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Abstract  16 

  17 

We developed a novel analytic pipeline - FastMix - to integrate flow cytometry, bulk 18 

transcriptomics, and clinical covariates for statistical inference of cell type-specific gene 19 

expression signatures. FastMix addresses the “large �, small �” problem via a carefully 20 

designed linear mixed effects model (LMER), which is applicable for both cross-sectional and 21 

longitudinal studies. With a novel moment-based estimator, FastMix runs and converges 22 

much faster than competing methods for big data analytics. The pipeline also includes a cutting-23 

edge flow cytometry data analysis method for identifying cell population proportions. 24 

Simulation studies showed that FastMix produced smaller type I/II errors with more accurate 25 

parameter estimation than competing methods. When applied to real transcriptomics and flow 26 

cytometry data in two vaccine studies, FastMix-identified cell type-specific signatures were 27 

largely consistent with those obtained from the single cell RNA-seq data, with some unique 28 

interesting findings.   29 
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 2

Introduction 30 

High throughput multi-omics technologies are becoming popular. In a multi-omics study, 31 

different types of sample characteristics of the same subject, e.g., genomics, transcriptomics, 32 

epigenomics, proteomics and metabolomics, are measured using a variety of bioassays. Recent 33 

publications [1-7] have shown that systems biology approaches based on multi-omics 34 

integrative data analysis can effectively identify important patterns that otherwise would be 35 

missed using a single assay. One key challenge for multi-omics data integration is the “large p, 36 

small n” problem. Each type of assay can measure many analytes. As a result, the total number 37 

of experiment variables (p) involved in a multi-omics study is usually large. The number of 38 

experimental subjects and their samples (n), however, is usually more limited due to cost and 39 

enrollment capability. When p >> n, it is unreliable to infer or interpret the relationship among 40 

the variables using standard regression models.  41 

Dimensionality reduction and regularization are two common approaches to address this issue. 42 

Common data dimensionality reduction techniques include linear projection methods such as 43 

principal component analysis (PCA) [8], canonical correlation analysis (CCA) [9] and partial least 44 

squares (PLS) [10], as well as non-linear embedding methods such as t-distributed stochastic 45 

neighbor embedding (t-SNE) [11] and uniform manifold approximation projection (UMAP) [12]. 46 

Well-established regularization methods include ridge [13], LASSO [14], and elastic-net [15]. 47 

Currently, major efforts in the field of multi-omics integrative analysis focus on using one or 48 

both types of approaches to address the “large p” problem. For example, DIABLO [16] uses 49 

sparse generalized canonical correlation analysis (sGCCA) with LASSO penalty to integrate data 50 
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from multiple omics assays and predict patient’s disease type. LUCID [17] uses a joint 51 

probabilistic model with latent variables for integrated clustering regularized by LASSO. In the 52 

emerging single cell genomics field, UMAP and other embedding techniques are frequently 53 

used for the dimensionality reduction purpose for multi-modality data integration [18, 19]. 54 

However, the fundamental question of biomarker detection, which requires the integration of 55 

both assay data and clinical covariates with differential analysis, has not been solved. 56 

Among the applicable statistical models, linear-mixed effects regression (LMER) is a powerful 57 

and generalizable framework that can be used to address the “large p, small n” problem for 58 

multi-omics data integration. Regularized fixed effects regression models have been shown to 59 

solve the “large p, small n” issue and reduce the variability in the estimation procedure by 60 

shrinking the estimates toward zero. On the other hand, LMER shrinks the estimates toward the 61 

fixed effects instead of zero, so that they have less variability and are less biased [20, 21]. 62 

However, LMER is not widely applied to high-throughput multi-omics data because of its high 63 

computational cost and numerical instability. Conventionally, a LMER model is solved by an 64 

expectation-maximization (EM) algorithm, which iteratively finds maximum likelihood estimate 65 

of regression parameters [22]. This iterative process is slow and prone to convergence issues, 66 

which makes the LMER almost impossible to be applied to analyze data from high-throughput 67 

studies.  68 

To reduce the high computational cost of the iterative EM algorithm, we designed a non-69 

iterative, moment-based covariance estimator, which is not only more robust than the iterative 70 

EM process but also more efficient, requiring a small fraction of EM’s run time. To both 71 
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demonstrate the utility and evaluate the performance of the proposed approach, we combined 72 

the moment-based estimation of LMER together with downstream differential expression (DE) 73 

analysis into a computational pipeline for inferring cell type-specific differentially expressed 74 

genes (DEGs) from bulk gene expressions and flow cytometry (FCM) data, a problem that is 75 

commonly encountered in immunology studies but not specifically addressed by the existing 76 

multi-omics data integration methods. As shown in Figure 1a, the proposed model – FastMix 77 

– takes in three sets of input data: (i) bulk gene expressions measured by microarray or RNA 78 

sequencing; (ii) proportions of cell populations identified from FCM data; and (iii) experiment 79 

covariates and clinical parameters such as demographics, cohorts, and visits of the subjects.  80 

Figure 1b depicts the main steps in the FastMix modeling and testing framework and key 81 

techniques to obtain accurate parameter estimations. Expected improvement of parameter 82 

estimation by the FastMix is illustrated in Figure 1c.  83 

FastMix optimizes the bias-variance tradeoff in a way that the DEGs (dots in black) can be 84 

estimated closer to the ground truth than the standard approach (Figure 1c). Figure 1d provides 85 

a schematic representation of the whole analytic pipeline. Unlike traditional unsupervised 86 

analyses that rely on predefined marker genes (which are often incomplete or totally unknown 87 

when the cell types are novel) to define cell types for estimating the cell composition data, our 88 

proposed pipeline integrates the FCM data with bulk gene expression data to supervise the cell 89 

type-specific inference. FastMix inference provides a baseline method for cell type-specific 90 

data analysis to complement the cutting-edge single cell transcriptomics assay which still needs 91 

time to be fully mature and widely affordable.  92 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 27, 2021. ; https://doi.org/10.1101/2021.09.14.21263182doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.14.21263182
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5

In addition, the pipeline depicted in Figure 1d addresses the analysis of FCM data by including a 93 

cutting-edge computational method – DAFi [23] – to identify composition/proportions of the 94 

cell populations. It makes the pipeline advantageous over the existing data integration 95 

approaches when the scientific study includes FCM assay data. The DAFi-based analysis 96 

improves not only the reproducibility of the FCM data analysis but also the accuracy of the 97 

proportions of the cell populations for improving the downstream FastMix inference.  It is 98 

important to note that the pipeline depicted in Figure 1d can be applied to analyze other types 99 

of multimodal datasets for compositional and bulk profiling integrative analysis. For example, 100 

multimodal data from metagenomics and metabolomics assays commonly include bulk analysis 101 

and composition of microbial communities for which FastMix can be applied to identify the 102 

community-specific biomarkers. FastMix is freely accessible as an open source package at 103 

https://github.com/terrysun0302/FastMix.  104 

isResults 105 

Fast unfolding of cell type mixture by integrating multimodal omics data 106 

FastMix is primarily designed to integrate two popular assays – flow cytometry and 107 

transcriptome profiling – in multi-omics studies. In this scenario, FastMix takes in three sets 108 

of input data: (i) clinical covariates (denoted as ����), such as age, sex, treatment group, (ii) cell 109 

type proportions measured by flow cytometry assays on heterogeneous populations (denoted 110 

as ����), and (iii) bulk gene expression measured by microarray or RNA sequencing (denoted as 111 

�; � is a sample-by-gene matrix following the regression model convention). Without 112 

FastMix, separate regression models can be used to quantify the linear associations between 113 
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two out of the three data inputs, i.e., associations between � and ����, associations between � 114 

and ����, or associations between ���� and ����. FastMix simultaneously studies the 115 

associations between all three sets of variables in the following unified linear regression model 116 

� 	 
� � 
, 
where 
 is a three-component design matrix, 
 � ����� ���� ���� � �����, � is a matrix of 117 

regression coefficients (weights) to be estimated, and 
 is a matrix of errors. By including the 118 

interaction term ���� � ����, FastMix makes cell type-specific inferences beyond the bulk 119 

level analysis. Typically, the above model is an under-determined system. FastMix reduces 120 

the model complexity by using the linear mixed effects regression (LMER) techniques. It 121 

introduces the gene-specific mixed effects, such that ��� 	 �� � ���, where �� is the fixed effect 122 

of the �th covariate to the entire transcriptome, and ��� is the gene-specific random effect of 123 

the �th gene. FastMix also provides a computational algorithm that is much faster than the 124 

traditional expectation-maximization (EM) algorithm to solve large-scale LMER model with 125 

high-throughput data. The FastMix algorithm is a non-iterative procedure that uses a novel 126 

moment-based estimator for the covariance matrix of random effects (denoted as  ���). Of note, 127 

