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Abstract 

Coronavirus Disease 2019 (COVID-19) is especially severe in aged patients, defined as 

65 years or older, for reasons that are currently unknown. To investigate the underlying 

basis for this vulnerability, we performed multimodal data analyses on immunity, 

inflammation, and COVID-19 incidence and severity as a function of age. Our analysis 

leveraged age-specific COVID-19 mortality and laboratory testing from a large COVID-

19 registry, along with epidemiological data of ~3.4 million individuals, large-scale deep 

immune cell profiling data, and single-cell RNA-sequencing data from aged COVID-19 

patients across diverse populations. To begin, we confirmed a significantly increased 

rate of severe outcomes in aged COVID-19 patients. Furthermore, we identified 

increased inflammatory markers (C-reactive protein, D-dimer, and neutrophil-

lymphocyte ratio), viral entry factors in secretory cells, and TGFb-mediated immune-

epithelial cell interactions, as well as reduction in both naïve CD8 T cells and expression 

of interferon antiviral defense genes (i.e., IFITM3 and TRIM22), along with strong TGF-

beta mediated immune-epithelial cell interactions (i.e., secretory - T regulatory cells), in 

aged severe COVID-19 patients. Taken together, our findings point to immuno-

inflammatory factors that could be targeted therapeutically to reduce morbidity and 

mortality in aged COVID-19 patients. 
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Introduction 

Coronavirus Disease 2019 (COVID-19), a global pandemic caused by severe acute 

respiratory syndrome coronavirus 2 (SARS-COV-2), has been diagnosed in more than 

170 million people globally, with 3.5 million deaths since December 2019 (data on May 

31, 2021). Although a serious risk at any age, SARS-CoV-2 infection is particularly 

debilitating and deadly for aged patients, defined in this study as 65 years and 

older1,2,3,4,5. The molecular basis of this aging-related vulnerability is an important area 

of investigation as it is currently poorly understood. 

        Impaired and dysregulated host immunity, including both innate and adaptive 

immunity, have been hypothesized as age-based factors in COVID-19 disease 

severity4,6. Compared to younger individuals with COVID-19, aged individuals show 

disrupted antigen-specific adaptive immunity to SARS-CoV-2, such as reduced 

coordination of CD4-CD8 T cell responses7. In addition, aged individuals typically 

produce a less robust type I interferon (IFN) response to flu virus infections8, indicating 

compromised cellular antiviral defense in innate immunity. Indeed, 13% of aged patients 

with life-threatening COVID-19 display inborn errors in autoantibodies against type I IFN 

immunity9. In addition, aberrant immunosenescence and inflammation also play crucial 

roles in age-medicated COVID-19 morbidity and mortality10. For example, senescent 

cells become hyper-inflammatory in response to pathogen-associated molecular 

patterns, and senolytics reduce COVID-19-mortality in aged mice11. Based on these 

findings, we sought to systematically identify whether there are specific immuno-

inflammatory determinants that promote age-associated COVID-19 severity. 
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Results 

Severe outcomes in aged COVID-19 patients 

To begin, we investigated the prevalence of COVID-19 disease among different age 

groups with nine months data collection. Analysis of U.S. Centers for Disease Control 

(CDC) epidemiological data from March to December, 2020 (Supplementary Tables 1-

3) revealed that 80.5% of fatal-cases occurred in aged patients. Strikingly, this rate was 

4.1 times higher than in 18-64 years old (19.5%), and 1,653 times higher than in 0-17 

years old (0.05%, Fig. 1a). Fatality prevalence was influenced by sex in both older and 

younger groups (Fig. 1b). Notably, the relative fatality prevalence trend across these 

same three age groups from 2010-2020 with influenza virus was similar, (Fig. 1a), 

indicating that age is a universal risk factor for viral infections, especially for older 

males. 

        Next, we used odds ratio (OR) adjusted for confounding factors to further evaluate 

the association between aging and four types of COVID-19 outcomes: hospitalization, 

intensive care unit (ICU) admission, and death. Specifically, we analyzed sex- and race-

adjusted OR values in 3,417,930 COVID-19 positive cases (n = 2,369,919 in young 

individuals, 20-49 years old) and n = 1,048,011 in aged individuals (> 60 years old); see 

Method, Supplementary Table 3) from the U.S. CDC database. Here, aged individuals 

showed significantly increased likelihood of COVID-19-related hospitalization (OR = 

9.07, 95% confidence interval [CI] 9.99 – 9.15, Fig. 1c), ICU admission (OR = 9.24, 

95% CI 9.01 – 9.48), and death (51.15, 95% CI 49.86 – 52.47, Fig. 1c). 

