AUPRC 0.551 ± 0.011 0.570 ± 0.016

LR AUROC 0.832 ± 0.005 0.790 ± 0.007
event-AUPRC 0.555 ± 0.017 0.455 ± 0.017
sample-AUPRC 0.524 ± 0.011 0.448 ± 0.013

CMV 7 days GBM AUROC 0.885 ± 0.005 0.865 ± 0.009
event-AUPRC 0.354 ± 0.020 0.285 ± 0.025
sample-AUPRC 0.327 ± 0.017 0.273 ± 0.018

LR AUROC 0.814 ± 0.007 0.780 ± 0.012
event-AUPRC 0.180 ± 0.008 0.169 ± 0.011
sample-AUPRC 0.186 ± 0.007 0.179 ± 0.011

Table 2: Model performance on prospective data. a, Comparison of model performance on retrospective and prospec-
tive cohort. b, Model performance on the prospective cohort measured separately for patients with CSA and TAC
immunosuppression. a–b, For the retrospective cohort, the table displays mean ± standard deviation on the test set
over 10 random splits into training and test data. For the prospective cohort, it shows the performance of the final
models, trained on the entire retrospective cohort, as mean ± standard deviation over 10,000 bootstrap samples.
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Prediction task Performance metric Physicians GBM LR

Mortality 21 days MCC 0.488 ± 0.089 0.461 ± 0.086 0.417 ± 0.087
F1 score 0.453 ± 0.086 0.427 ± 0.085 0.360 ± 0.084

Mortality 7 days MCC 0.796 ± 0.180 0.377 ± 0.064 0.304 ± 0.069
F1 score 0.767 ± 0.214 0.272 ± 0.077 0.204 ± 0.069

CMV 21 days MCC 0.234 ± 0.051 0.329 ± 0.062 0.266 ± 0.023
F1 score 0.289 ± 0.055 0.322 ± 0.049 0.281 ± 0.026

CMV 7 days MCC 0.170 ± 0.067 0.147 ± 0.033 0.143 ± 0.042
F1 score 0.168 ± 0.063 0.110 ± 0.025 0.117 ± 0.030

Table 3: Comparison of the prediction performance of ML models and treating physicians. Performance of models
and physicians was measured using Matthews correlation coefficient (MCC) and F1 score after binarization with the
respective optimal threshold. Displayed is the mean ± standard deviation over 10,000 bootstrap samples.
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