FastMix estimates the covariance matrix with outlier trimming and bias correction, therefore 128 

it is robust to numerical aberrations induced by outliers and DEGs in the data. Estimates of the 129 

fixed effects ( ���) and random effects ( ����) can then be computed using the weighted least 130 

squares (WLS) and empirical best linear unbiased predictor (EBLUP) techniques. (See Figure 1b 131 

and the Methods section for more details.) 132 
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The overarching goal of the FastMix model is to perform DE analyses with respect to the 133 

components in the design matrix. Though no classical hypothesis test can be applied to the 134 

random effects for theoretical reasons; in practice, FastMix introduces a novel competitive 135 

test with quasi-p-value to identify DEGs that have significantly larger or smaller predicted 136 

random effects ���� (i.e., cell type-specific effects) to practically rank the importance of genes in 137 

the whole transcriptome. To this end, FastMix incorporates a DEG indicator, and assigns the 138 

random effects a mixture distribution conditional on the DEG indicator based on empirical 139 

Bayes method [24, 25]. For each component of the design matrix, FastMix inference on 140 

random effects can be interpreted as: 141 

• ���� – detection of cell type signature genes that distinguish cell types from each other, 142 

• ���� – bulk-level gene expression differential analysis, 143 

• ���� � ���� – cell type-specific differential analysis, i.e., cell type-specific DEGs.  144 

Note that FastMix is able to incorporate arbitrary weight matrices at the sample level, which 145 

can be used to account for the serial correlation in longitudinal studies. We will provide some 146 

practical guidance on how to construct such a weight matrix in the Methods section. We refer 147 

to this model as the weighted FastMix model. FastMix with known weights is shown to 148 

perform better than FastMix without weight if the data are known to fail the independent 149 

and identically distributed assumption (please see Supplementary Material, Section 2.3 and 3.5). 150 

In the rest of this section, we illustrated the properties of FastMix in extensive simulation 151 

studies. In two real data studies, we applied (weighted) FastMix to carry out cell type-specific 152 
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inference with a focus on neutrophils in a hepatitis B virus (HBV) vaccine study and a focus on 153 

lymphocytes in an influenza infection study. We chose these two cell populations because 154 

neutrophils play important roles in pathogenesis of liver diseases and immune responses to 155 

HBV vaccines [26, 27]. Also, influenza infection is known to be associated with a relative 156 

lymphopenia/neutrophia ratio [28]. 157 
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Simulation I: the effect of trimming and robustness estimation of covariance matrix 158 

We designed simulation I to illustrate the advantage of the moment-based covariance matrix 159 

estimator. For illustration purpose, we considered two cell types, namely Cell1 and Cell2, whose 160 

random effects are ���  and ���, respectively. Figure 1c shows the effect of the proposed 161 

embedded robust covariance estimator ��� (green ellipse) for estimating the true covariance 162 

matrix between the random effects � (black ellipse). In the simulation, we generated 5000 163 

genes (dots); among them, 250 genes were true DEGs (black dots) in the direction of Cell1, i.e., 164 

Cell1-specific DEGs. Note that the existence of true DEGs can be considered as outliers under 165 

the null hypothesis [29, 30] that may lead to over-estimation of the covariance matrix. In the 166 

estimation procedure of FastMix, an initial covariance estimator (red ellipse) was constructed 167 

first using the ordinary least squares (OLS) regression technique (see the Methods section), 168 

which is non-robust to bias caused by DEGs. Trimming and bias correction techniques were 169 

then applied to re-estimate the initial estimated covariance matrix. Simulation I showed that 170 

the final estimator ��� was robust to the existence of outliers (DEGs), and accurately 171 

recapitulated the true covariance matrix, i.e., the overlay of the green ellipse and the black 172 

ellipse. 173 

Simulation II: comparing performance of FastMix with other regression models 174 

Simulation II was conducted to verify the statistical and computational properties of the 175 

proposed method. We generated synthetic gene expression values for 5000 genes and 50 176 

subjects. For each subject, we generated three cell proportions (Cell1, Cell2, and Cell3), one 177 

continues clinical covariate (Severity), and one categorical clinical covariate (Sex). In the 178 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 27, 2021. ; https://doi.org/10.1101/2021.09.14.21263182doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.14.21263182
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10

simulation design, four scenarios were considered: with or without true DEGs, and with or 179 

without correlation between random effects. Simulation details are described in the Methods 180 

Section. 181 

Here, we systematically evaluated the computational efficiency and accuracy for estimating �, 182 

the covariance matrix of random effects. The FastMix model is a special case of LMER, with 183 

robust estimation of � and bias-correction procedure for fixed effect. The standard 184 

implementation of LMER in R is the lme4 package, which uses an iterative expectation-185 

maximization (EM) algorithm to obtain the maximum likelihood estimator for �. The lme4 186 

implementation is very time-consuming for estimating the full covariance matrix �. In practice, 187 

users may specify an independent correlation structure, i.e., assuming no correlation between 188 

random effects thus � is diagonal. The lme4 implementation with independent assumption 189 

(lme4_ind) is more efficient than the default lme4 implementation since much simpler 190 

covariance structure is assumed in the model. Similarly, we also implemented the independent 191 

assumption for the random effects in the FastMix algorithm (FastMix_ind). For the 192 

completeness of comparison, we reported the time consumed in seconds and mean square 193 

error (MSE) for estimating � using lme4_ind, lme4, FastMix, and FastMix_ind under the 194 

four simulated scenarios in Table 1a.  195 

Table 1a showed that, when the random effects were independent and without DEGs, 196 

lme4_ind was the theoretically best approach and had the lowest MSE. While the accuracy of 197 

lme4_ind and FastMix_ind were both at the minimal level (MSE = 0.02 and MSE = 0.04, 198 

respectively), FastMix_ind used only 2% of the computational time of lme4_ind. When the 199 
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random effects were correlated and without DEGs, FastMix had the smallest MSE (0.21) and 200 

was more than 300 times faster than the full-pledged lme4 algorithm, which had the second 201 

best MSE (0.32). For the simulation scenarios with DEGs, the FastMix implementations were 202 

always (with or without correlation) the best performers with the smallest MSEs and used tiny 203 

amount of computational time. The lme4-based approaches were not able to obtain accurate 204 

estimates, because the maximum likelihood estimator used in lme4 was not robust to effects 205 

introduced by DEGs (outliers). On the other hand, FastMix was robust to these effects due to 206 

the use of trimming. In Supplementary Material, sections 3.2 and 3.3, we also showed that 207 

FastMix greatly reduced the bias in the fixed effect estimation compared to the lme4 208 

approach and other robust covariance estimators [31-33]. Among all the methods compared, 209 

FastMix had the most robust performance (Supplementary Material, Tables 1 and 3). 210 

Next, we compared FastMix with ordinary least square (OLS) and Ridge regression for 211 

regression coefficient estimation. One primary reason to use LMER instead of the standard OLS 212 

regression is to reduce the variability of the estimated regression coefficients. For the same 213 

purpose, Ridge regression is also well-known for stabilizing the regression coefficients using 214 

regularization. In the second simulation, we compared the accuracy of estimating the gene-215 

specific linear coefficients ���, using FastMix, OLS, and Ridge regressions. We considered the 216 

most real simulation scenario, i.e., with correlation and DEGs, for this evaluation. The 217 

regularization parameter in ridge regression was selected by the generalized cross-validation 218 

(GCV) criterion. Table 1b showed that, FastMix had the smallest total MSE among the three 219 

compared methods. In this simulation, the standard deviations of FastMix and Ridge (0.017 220 

and 0.046, respectively) were both much smaller than that of OLS (0.2), suggesting that both 221 
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methods could achieve the shrinkage effect, i.e., stabilizing the regression coefficients. A closer 222 

look at the biases of individual coefficients suggested that the FastMix and OLS estimates 223 

could be regarded as practically unbiased. On the other hand, estimates of Ridge regression had 224 

large bias, because the �� regularization in Ridge regression shrank the estimates toward zero 225 

[13], not the fixed effects.  226 

Simulation III: Comparing FastMix with existing cell type-specific differential analysis 227 

method 228 

Shen-Orr et al. proposed csSAM [34] – a cell type-specific differential analysis method for 229 

heterogeneous biological samples using gene expression data and relative cell type frequencies. 230 

csSAM is also a regression-based model solved by the standard OLS technique; and the 231 

differential analysis is conducted by the established SAM [35] pipeline for bulk gene expression. 232 

A major limitation of csSAM is that it only performs two-group comparison, i.e., one binary 233 

covariate. For a fair comparison, we redesigned a simpler simulation study for the same 234 

number of genes and subjects, which had three cell proportions (Cell1, Cell2, and Cell3) and one 235 

binary covariate (Group), to compare the type I error rate, power, and computational time for 236 

cell type-specific DEG detection using FastMix and csSAM. By design, there were true cell 237 

type-specific DEGs for Cell1 and Cell2, but not Cell3; two scenarios with and without correlation 238 

between random effects were also considered. Simulation details are described in the Methods 239 

Section. 240 

Table 1c-e showed the simulation performance of the two cell type-specific methods. In both 241 

correlation and no correlation scenarios, FastMix had acceptable type-I error rate (5%~7%), 242 
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while csSAM had much higher type-I error rate than FastMix in all cases (Table 1c); FastMix 243 

also had better statistical power (on average 65%) for detecting Cell1-specific and Cell2-specific 244 

true DEGs than csSAM (on average 50%) in the simulation (Table 1d). Overall, FastMix not 245 

only showed superior performance in the simulation results, but also used just 1/10 of the 246 

computational time of csSAM (Table 1e). 247 

In Supplementary Material, Section 3.4, we showed that when there were more up-regulated 248 