        To further account for disease comorbidities, we next computed OR across 

different age groups using a large COVID-19 registry database with 12,651 aged (³ 65 
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years) and 32,426 younger individuals (20 - 55 years old) (Fig. 1c, Supplementary 

Table 4, see Methods). Specifically, we tested the OR Model-2, which is adjusted for 

sex, race, smoking, and five common disease comorbidities12,13 (hypertension, 

diabetes, coronary artery disease, asthma, chronic obstructive pulmonary disease 

[COPD] & emphysema). Here, we again found that aged individuals had significantly 

greater likelihood of COVID-19-related hospitalization (OR = 3.10, 95% CI 2.55 – 3.77), 

ICU admission (OR = 2.39, 95% CI 1.78 – 3.22) (Fig. 1c), and death (OR = 40.35, 95% 

CI 19.80 – 82.24). Subsequent Kaplan-Meier analysis further revealed an elevated 

cumulative hazard for hospitalization (p < 0.0001, Log-rank test, Supplementary Fig 

1a), including longer duration of hospitalization (average duration = 8.9 days; p = 1.4 

´10-15, Mann–Whitney U test, Supplementary Fig 1b), in COVID-19 patients. Taken 

together, our findings confirm an elevated likelihood of severe outcomes in aged 

COVID-19 patients have compared to younger patients, even when adjusted for all 

possible confounding factors. 

 

Elevated inflammatory responses in aged COVID-19 patients 

As severe COVID-19 patients have been reported to have lower lymphocyte count14 

and higher C-reactive protein (CRP)15, we examined the Cleveland Clinic COVID-19 

registry for differences in inflammatory biomarkers as a function of aging. Here, we 

found lower peripheral lymphocytes (adjusted p value [q] < 2.0 ´ 10-16, Mann–Whitney U 

test with Benjamini-Hochberg multiple test correction, Fig. 1d) and higher circulating 

neutrophils in hospitalized aged COVID-19 patients (q =0.004, Fig. 1d), compared to 

younger patients. We also found that the neutrophil-lymphocyte ratio (NLR), a marker of 
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systemic inflammation16, was elevated in aged COVID-19 patients (q < 2.0 ´ 10-16, Fig. 

1d). In addition, the inflammatory markers D-dimer (q < 2.0 ´ 10-16, Fig 1e) and C-

reactive peptide (CRP) (q = 2.7 ´ 10-10, Fig 1e) were also significantly increased in 

hospitalized aged compared to hospitalized young COVID-19 patients. Taken together, 

our findings identify elevated inflammatory response and decreased lymphocyte count 

as potential mediators of severe COVID-19 outcomes in aged patients. 

 

Elevated pro-inflammatory cytokine expression in aged COVID-19 patients  

We next examined peripheral immune profiles17 of hospitalized aged and younger 

COVID-19 patients by querying a dataset of 12 major immune cell types (% peripheral 

blood mononuclear cells [PBMCs]) and 32 T cell subtypes (% CD3, Supplementary 

Table 5, see Methods). There was no difference in abundance of the major immune cell 

types (e.g. T cells, B cells, natural killer cells, and plasmacytoid dendritic cells [pDC]) 

between aged and young hospitalized COVID-19 patients, including those in the ICU 

(Fig. 2a, c and Supplementary Fig. 2a). However, both young and aged COVID-19 

patients with ICU admission had a lower proportion of T cells (younger, q = 0.001; older, 

q=0.003) and pDC (younger, q = 0.009; older, q=0.004) (Fig. 2a, c), as well as an 

elevated proportion of non-classic Monocytes (ncMono) (younger, q = 0.003; older, 

q=0.014, Fig. 2c), compared to non-ICU patients. Further analysis of deep phenotyping 

T cell data revealed significantly fewer naïve CD8 T cells in hospitalized aged COVID-

19 patients (q = 1.7 x 10-11, Fig. 2b, d). Naïve CD8 T cell-mediated homeostasis is an 

important component of antiviral defense18, and the naïve CD8 T cell receptor repertoire 
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negatively correlated with age in COVID-19 patients19. Reduced abundance of naïve 

CD8 T cells could dysregulate CD8 T cell pool homeostasis and perturb immunity.  