DEGs and fewer down-regulated DEGs in a slightly different simulation, similar patterns of the 249 

type-I error, statistical power, and computational efficiency performance were observed for 250 

both methods as those shown in Table 1c-e. 251 

FastMix multi-omics integration reveals consistent cell type-specific signature genes with 252 

scRNA-seq technology 253 

We applied FastMix to a multimodal study that investigates immune responses to the 254 

licensed hepatitis B vaccine – Engerix-B – for the Human Vaccine Project (HVP) [36]. The HVP01 255 

study [37] contains well used assays on whole blood or peripheral blood mononuclear cell 256 

(PBMC) samples from adults with wide age range (40-80 years old), including flow cytometry for 257 

immunophenotyping, RNA-seq for bulk transcriptomics, and virus neutralization assay for 258 

serum antibody titers (anti-HBs). In addition, this study also has scRNA-seq data for immune 259 

cells using the Smart-Seq2 [38] protocol, which we would use as the ground truth to validate 260 

our FastMix results. 261 
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Engerix-B requires three doses to reach clinically proven immune protection [39]. In the HVP01 262 

study, there are 15 subjects. After Dose 3, all subjects responded to vaccination, but some had 263 

much higher immune protection measured by the anti-HBs titer than others (Supplementary 264 

Figure S1). We grouped subjects who had anti-HBs titer >5000 mUI/mL after Dose 3 as high 265 

responders (5 subjects), and otherwise low responders (10 subjects). Immunophenotyping by 266 

flow cytometry and gene expression by RNA-seq of whole blood and single immune cells were 267 

collected at 5 time points (Day 0,1,3,7, and 14). Based on the markers used in the flow 268 

cytometry panels, we identified the abundant neutrophils (CD45+ CD66+), non-neutrophils 269 

(CD45+ CD66-), and rest populations (Figure 2a) following the DAFi gating hierarchy [23] (see 270 

the Methods section). Using all time points, we fitted a weighted FastMix model for the bulk 271 

RNA-seq gene expression with a design matrix of cell proportions, clinical covariates including 272 

response group and age (Supplementary Figure S1), and their interactions.  273 

First, we looked at the DEG list of the main terms, which can be interpreted as the signature 274 

genes of each cell population. Broadly speaking, these signature genes are differentially 275 

expressed in the specific cell population when compared with the rest of the cell populations. 276 

Out of the 13,157 genes available in the processed bulk RNA-seq data, FastMix identified 851 277 

signature genes for the neutrophil population, 520 signature genes for the non-neutrophil 278 

population, and 30 signature genes for the rest population. Because the rest population is the 279 

most heterogenous population, we would expect that not many signature genes could be 280 

identified for the rest population that contained a mixture of cell types. 281 
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To validate the FastMix signature genes for the well-defined cell population (i.e., neutrophils), 282 

we used a completely independent assay data from the unbiased scRNA-seq whole 283 

transcriptome expression profiling. We followed a standard scRNA-seq analysis pipeline 284 

including low-dimensional embedding of cells on UMAP [40] with cell clusters color labeled by 285 

the ground truth cell types based on cell surface markers in FCM sorting, and scRNA-seq DE 286 

analysis by a nonparametric hypothesis testing approach [41] for cell type DE gene detection 287 

for scRNA-seq data, which were conceptually comparable with the signature genes detected by 288 

FastMix. UMAP visualization of the ground truth cell types (Figure 2b) showed a good 289 

separation of the neutrophil population from other cell populations. We applied the scRNA-seq 290 

DE analysis to detect DEGs between the neutrophils and all other cells, which identified 2,744 291 

neutrophil cell type DE (a.k.a. signature) genes from 58,036 annotated genes in total.  292 

We compared the FastMix and scRNA-seq results of neutrophil signature genes in Figure 2c. 293 

The majority (>50%) of the FastMix signature genes overlapped with the scRNA-seq signature 294 

genes. Specifically, 72% of the top 100 FastMix signature genes were consistent with the 295 

scRNA-seq signature genes. The overlapping rate gradually decreased as we included more top 296 

genes in the comparison, meaning that FastMix ranked more “ground truth” (scRNA-seq) 297 

signature genes at the top in its DEG list. For pragmatic use, we further selected 365 scRNA-seq 298 

signature genes that have substantial fold change (FC), i.e., |logFC| > 1. The Venn diagram 299 

(Figure 2d) showed that 39 of the top 100 FastMix signature genes were overlapped with the 300 

selected scRNA-seq signature gene list, suggesting that the FastMix signature genes were not 301 

only close to the scRNA-seq ground truth, but also contained more practically useful genes in 302 

the top ranked genes (16% of the scRNA-seq signature genes passed the logFC threshold vs. 39% 303 
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of the top 100 FastMix signature genes passed the logFC threshold). Among the 39 common 304 

genes, many of them are highly relevant to both neutrophils and Hepatitis B, e.g., CXCR1/2 305 

plays an important role [26] in hepatic inflammatory response [42]. The same can be seen for 306 

the interferon-induced proteins from IFIT and IFITM family genes (the 39 genes include IFIT2, 307 

IFITM2, IFITM3, etc.) Furthermore, we plotted the scRNA-seq expression values of the 39 308 

common signature genes across all cell types (Figure 3a), compared with the bottom genes 309 

(Figure 3b) and top (Figure 3c) genes identified by FastMix in violin plots. It is clear to see 310 

abundant gene expression in the neutrophils for common and top FastMix signature genes, 311 

but almost no expression in the bottom genes. 312 

Identifying cell type-specific interferon signaling pathway genes after Hepatitis B vaccination 313 

using FastMix  314 

Next, we compared FastMix and csSAM for identifying the cell type-specific DEGs. With the 315 

above FastMix model of HVP01 study, we focused our comparison on the neutrophil-specific 316 

DEGs with respect to the response group (since csSAM only performs two-group DE analysis for 317 

the cell type-specific SAM model). FastMix identified 495 neutrophil-specific DEGs at 5% false 318 

discovery rate (FDR); however, csSAM identified 0 DEG at the same 5% FDR level (the default 319 

significance level used in csSAM).  320 

Further, we performed pathway enrichment analysis with top cell type-specific genes ranked by 321 

both FastMix and csSAM. Using the step-by-step csSAM, we obtained the 100 top ranked 322 

genes based on csSAM estimated FDR. For fair comparison, we also extracted the top 100 323 

FastMix cell type-specific DEGs, and fed both FastMix and csSAM top 100 genes to the 324 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 27, 2021. ; https://doi.org/10.1101/2021.09.14.21263182doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.14.21263182
http://creativecommons.org/licenses/by-nc-nd/4.0/


 17

ReactomePA [43] R package for pathway enrichment analysis. FastMix identified 45, 8, and 1 325 

significant cell type-specific pathways for the neutrophils, non-neutrophils, and rest population, 326 

respectively (Supplementary Table S1-S3). Figure 4a showed the enriched pathways identified 327 

by the top 100 FastMix neutrophil-specific DEGs for high responders. The interferon (IFN) 328 

immune signaling pathways were substantially presented in the high responder group, 329 

including Interferon Signaling, Interferon alpha/beta signaling, Antiviral mechanism by IFN-330 

stimulated genes, Interferon gamma signaling (the top 4). In comparison, using the top 100 331 

csSAM gene list for each cell type, no enriched pathway was identified for the neutrophil 332 

population, only one pathway – neutrophil degranulation – was identified for the non-333 

neutrophil population, and five pathways for the rest population (Supplementary Table S4).  334 

Besides the significant pathways, we also extracted the unique genes that contributed to the 335 

enriched pathways from the top 100 FastMix neutrophil-specific DEG list with respect to 336 

response group (Figure 4b). In particular, we identified BST2 (Tetherin/CD317), which is a key 337 

host cell defense molecule in response to stimuli from IFN pathway [44, 45]. Traditional 338 

understanding of BST2 expression is with mature B cells and plasmacytoid dendritic cells while 339 

it has cell type-dependent variation [46]. Our analysis showed that BST2 was also expressed in 340 

neutrophils, whose increased expression level (estimated linear coefficient = 1.016; please see 341 

Methods section for coefficient estimation) was correlated with the high anti-HB levels after 342 

Dose 3 of Engerix B. 343 

Inferring cell type-specific temporal pattern from longitudinal data using FastMix 344 
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The NIH-funded ImmPort [47] Shared Data portal (www.immport.org/shared/home) shares 345 

various immunology studies with the research community. For systems immunology, the 346 

activation of immune cell response is a dynamic process; therefore, longitudinal data are 347 

commonly collected to investigate how the immune system responds to a certain vaccine or 348 

treatment at multiple time points. It is particularly challenging to systematically integrate multi-349 

omics data over a set of time points. We downloaded SDY180 from ImmPort, which employes 350 

the systems immunology approaches to investigate immune responses to Influenza (Fluzone® 351 

2009–2010 seasonal influenza vaccine) and Pneumococcal (Pneumovax23® 23-valent 352 

pneumococcal vaccine) vaccines [48]. For the Influenza arm, we identified 102 samples that 353 

have paired flow cytometry and microarray gene expression data for 12 subjects over 8 or 9 354 

time points; for the Pneumococcal arm, we have 100 samples of 12 subjects over 8 or 9 time 355 

points (Supplementary Table S5). The subjects’ age range from 20-50 years old; and the nine 356 

time points span from 7 days before vaccination to 28 days after vaccination. In the weighted 357 

FastMix model that we fitted, we included both age and time point as model covariates. 358 

Following the DAFi gating hierarchy (see the Methods section), we identified lymphocytes, 359 

granulocytes, monocytes, and rest population from multiple flow cytometry panels for SDY180 360 

(Figure 5a and Supplementary Figure S2). The temporal pattern of the cell proportion changed 361 

over time for the Influenza arm are shown in Figure 5b. With only the flow cytometry data, we 362 

noticed that the proportion of lymphocytes had a substantial drop on Day 1 after vaccination 363 

and was recovered by Day 3.  364 
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Using a simple pre-post (i.e. between two days) comparison, the original SDY180 study [48] 365 

curated an interferon module, namely M1.2, that includes genes showing significant global 366 

changes in blood transcript abundance between the baseline Day 0 and Influenza Vaccine Day 1. 367 

In bulk level, representative genes (CXCL10, IFIT1, and LAMP3) in the M1.2 module showed 368 

consistently a peak in gene expression on Day 1 after vaccination (Figure 5c and Supplementary 369 

Figure S3), confirming the global finding; the temporal plots also show that the bulk expression 370 

of these genes fell back to around the baseline level on and after Day 3. 371 

Applying FastMix to the Influenza arm, we could further designate the specific cell population 372 

that are associated with the temporal activation of these interferon genes. Among the 24 gene 373 

in M1.2 module, FastMix identified 22 genes with highly significant p-values (< 0.05) for 374 

lymphocyte-specific differential expression (Figure 5d and Supplementary Table S6); the top 9 375 

M1.2 genes ranked in the top 1% (out of 10732 genes) of the lymphocyte-specific DE list. 376 

However, the majority of the M1.2 genes showed no significance in granulocytes and 377 

monocytes (Supplementary Table S6). These results strongly indicate that the activation of the 378 

interferon module is lymphocyte-specific: the differential expression of interferon signaling 379 

genes are driven by the up-regulation of the lymphocyte-specific expression. Though the 380 

proportion of lymphocytes decreased on Day 1 after vaccination (Figure 4b), the bulk gene 381 

expression of M1.2 genes increased on Day 1 (Figure 4c). The FastMix statistical inference 382 

precisely linked the temporal changes in Figure 4b for lymphocytes and Figure 4c for those 383 

interferon-stimulated genes. Furthermore, FastMix produced positive estimated coefficients 384 

for lymphocytes for all M1.2 genes (Supplementary Table S7), confirming the up-regulation of 385 

the cell type-specific gene expression. 386 
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We also looked at the cell type and age interaction terms. The lymphocyte-specific p-values 387 

w.r.t. age for the M1.2 interferon module genes showed very strong significance (23 out of 24 388 

significant p-values) (Figure 4e and Supplementary Table S8), whose coefficient estimates 389 

showed negative association between the subject age and lymphocyte-specific expression 390 

(Supplementary Table S7 and Supplementary Figure S4). 391 

For completeness of method comparison, a plausible csSAM analysis would be only to compare 392 

the pre- and post-vaccination groups for cell type-specific DEGs due to technical limitations. 393 

Even for the simple two-group test, the csSAM approach is suboptimal, because there is no 394 

appropriate way to handle the within-subject correlation structure in the multiple time points. 395 

Therefore, no significant cell type-specific DEGs w.r.t. the pre- and post-vaccination groups 396 

were identified at the 5% FDR level. Using the top 100 csSAM gene list for each cell type, no 397 

enriched pathway was identified for any cell type, suggesting that csSAM is inadequate for 398 

performing cell type-specific DE analysis with complex study design. 399 

Lastly, applying FastMix to the Pneumococcal arm, only one significant p-value was obtained 400 

in Figure 4c-d (Supplementary Table S6 and S8). Clearly, the lymphocyte-specific interferon 401 

activation was only observed in the Influenza arm, but not the Pneumococcal arm, agreeing 402 

with the existing knowledge in PBMC samples [48]. The Pneumococcal arm may serve as the 403 

“true negative” for our method validation; and the non-significant results showed the 404 

“specificity” of the FastMix method.  405 

Discriminant Analysis after FastMix 406 
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Because FastMix is designed to take multiple types of input variables including clinical 407 

parameters, it can be used to identify the relationship between the independent (e.g., subject 408 

demographics) and dependent variables (e.g., response to a vaccination). For example, in our 409 

experiment using the HBV vaccination data in the HVP01 study, when the subjects were 410 

grouped into responding and non-responding, FastMix could calculate four scores for 411 

discriminating purpose: (a) single_score, an 1-dimensional score based on all input genes; (b) 412 

single_sparse_score, a 1-dimensional score based on genes with significant interactions with 413 

the response; (c) multi_score, an n-dimensional score based on all genes; and (d) 414 

multi_sparse_score, a multivariate score based on genes with significant interactions with the 415 

response (see Supplementary Material, Section Discriminant Analysis after FastMix, for 416 

technical details). Figure 4c-d showed that the discriminative scores (for straightforward 417 

illustration, single_sparse_score was used in the Figure) can be plotted to identify whether age 418 

is an informative factor in the discriminative analysis (i.e., classification of responding vs non-419 

responding subjects). We can clearly see the significant (Wilcoxon p-value = 1.9e -16) difference 420 

between the responding (yellow) and non-responding (grey) groups when age was included in 421 

the analysis (Figure 4c), while the difference was unclear without the age (Figure 4d). This tells 422 

us that age is an important variable that is highly relevant in host immune response to the HBV 423 

vaccine. 424 

Discussion 425 

Using extensive simulation studies, we showed that: (i) regression coefficients estimated by 426 

FastMix had comparable mean squared errors (MSE) as those computed from lme4 - the 427 
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reference implementation of LMER model based on EM algorithm, (ii) depending on settings, 428 

FastMix was at least 25 times, and in some cases more than 300 times faster than lme4, and 429 

(iii) FastMix was substantially more accurate (measured by MSE) than the ordinary least 430 

squares (OLS) and Ridge regression. See Table 1 for more details. 431 

In addition, we compared the type-I error rate and statistical power of FastMix for cell type-432 

specific differential expression (DE) analysis with an existing pipeline, csSAM [34], using both 433 

simulations and real data. FastMix achieved slightly better statistical power with much lower 434 

type-I error than csSAM, using about 10% of csSAM’s run time (see Table 1c-e). We applied the 435 

FastMix pipeline to analyze the multimodal data from two clinical studies [37, 48] that 436 

measured host responses to three different vaccines (influenza, pneumococcal, and hepatitis B). 437 

Input data included bulk gene expressions, FCM, as well as clinical covariates including vaccine 438 

responding groups defined by serum antibody titers as well as time points for multiple vaccine 439 

doses. A common bottleneck in evaluating multimodal data integration methods using real data 440 

is the lack of ground truth. Performance assessment of many preexisting methods relies on 441 

subjective interpretation of their data integration results using existing knowledge. In contrast, 442 

we addressed this issue by using single cell RNA-seq (scRNA-seq) data available in one of the 443 

studies as an objective gold standard. Excitingly but not surprisingly, DEGs selected by 444 

FastMix overlapped significantly with those selected by the cutting-edge analysis of the 445 

scRNA-seq data. On the other hand, FastMix seemed to be able to select biologically 446 

important genes for neutrophils that were missed by the scRNA-seq analysis. 447 
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The general contribution of FastMix, from a statistical perspective, is the extension from the 448 

traditional pairwise linear associations between multi-omics data types into a multiple 449 

regression model with both fixed and random effects (LMER) that can take multiple types of 450 

inputs simultaneously and infer cell type-specific biomarkers as well as signature genes based 451 

on cohorts defined by experiment variates or clinical parameters. One roadblock for realizing 452 

the LMER analysis in practice is the complex and slow iterative EM algorithm for estimating the 453 

regression parameters. We solved this issue by an efficient moment-based method that 454 

achieved similar accuracy as EM but using only a fraction of its run time (Table 1a). Note that 455 

this method includes both trimming and the corresponding bias-correction, so that the 456 

estimated covariance structure (used in the LMER) is robust to outliers and practically unbiased. 457 