        Next, we compared the plasma profile of 71 cytokines and chemokines17 between 

hospitalized aged and younger COVID-19 patients (Supplementary Table 5). 

Historically, increased IL-6, IL-8, IL-10 and IL-27 levels have been associated with 

severe COVID-1920,21. Here, we found elevated IL-8 (also named CXCL8) and IL-27 

expression in aged COVID-19 patients (q = 0.013, Fig. 2g and Supplementary Fig. 

2b). As IL-8 is a pro-inflammatory cytokine that recruits and activates neutrophils22, its 

elevation is consistent with our previously noted elevated neutrophil count and NLR in 

hospitalized aged COVID-19 patients (Fig. 1d). Furthermore, younger, but not aged, 

COVID-19 ICU patients also showed elevated IL-10 (Supplementary Fig. 2), a key 

feature of cytokine storm23,24. In addition, elevated IL-6 was observed in both younger (q 

= 0.020) and aged ICU patients, (q=0.002), compared to non-ICU patients (Fig. 2g). 

Thus, severe COVID-19 patients show distinct age-related cytokine profiles, with 

hospitalized aged patients showing elevated IL-8 and IL-27, and hospitalized younger 

patients showing elevated IL-6 and IL-10. These results indicate that heterogeneous 

inflammatory cytokine expression between aged and younger COVID-19 patients may 

mediate age-related hospitalization and ICU admission. 

 

Reduced naïve CD8 T cells in aged severe COVID-19 patients 

Because we observed loss of CD8 naïve T cells and T effector memory cells in 

hospitalized aged COVID-19 patients (Fig2 b, d), we examined a single-cell 

transcriptomic dataset of CD8 T cells25 in order to search for aging-related molecular 
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mechanisms in a cell type-specific manner. Uniform Manifold Approximation and 

Projection26 (UMAP) revealed 5 distinct CD8 sub-clusters (Fig. 3a, b), including naïve 

CD8, T central memory (Tcm), Tem, CD8-proliferation, and CD8 T effector. Comparing 

to severe young COVID-19 patients, up-regulated genes (q < 0.05, log fold change > 

0.1) in CD8 naïve T cells from aged patients formed a network module (the largest 

connected component) in the human protein-protein interactome (Fig. 3c). This age-

specific network module was significantly enriched in several pathways, including 

apoptosis (q = 0.013), human T cell leukemia virus 1 infection (q = 0.013), and TNF 

signaling (q = 0.014, Fig. 3c). In particular, the apoptosis gene cathepsin D27 (CTSD) 

was highly expressed in naïve CD8 T cells from aged severe COVID-19 patients (q < 

2.0 x 10-16). Down-regulated genes, such as interferon-stimulated genes IFITM3 and 

TRIM22, in CD8 naïve T cells from aged COVID-19 patients were enriched in type I & II 

IFN signaling pathways (Fig. 3c). In addition, the transcription factor STAT1, an 

important downstream factor in type I & II IFN signaling pathways28, was down-

regulated in CD8 naïve T cells in aged COVID-19 patients (Fig. 3c). Notably, the SARS-

CoV-1 NSP1 protein impedes type I & II IFN signaling29 by attenuating STAT1 

phosphorylation30. Thus, IFN deficiencies in CD8 naïve T cells may contribute to 

increased severity of COVID-19 disease in aged patients. 

 

Interferon deficiencies correlate with SARS-CoV-2 viral load in aged patients 

To further investigate the relationship between viral load and COVID-19 disease 

severity, we analyzed bulk RNA-seq data from nasopharyngeal samples31 (see 

Methods). Consistent with our findings in naïve CD8 T cells, expression levels of IFNα 
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genes (IFNA1, IFNA5, IFNA7 and IFNA8) were significantly decreased in aged patients 

with high viral load (Fig. 4a). In addition, expression of IFNG was decreased in aged 

patients with low viral load (Supplementary Fig. 4). Notably, we found that the IFN- 

stimulated antiviral genes,32 including IFIT1 and OAS1 (2'-5'-Oligoadenylate Synthetase 