It is important to note that the LMER construction in FastMix also addressed the collinearity 458 

issue in an interpretable way, without needing a black-box non-linear transformation used in 459 

many of the existing multi-omics data integration approaches. Inspired by competitive tests 460 

used in gene set enrichment analyses [49-51], we designed a quasi-p-value to rank and select 461 

genes with significantly larger/smaller random effects (cell-type-specific effects) than most 462 

other genes. We believe this approach may be applicable in other situations. 463 

FastMix provides an end-to-end solution for integrative analysis of flow cytometry (FCM) 464 

data and bulk transcriptomics data. FCM and transcriptomics are commonly used in 465 

immunology studies. Among the 1924 experiments in the 495 studies collected by US NIAID’s 466 

ImmPort database (https://immport.org/shared/home) as of June 2021, the top two assay 467 

types are FCM (706; 36.7%) and transcription profiling (213; 11.1%). However, existing solutions 468 

for integrating data from transcriptomics and FCM assays for cell type-specific immune profiling 469 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 27, 2021. ; https://doi.org/10.1101/2021.09.14.21263182doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.14.21263182
http://creativecommons.org/licenses/by-nc-nd/4.0/


 24

are suboptimal. FCM data analysis mainly relies on subjective manual gating analysis, which is 470 

difficult to be integrated with other computational modules. Identification of cell type-specific 471 

signature genes and DEGs relies on predefined marker genes in the transcriptomics data, 472 

without utilizing the FCM data that provide canonical phenotypic definitions of the cell types. 473 

We previously developed a computational method – DAFi [23] – to identify cell populations 474 

from FCM data in an objective way, which produces more accurate proportions of cell 475 

populations in the biological sample than the subjective manual gating analysis [23, 52]. 476 

Combining DAFi and FastMix (Figure 1d) produces a novel unbiased solution for 477 

immunologists to identify cell-based biomarkers, including DEGs and cell populations with 478 

significantly different abundances between cohorts, from the FCM and transcriptomics data. 479 

Besides synthetic data, using scRNA-seq data provides ground truth for assessing the 480 

performance of FastMix. The consistency between FastMix and scRNA-seq from our 481 

experiment (Figure 3) showed that FastMix can be used to infer cell type-specific knowledge 482 

from bulk transcriptomics and FCM data. However, FastMix-identified biomarker genes are also 483 

complementary to results of the scRNA-seq data analysis. For example, FastMix identified the 484 

neutrophil-specific genes MMP9 and RSAD2/Viperin (Figure 3c), which were not found in the 485 

scRNA-seq data analysis (Figure 3a). MMP9 is a regulatory factor in neutrophil migration [53] 486 

and Viperin is an important anti-viral protein induced in neutrophils [54] (Figure 3c). Also, 487 

FastMix identified the IFIT gene family members (IFIT1, IFIT2, and IFIT3) that can limit the 488 

HBV replication [55]. Basically, FastMix provides an in-silico alternative when scRNA-seq data 489 

is unavailable or unreliable. Besides inferring the cell type-specific signature genes, FastMix 490 

can produce discriminative scores of model variables, which quantify the contributions of 491 
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model variables to the sample classification. This is a unique and novel feature that previous 492 

models have not provided.  493 

The main limitation of FastMix is that it does not solve the well-known problem for 494 

inferring characteristics of rare cell populations from bulk assay data. When the proportion of a 495 

cell population is small, its contribution to the bulk gene expressions is easily overwhelmed by 496 

the abundant cell populations. Even a minor change in gene regulation of the major cell types 497 

can dominate the variation of the bulk gene expressions.  This challenge can potentially be 498 

solved if there are replicates of the same measurement, which are unfortunately usually 499 

unavailable in most biomedical studies. Ideally, scRNA-seq, bulk transcriptomics, as well as FCM, 500 

when available, can be integrated together for achieving the optimal performance for 501 

identifying cell-based DEGs and other biomarkers for both abundant and rare cell types in the 502 

whole cell type hierarchy. The estimation can also benefit from longitudinal (and repeated) 503 

measurements when they are available, which will be investigated in our future work 504 

Applications of FastMix can be easily extended to include metagenomics and metabolomics 505 

data. For example, a straightforward application of FastMix is to identify genetic factors 506 

across species to explain variation of metabolomic profiles based on microbial community 507 

composition data. FastMix allows us to do “reverse engineering” from observed metabolite 508 

abundances in diverse microbiome communities to infer species-specific contributions.  509 
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Figure Legend 510 

Figure 1. FastMix schematics and analytical pipeline. (a) FastMix takes three input data 511 

matrices: a bulk gene expression matrix, a matrix of cell type proportions, and a matrix of 512 

clinical covariates (both continues and categorical). (b) Flow chart of key steps of FastMix. 513 

(Details please refer to complementary material.) i. The FastMix model utilizes linear mixed-514 

effects regression (LMER) model and mixture distribution to construct a unified regression 515 

model for the three data inputs. ii. Reparametrize the FastMix model by vectorization and 516 

Kronecker product so the data can be analyzed in a unified LMER model. iii. The FastMix 517 

algorithm gains computational efficiency through using a novel moment-based estimator of the 518 

covariance matrix �� ���, followed by solving for the fixed effects estimate ����� and the random 519 

effects estimate ���

���
, both of which depend on �� ���. iv. In FastMix, DEG identification is 520 

viewed as an outlier detection problem. It uses a trimming technique to improve the robustness 521 

due to the existence of DEGs (outliers). v. After trimming, re-estimate the variance-covariance 522 

matrix using the robust estimator ��	 with bias correction, followed by re-estimating �� and ���  523 

using ��	. vi. FastMix performs hypothesis test and constructs quasi-p-values that indicate the 524 

significance of cell type-specific DEGs. (c) Using trimming improves the estimation of the 525 

covariance matrix. Axes are random effect signals of two cell populations (Cell1 and Cell2); dots 526 

(grey and black) are simulated data of 5000 genes, among which, 250 genes are true DEGs in 527 

the Cell1 direction (black dots). Three ellipses are the density contour curves that represent the 528 

95% confidence region of the centered data distribution with covariance matrices of: � that is 529 

the true covariance matrix shown in black, �� ��� that is the initial non-robust covariance 530 
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estimator shown in red, and ��� that is the robust covariance estimator based on trimming 531 

shown in green. Due to the existence of the true DEGs (outliers), ����� overestimated the true 532 

covariance matrix. The trimming-based estimator ��� is very close to the true covariance matrix. 533 

(d) Sample analytical pipeline for cell type-specific differential analysis between disease and 534 

control groups by integrating flow cytometry data and bulk RNA-seq data using two newly 535 

developed computational algorithms DAFi and FastMix. 536 

 537 

Table 1. Simulation performance. (a) Comparison of FastMix implementations (FastMix 538 

with independence assumption, i.e., FastMix_ind, and default FastMix with no 539 

assumption on the covariance matrix) and lme4 implementations (lme4 with independence 540 

assumption, i.e. lme4_ind, and default lme4 with no assumption on the covariance matrix) for 541 

estimating �, the covariance matrix of random effects, in linear mixed effects regression 542 

(LMER). Four simulation scenarios are considered: with or without true DEGs, and with or 543 

without correlation between random effects. Mean computational time and mean MSE are 544 

reported. Computational time is reported in seconds, and estimation accuracy is reported in 545 

mean squared error (MES). MSE is defined as ∑ ∑ 1


���




��� /��#���� $ ���%�. Simulations are 546 

repeated 200 times. (b) Comparison of FastMix with ordinary least squares (OLS) and Ridge 547 

regression for regression coefficient, ���, estimation. The first row is the mean MSE (standard 548 

deviation in brackets) defined as 1/�&�� ∑ ∑ '��
��

$ ���(�


���


��� . The other rows are the mean 549 

bias (standard deviation in brackets) of each fix effect coefficient estimation. Simulations are 550 

repeated 200 times. All results are reported after multiplying by 100 for better readability. (c-e) 551 
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Mean (standard deviation in brackets) of type-I error rate (c), statistical power (d), and 552 

computational time reported in seconds (e) of csSAM and FastMix for cell type-specific DEG 553 

detection, in the same simulation scheme repeated 200 times. The simulation design includes 554 

independent random effects (i.e., cor = 0) and correlated random effects (i.e., cor = 0.5). True 555 

cell type-specific DEGs are only assigned in cell1 and cell2 in the simulations. Type-I error rate 556 

and statistical power are reported in percentage (%). 557 

Figure 2. FastMix and scRNA-seq results for HVP01 study. (a) DAFi gating strategy to identify 558 

singlets, leukocytes, live leukocytes, CD66- CD45+ population (parent: live leukocytes), and 559 

CD66+ CD45- population (parent: live leukocytes). (b) UMAP visualization of scRNA-seq cell type 560 

clusters. Cells are colored by cluster labels derived by flow cytometry panels. (c) Overlapping of 561 

the 851 (out of 13157 total genes) FastMix neutrophil-specific signature genes and the 2744 562 

scRNA-seq neutrophil signature genes available in the bulk RNA-seq data. (d) Venn diagram of 563 

the overlapping between the top 100 FastMix neutrophil signature genes and the scRNA-seq 564 

neutrophil signature genes with |logFC| > 1. The 39 common genes are shown in the text box.  565 

Figure 3. Expression of neutrophil-specific signature genes in the scRNA-seq experiment. (a) 566 

The 39 common signature genes identified by FastMix and scRNA-seq analysis (same in 567 

Figure 2c). (b) The bottom 39 genes ranked by FastMix.  (c) The top 39 genes ranked by 568 

FastMix. 569 

Figure 4. Pathway enrichment analysis for HVP01 study. (a) Enriched pathways identified by 570 

the top 100 FastMix neutrophil-specific DEGs for high responders. (b) Unique genes from the 571 
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CD45pCD66p.Response (i.e., neutrophil and high response) interaction DEG list that are 572 

identified in the enriched pathways in (d). 573 

Figure 5. FastMix analysis for SDY180. (a) DAFi gating strategy to identify lymphocytes, 574 

granulocytes, and monocytes, CD45+ CD14- (parent: granulocytes and monocytes), CD45+ 575 

CD14+ (parent: granulocytes and monocytes), granulocytes (parent: CD45+ CD14-), and 576 

monocytes (parent: CD45+ CD14+). (b) Boxplots of cell proportions (lymphocytes, granulocytes, 577 

monocytes) over time in the Influenza vaccine study. (c) Boxplots of bulk expression levels of 578 

interferon-stimulated genes (e.g., CXCL10, IFIT1, LAMP3) over time in the Influenza vaccine 579 

study. Red box: matching temporal pattern change of lymphocytes proportion and bulk gene 580 

expression. (d) Heatmap of -log10-transformed p-values for lymphocyte-specific differential 581 

expression for the interferon module genes in both Influenza and Pneumococcal study arms. (e) 582 

Heatmap of -log10-transformed p-values for lymphocyte-specific differential expression w.r.t. 583 

age for the interferon module genes in both Influenza and Pneumococcal study arms. 584 
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Methods 585 

Cell type-specific inference based on bulk tissue modeling 586 

In the regression model framework, composite tissue data can be modeled as 587 

��� 	 ) �������

���

* +��� � ,�� ,   � 	 1, … , &,  / 	 1, … , �. #�1�  

Specifically, ���  is the observed bulk expression of the �th gene and /th sample; ������ is the 588 

observed proportion of the 2th cell type (or cell population) in the /th sample, and +���  is the 589 

cell type-specific expression level of the �th gene and /th sample contributed solely by the 2th 590 

cell type, and ,��  is the uncertainty in measuring ������ and ��� . Many downstream analyses are 591 

focused to associate +���  (cell type-specific gene expression) instead of ���  (bulk gene 592 

expression) to the clinical metadata, which can be modeled as 593 

+��� 	 ��� � ) �����
�


��

* 3�
� � 4��� . #�2�  

Here ���  is the baseline expression level of the �th gene in the 2th cell type, �����
 is the �th 594 

clinical covariate associated with the /th sample, 3�
�  quantifies the linear association between 595 

the �th clinical covariate and the �th gene specific to the 2th cell type. In this context, cell type-596 

specific differential analysis can be conducted by testing the following hypotheses 597 

6�,�
�: 3�
� 	 0,  v. s. 6�,�
�: 3�
� ; 0. #�3�  
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For the 2th cell type, the �th gene is a cell type-specific DEG with respect to the �th clinical 598 

covariate if the p-value from the Equation (3) hypothesis test is statistically significant. 599 

Based on the above framework, one straightforward approach to perform cell type-specific 600 

analysis would consist of two stages: (i) apply in silico algorithm, such as deconvolution, to 601 

estimate +����; and (ii) apply a suitable DE analysis to associate +���� with the clinical data. 602 

However, there is a major challenge of this approach, i.e., Equation (1) is a typical “large p, 603 

small n” problem because there are approximately =�& unknown parameters (+���) to be 604 

estimated from only �& observations (��� ). While many computational methods such as 605 

nonnegative matrix factorization [56-59], regularization [60], and Bayesian methods [61-64], 606 

are used to obtain approximate solutions an under-determined system for deconvolution [65], 607 

the bias and variance of the estimated +����  are inevitably large, which will consequently impact 608 

the accuracy of the downstream DE analysis.  609 

FastMix model 610 

We propose to jointly model the two-stage analysis in one unified regression model by 611 

combining Equation (1) and Equation (2) 612 

��� 	 ) �������

���

* >��� � ) �����
�


��

* 3�
� � 4���? � ,��
	 ) �������

���

��� � ) ) �������


��

�

���

�����
 * 3�
� � ,@�� .
#�4�  
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Here ,@��  is the combined error term, ,@�� 	 ,�� � ∑ �������
��� 4��� ,  3�
�  that quantifies the 613 

interaction between the 2th cell type and the �th clinical covariate. To model the direct 614 

association between the bulk gene expression and clinical covariates, we further add a main 615 

term �����
 to Equation (4), which is commonly used in the traditional bulk DE analysis. 616 

Therefore, the unified model includes main terms ������ and �����
, and their interaction term 617 

�����������
, which can be stated in the standard multivariate linear regression model 618 

� 	 
� � 
, or explicitly 619 

��� 	 ) 
���

���

��� � ,�� . #�5�  

Here 
�� is an element in matrix 
: 	 ����� ���� ���� � �����, which has � rows and 620 

� 	 = � C � =C columns. We call each column of matrix 
 a linear predictor, and ���’s the 621 

linear coefficients. Model (5) is a combination of both bulk and cell type-specific DE analyses. 622 

This unified modeling approach allows us to bypass the error-prone and computationally 623 

intensive parameter estimation stage (Equation (1)), and only focus on the more biological 624 

interpretable DE stage for the associations between the three types of variables (cell types, 625 

clinical covariates, and their interactions) with the bulk/cell type-level gene expression. 626 

One important advantage of the unified model approach is that with reasonably large sample 627 

size (� D �), Model (5) no longer has the “large �, small �” problem because there are only &� 628 

unknown parameters (���) to be estimated with �& observations (��� ). FastMix does not 629 

explicitly estimate the deconvoluted cell type-specific expression values; rather, it uses joint 630 

modeling and techniques to be introduced in the following sections to implement a fast-631 
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algorithmic solution for the large-scale unified model (Equation (5)) for bulk and cell type-632 

specific DE analyses. 633 

Common strategies to solve a large-scale model such as Equation (5) is to apply regularizations, 634 

a.k.a. penalized regressions such as ridge [13], LASSO [14], and elastic-net [15], to increase the 635 

stability and prediction accuracy of the original regression model. However, these techniques 636 

have two drawbacks: (i) they shrink the estimated linear coefficients toward zero and create 637 

nontrivial bias; and (ii) the best penalty parameter(s) are typically trained by time-consuming 638 

cross-validation (CV) procedures, which may not always be computationally feasible for high-639 

throughput data analysis. As an alternative, we propose to use linear mixed effects regression 640 

(LMER) to reduce model complexity. Specifically, we assume a two-component decomposition 641 

of the unknown linear coefficient such that 642 

��� 	 �� � ��� , #�6�  

where �� is the fixed effect of the �th linear predictor to the entire transcriptome, and ��� is the 643 

gene-specific random effect associated with the �th linear predictor. By combining Equations (5) 644 

and (6), the FastMix model with mixed effects is  645 

��� 	 ) 
���

���

��� � ���� � ,�� . #�7�  

Using the LMER model fitting approach does not need to train hyperparameters with intensive 646 

CV procedures. Also, the LMER model can shrink the estimated gene-specific linear coefficients 647 
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toward the fixed effects (i.e. average of the entire transcriptome) instead of zero [20], thereby 648 

achieving comparable variance-reduction effects with less bias.  649 

The next step is to model DEGs and non-DEGs (NDEGs) based on Equation (7). In most practical 650 

cases, the majority of the genes are NDEGs; and only a small fraction of the genes are truly 651 

DEGs that may be used as biomarkers for specific biological conditions. In this regard, we 652 

propose to approach the DEG identification problem as an outlier detection problem in more 653 

general setting. Specifically, we propose to model the gene-specific random effects, ���’s, using 654 

a mixture distribution and adapt a nonparametric empirical Bayes method [24, 25] to conduct 655 

per-gene statistical inference.  656 

Let G be a binary indicator for DEG (G 	 1) and NDEG (G 	 0). The prior probability of a gene 657 

being NDEG or DEG is C�G 	 0� 	 H� or C�G 	 1� 	 1 $ H�, respectively. The mixture 658 

distribution of the multivariate vector �� 	 ���� , � 	 1, I , ��J is  659 

�� K L�M�, L�M� 	 H�L��M� � �1 $ H��L��M�, #�8�  

 where M is a dummy variable, L��*� is the component distribution for NDEGs and L��*� is the 660 

component distribution for DEGs. Furthermore, it is reasonable to assume that: (i) H� O 1 $ H�, 661 

i.e. most of the genes are NDEGs; (ii) the conditional distribution of the multivariate vector ��  662 

given G 	 0 is a �-dimensional normal random vector centered at the origin with covariance 663 

matrix �; and (iii) let P� Q R� be the confidence region of L��*� centered at the origin with 664 

probability 1 $ S with a relatively large S, then 665 

C��� T P�|G 	 1� V C��� T P�|G 	 0�. #�9�  
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Intuitively, Equation (9) implies that compared with NDEGs, the DEGs can be viewed as “outliers” 666 

(Figure 1c). No parametric assumptions are applied to L��*�. From the above assumptions, the 667 

marginal distribution for the nonparametric empirical Bayes method is 668 

L�M|G� 	 XL��M� � Y�M|Z, ��, G 	 0L��M�, G 	 1[ #�10�  

where Y�* |Z, �� is the density function of a multivariate normal random vector defined on R� 669 

with zero mean and covariance matrix �. 670 

In summary, Equations (7), (8) and (10) specify the full FastMix model of the unified pipeline 671 

for cell type-specific DE analysis:  672 

��� 	 ∑ 
���
��� ��� � ���� � ,�� ,  ,�� K \�0, ]���  for the LMER model; 673 

�� K L�M�,  L�M� 	 H�L��M� � �1 $ H��L��M�  for mixture distribution; and 674 

L�M|G� 	 XL��M� � Y�M|Z, ��, G 	 0L��M�, G 	 1[ for nonparametric empirical Bayes. 675 

Computationally efficient FastMix algorithm  676 

The FastMix model has many theoretical advantages by using a LMER model; however, fitting 677 

such a large LMER model with high-throughput data is still computationally challenging. To 678 

reduce the high computational cost of fitting large LMER models by conventional methods, 679 

such as the iterative expectation-maximization (EM) algorithm [22], we design a highly efficient 680 
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algorithm with a novel robust moment-based covariance estimator, which avoids the iterations 681 

and convergence process, thus largely saves the computational time.  682 

In the following subsections, high-level descriptions of the key steps are provided here. All 683 

technical details, including the derivations, proofs, and step-by-step procedures are provided in 684 

Supplementary Material.  685 

Vectorization and Kronecker product 686 

The FastMix LMER model can be concisely represented in vectorization form using Kronecker 687 

product [66] 688 

^ 	 _` � ab � c, 
_: 	 1
 d 
 	 e
f
g , b: 	 e ��f�


g , a: 	 h
 d 
 	 e 
 i 
 g . #�10�  

Note that _ is \ � �-dimensional, a is \ � &�-dimensional, and b is &� � 1-dimensional, 689 

where \ 	 &� is the total number of observations. In this form, ^ is a long vector of length \, 690 

by column-wise stacking of the bulk gene expression matrix; ` is the long vector of linear 691 

coefficients to be estimated of the same length; and c is the corresponding error vector. Now, it 692 

is clear that all three types of high- and low-dimensional data are neatly combined in the form 693 

of a standard LMER. The vectorized notions (in bold face and non-italic) will be used in the 694 

subsequent estimation derivations; it also helps to speed up the implementation of the 695 

algorithm. 696 

Moment-based estimation 697 
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An initial estimation of the linear coefficients  ���

��� 	 ����� , l 	 1, I , L�J can be obtained through 698 

fitting the multivariate linear regression in Equation (5) using the ordinary least squares (OLS) 699 

criterion. ���

���
 can be considered as a crude approximation of ��, which contains information 700 

about the covariance matrix of �. Denote the sample covariance matrix of ��
�

���
 as l�

��
��� T m���. 701 

Even for NDEGs (G 	 0), l�
��
���  is not an unbiased estimator of �. Its conditional expectation can 702 

be derived as follows 703 


 'l�
��
��� |G 	 0( 	 � � ]���
J
���. #�11�  

Based on Equation (11), and the assumption that most genes are NDEGs (G 	 0), we propose 704 

the following moment-based estimator for an initial estimation of � 705 

����� : 	 l�
��
��� $ ]��

� �
J
���. #�12�  

Based on the initial OLS-based estimates, the standard closed-form solutions of solving LMER 706 

model are used to obtain the first set of fixed effects and random effects estimates for Equation 707 

(6), denoted in  ����� and  ���

���
, respectively. The weighted least squares (WLS) estimator is used 708 

to compute �����; and the empirical best linear unbiased predictor (EBLUP) is used to compute 709 

���

���
. Both estimates depend on �����

, the initial moment-base estimate of �.  710 

Trimming for potential DEGs 711 
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One of the assumptions of the FastMix model is that there is a small subset of genes that are 712 

DEGs. The existence of these potential DEGs may affect the accuracy of the initial estimates of 713 

�, �, and ��  in the previous step. We designed a three-step procedure to detect and remove 714 

those potential DEGs. 715 

Briefly speaking, when the DEGs are present, ���

���
 no longer follows a multivariate normal 716 

distribution. A DEG for one covariate may very likely be an NDEG for another covariate; also, it 717 

is possible that a subset of covariates is not associated with any DEG (we call them 718 

uninformative covariates). The three-step procedure includes: (i) use a standard normality test, 719 

the Shapiro-Wilk test, to separate the informative and uninformative covariates; (ii) select the 720 

subset of the standardized linear coefficient estimates pertain to the informative covariates and 721 

calculate the Mahalanobis distance between the sub-vector and the origin (its theoretical 722 

mean), i.e., this quantity quantifies how likely a gene is an outlier among all genes. Under the 723 

assumption that most genes are NDEGs, the distance metrics of all genes form approximately a 724 

chi-squared distribution; and (iii) use a pre-defined trim level (denoted as S, which is a user-725 

defined tuning parameter with default value S 	 0.5) to select potential DEGs based on the 726 

distance metric following the chi-squared distribution. 727 

After trimming of the potential DEGs that break the normality assumption, the remaining genes, 728 

denoted as n� o p1, … , &q, will be used to refine the estimation in previous steps. 729 

Re-estimation and bias correction 730 
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Now, re-estimate � based on the trimmed gene list n�. However, the trimming procedure 731 

inevitably introduces bias to the sample covariance matrix, because removing genes with large 732 

Mahalanobis distance artificially reduces the sample covariance matrix computed from the 733 

remaining genes. To correct for this bias, we consider a truncated chi-squared distribution and 734 

constructed a moment-based bias-correction for � as follows 735 

��� : 	 r��/� rs�/� l�
��
��� rs�/� r��/� $ ]��

� �
J
���. #�13�  

For the fixed effect, we utilize the similar idea of trimming to de-bias the fix effect estimation if 736 

there are any potential unbalanced DEGs (see Supplementary Material Section 2.2 for more 737 

details). The final fixed effects estimate �� and random effects estimate ��� are re-computed 738 

using ���. Figure 1c illustrates the advantage of the trimming and re-estimation procedures. 739 

Hypothesis test and quasi-p-value 740 

Traditionally, DE analysis can be performed through hypothesis testing strategies on the linear 741 

coefficients (such as Equation (3)). There are mature regression F- and t-tests for the fixed 742 

effects in LMER models, but not for the random effects because they are considered as 743 

realizations of random variables (i.e. not unknown parameters) [67]. To overcome this 744 

theoretical challenge, we developed a practical p-value-like quantity (called “quasi-p-value”) 745 

through analogy, to identify genes that have significantly larger or smaller predicted random 746 

effect with a given covariate. The quasi-p-value is defined as 747 

��
��

: 	 1 $ t uv��
��

v]����

w , #�14�  
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where t�*� is the standard normal distribution function. Note that ��
��

 is not a “true” p-value 748 

because G is a random variable, not a parameter, in the LMER model; so, we cannot test 749 

hypotheses 6�: G 	 0 (i.e., NDEG) versus 6�: G 	 1 (i.e., DEG) in the classical sense. In practice, 750 

the quasi-p-value for the random effects can be used as a practical criterion to rank and select 751 

genes with strong association with the �th covariate, which are the central inference output 752 

from the FastMix model. The random effects results can be interpreted as the cell type 753 

marker, bulk-level, and cell type-specific DE analyses as introduced in the Results section. 754 

For the completeness of the model output, the hypotheses for the fixed effects are 755 

6�,�: �� 	 0,  versus 6�,�: �� ; 0. #�15�  

The test statistic is {��: 	 ���
���

��
���
���

, which follows a t-distribution with degrees of freedom 756 

approximated by the Satterthwaite’s method [68]. The fixed effects tests are not gene-specific; 757 

instead, these results can be interpreted as whether a clinical covariate has a statistically 758 

significant impact on the whole transcriptome. 759 

Weighted FastMix model 760 

So far, the FastMix model assumes independent and identically distributed (i.i.d.) samples. 761 

Sometimes, a priori knowledge may be available to weigh some samples over others; or in a 762 

longitudinal study, repeated measurements are not i.i.d. samples and they tend to have block 763 

interchangeable covariance structure. Such information can improve the estimation accuracy of 764 

regression-type models [69]; they can be easily incorporate in the weighted FastMix model 765 
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by constructing an appropriate weighted covariance matrix. We use techniques introduced in 766 

Zhang et al. [69] (getSigma() function from the PBtest R package) to estimate the 767 

weighted covariance matrix if unknown. In the simplest case, if weights are known, the 768 

weighted covariance matrix is a diagonal matrix with weights in the diagonal. For the weighted 769 

FastMix model, a data transformation step equivalent to the weighted least squares (WLS) 770 

approach is adopted with the given weighted covariance matrix before running the FastMix 771 

algorithm (see Supplementary Material).  772 

Simulation details 773 

Simulation I 774 

Simulation I is one iteration of a comprehensive simulation scheme described in Simulation II 775 

with correlation | 	 0.5 and balanced DEG design. Cell1 and Cell2 dimensions are visualized in 776 

Figure 1c. 777 

Simulation II 778 

The simulated bulk gene expression levels are associated with � 	 11 covariates: three cell 779 

proportions (Cell1, Cell2, and Cell3), two clinical covariates (Severity and Sex), and six 780 

interaction terms between cell proportions and clinical covariates. The simulation design is as 781 

follows. 782 

1. Specifications of the fixed effects (��) and the random effects (���) of NDEGs are: 783 
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1.1. Cell1 has an overall association with all gene expressions; Cell2 and Cell3 does not. 784 

Specifically, �� 	 1.5 and �� 	 �� 	 0. For NDEGs (G 	 0), the random effects are ��� , 785 

���, and ���, which have marginal distribution \�0, ]��� with ]� 	 1. 786 

1.2. Neither Severity nor Sex has overall association with the whole transcriptome 787 

(�� 	 � 	 0). For NDEGs, the corresponding random effects ���  and � �, have marginal 788 

distribution \�0, ]!�� with ]! 	 0.8. 789 

1.3. Only the interaction term between Cell1 and Severity has an overall impact on the 790 

whole transcriptome (�" 	 0.75). For NDEGs, the Cell1-specific random effect with 791 

respect to Severity, �"� , has marginal distribution \�0, ]��� with ]� 	 1.2. 792 

1.4. All other interaction terms have no overall association with gene expression (�� 	 0 for 793 

� 	 7, I ,11). 794 

2. 20% of all genes are true DEGs (i.e., 1000 true DEGs). Specifications of the random effects 795 

(���) of DEGs (G 	 1) are: 796 

2.1. Genes 1-250 are associated with Cell1 (a.k.a. Cell1 signature genes), i.e., ��� K797 

\�+�� , ]��. The true differential expression size is |+��| 	 3 � ]�; the signs of +��  follow 798 

a Bernoulli random variable with equal probability of being positive or negative (i.e., a 799 

balanced DEG design). 800 

2.2. Genes 251 - 500 are DEGs with respect to Severity, i.e., ��� K \�+�� , ]!�.  The true 801 

differential expression size is |+��| 	 3 � ]!  with balanced DEG design. 802 
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2.3. Genes 501 - 750 are DEGs for the interaction term between Cell2 and Severity (a.k.a. 803 

Cell2-specific DEGs with respect to Severity), i.e., �#� K \�+#� , ]��. The true differential 804 

expression sizes are |+#�| 	 3 � ]�  with balanced DEG design. 805 

2.4. Genes 751 - 1000 are DEGs for the interaction term between Cell2 and Sex (a.k.a. Cell2-806 

specific DEGs with respect to Sex), i.e., ���� K \�+��� , ]��. The true differential 807 

expression sizes are |+���| 	 3 � ]�  with balanced DEG design. 808 

3. Consider two correlation structures of the random effects (i.e., true � matrix): either all 809 

random effects are independent (i.e., the identity matrix), or all random effects share an 810 

interchangeable correlation structure with | 	 0.5. 811 

4. The noise term is independent and identically distributed (i.i.d.) and follows \�0, ]��� with 812 

]�� 	 0.25�. 813 

Simulation III 814 

Because csSAM is limited to one binary clinical covariate design, simulated data are generated 815 

as follows. The simulated bulk gene expression levels are associated with � 	 7 covariates: 816 

three cell proportions (Cell1, Cell2, and Cell3), one clinical covariates (Group), and three 817 

interaction terms between cell proportions and the clinical covariate. 818 

1. Specifications of the fixed effects (��) and the random effects (���) of NDEGs are: 819 
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1.1. Cell1 has an overall association with all gene expressions; Cell2 and Cell3 does not. 820 

Specifically, �� 	 1.5 and �� 	 �� 	 0. For NDEGs (G 	 0), the random effects are ��� , 821 

���, and ���, which have marginal distribution \�0, ]��� with ]� 	 1. 822 

1.2. Group is a binary variable without fix effect (�� 	 0). For NDEGs, the random effects ���  823 

has marginal distribution \�0, ]!�� with ]! 	 0.8. 824 

1.3. The interaction terms between Cell1/Cell2/Cell3 and Group have fixed effects on the 825 

whole transcriptome for � 	 0.5, �" 	 0.75, and �# 	 0, respectively. For NDEGs, the 826 

random effects � � , �"�, and �#�  have marginal distribution \�0, ]��� with ]� 	 1.2. 827 

2. There are 500 true DEGs. Specifications of the random effects (���) of DEGs (G 	 1) are: 828 

2.1. Genes 1-250 are DEGs for the interaction term Cell1 and Group (a.k.a. Cell1-specific 829 

DEGs with respect to Group), i.e., � � K \�+ � , ]��. The true differential expression size 830 

is |+ �| 	 3 � ]� with balanced DEG design. 831 

2.2. Genes 251 - 500 are DEGs for the interaction term Cell2 and Group (a.k.a. Cell2-specific 832 

DEGs with respect to Group), i.e., �"� K \�+"� , ]��. The true differential expression size 833 

is |+"�| 	 3 � ]� with balanced DEG design. 834 

3. Consider two correlation structures of the random effects (i.e., true � matrix): either all 835 

random effects are independent (i.e., the identity matrix), or all random effects share an 836 

interchangeable correlation structure with | 	 0.5. 837 

4. The noise term is independent and identically distributed (i.i.d.) and follows \�0, ]��� with 838 

]�� 	 0.25�. 839 
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Flow cytometry data and automated gating by DAFi 840 

The FCM dataset in the HVP01 Study (https://clinicaltrials.gov/ct2/show/NCT03083158) are 841 

provided by Kollmann lab, which has 75 FCS files (15 subjects across 5 visits – Day 0, 1, 3, 7 and 842 

14). The markers included in the reagent panel can be found in Supplementary Table S9. DAFi 843 

[23] (https://github.com/JCVenterInstitute/DAFi-gating) was applied to identify the neutrophil 844 

cell population following a predefined gating sequence (Figure 2a): Singlets (FSC-A vs FSC-H) -> 845 

Leukocytes (FSC-A vs SSC-A) -> Live Leukocytes (Viability vs SSC-A) -> Neutrophils (CD66 vs 846 

CD45). Proportions of neutrophils and their 2D dot plots for all 75 FCS files can be found in 847 

Supplementary File and Supplementary Figures S5-6 (in two batches May and August). A single 848 

set of DAFi-gating boundaries was used to identify the natural shapes of neutrophils in each 849 

batch to avoid using abrupt cutoffs in the manual gating analysis and to provide straightforward 850 

cross-sample comparison. 851 

The second study we analyzed is the SDY180 on ImmPort 852 

(https://www.immport.org/shared/study/SDY180), which is focused on immune responses to 853 

influenza and pneumococcal vaccines [48]. Among all the reagent panels used in SDY180, two 854 

of them contain CD45 and CD14 for us to define the granulocytes and monocytes 855 

(Supplementary Table S9). The 302 corresponding FCS files of the two panels are from 36 856 

subjects across 8 visits. DAFi was applied to identify three major types of cells from the FCM 857 

data (Figure 5a): Lymphocytes (FSC-A vs SSC-A), Granulocytes (CD45 vs CD14 followed by back-858 

gating on FSC-A vs SSC-A), and Monocytes (CD45 vs CD14 followed by back-gating on FSC-A vs 859 

SSC-A).  860 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 27, 2021. ; https://doi.org/10.1101/2021.09.14.21263182doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.14.21263182
http://creativecommons.org/licenses/by-nc-nd/4.0/


 46

Data Availability 861 

The HVP01 dataset (https://clinicaltrials.gov/ct2/show/NCT03083158) is a clinical study 862 

conducted by University of British Columbia focused on Hepatitis B vaccine Engerix-B. This 863 

study has 16 healthy subjects from two cohorts: young adults (aged 40-60) and old adults (aged 864 

61-80). Both RNA-seq gene expressions and flow cytometry data are available across multiple 865 

visits before and after the vaccination from the same whole blood samples. Primary outcome of 866 

this study is the antibody response to the first dose of Hepatitis B vaccine. 867 

The SDY180 dataset is downloaded from the ImmPort Shared Data portal 868 

(http://www.immport.org). This study has 18 young and healthy adult volunteers (aged 18-64) 869 

randomly assigned to three study groups (n = 6 subjects/group) receiving a single intramuscular 870 

dose of 2009–2010 seasonal influenza (Fluzone, Sanofi Pasteur, PA), pneumococcal vaccine 871 

(Pneumovax23, Merck, NJ), or placebo (saline). Blood samples were collected at multiple time 872 

visits, from 7 days before vaccination to 28 days after vaccination, for microarray, whole-blood 873 

flow cytometry, and serum analysis of neutralizing antibodies.  874 

Data preprocessing details are in Supplementary Material. 875 
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