1), were down-regulated in aged patients with a higher viral load (Fig. 4b). Next, we 

performed gene set enrichment analysis (GSEA, see Methods) for differentially 

expressed genes in aged vs. younger individuals with a higher viral load and found 

downregulation of genes in the innate immune pathways (FDR < 0.05, Fig. 4b) of RIG-I 

like receptor signaling, Toll-like receptor signaling, and NOD-like receptor signaling in 

aged severe COVID-19 patients. RIG-I like receptors senses SARS-CoV-2 RNA and 

subsequently type-I IFN production33; however, SARS-CoV-2 has evolved several 

mechanisms to blunt IFN induction, including the direct targeting of MDA5 (melanoma 

differentiation-associated protein 5), a RIG-I-like receptor, by the viral papain-like 

protease (PLpro)34. Furthermore, IFN is potently inhibits IL-8 expression35 in viral 

infection, and we also showed that aged COVID-19 patients with high viral load exhibit 

elevated plasma IL-8 (p = 0.006, Mann–Whitney U test, Fig. 4c). Notably, up-regulated 

genes in aged patients with high viral load were not enriched in immune pathways (Fig. 

4b), indicating decreased immune ability in response to SARS-CoV-2 infection. Taken 

together, our data show that IFN deficiency is associated with elevated SARS-CoV-2 

viral load in aged patients. 

Age-dependent increased expression of SARS-CoV-2 entry factors  

We next investigated age- and cell type-specific expression of SARS-CoV-2 entry 

factors using a single-cell RNA-sequencing dataset36 (scRNA-seq, see Methods) from 
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nasal tissue of critical (n = 11) and moderate COVID-19 patients (n = 8, see Methods). 

In total, the scRNA-seq dataset contained 115,895 cells across 15 well-annotated cell 

types within two main cell populations: epithelial cells (6 cell types) and immune cells (9 

cell types). 

        We found that secretory and ciliated cells in aged COVID-19 patients display 

reduced abundance of angiotensin converting enzyme-2 (ACE2), a key SARS-CoV-2 

docking receptor37 (Fig 4d). However, the more recently identified SARS-CoV-2 docking 

receptor basigin38 (BSG or CD147) was expressed in 95% of secretory cells in aged 

patients with critical COVID-19 (Fig 4d, and Supplementary Table 6), most notably in 

Treg (regulatory T cell) and CLT (cytotoxic T) cells (Fig. 4d). We also found that the S 

protein priming proteases TMPRSS239 and FURIN24 were highly expressed in epithelial 

cells in critical and moderate COVID-19, with no differences between aged and young 

patients (Fig 4d, Supplementary Table 6). However, FURIN levels were increased in 

several immune cell types, including Treg and CLT, in aged patients with critical 

COVID19 (Fig 4d). Taken together, our results suggest that elevated expression of two 

SARS-CoV-2 factors (BSG and FURIN) in Treg and CLT cells may contribute to the 

increased susceptibility of aged patients to COVID-19. 

 

Increased immune-epithelial cell interactions in aged COVID-19 patients 

To further investigate the immunological mechanisms underlying age-associated 

COVID-19 outcomes, we performed GSEA to explore transcriptomic signatures on 22 

immune pathways across 15 cell types derived from nasal tissue (see Methods). Here, 

we observed distinct immune responses between older and younger individuals with 
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critical or moderate COVID-19 (Supplementary Fig. 6) in epithelial and immune cell 

types. We next used CellphoneDB40 to quantify ligand-receptor interactions between 

epithelial and immune cells and found an elevated number of significant ligand-receptor 

interactions involved in immune-epithelial interactions (p < 0.05, permutation test, 

Supplementary Table 7) in aged patients with critical COVID-19 (Fig. 5a). In addition, 

we also found a stronger immune-epithelial cell interaction network in aged patients. In 

particular, we noted that secretory-T regulatory cells (Treg) and non-resident 

macrophages (nrMa) displayed the highest connection with other cell types in aged 

patients with critical COVID-19 (Fig. 5a). 

        We next analyzed ligand-receptor interactions of secretory/ciliated – immune cells 

in aged and younger patients with critical COVID-19 (Fig. 5b), and identified higher 

levels in aged patients (p < 0.05, permutation test). For example, we found elevated 

expression of TGF-β genes (TGFB1, TGFB2 and TGFB3) and their interacting partners 

(i.e., TGFBR2 and TGFBR3, p < 0.05, permutation test, Supplementary Table 8) in 

both Treg and nrMa cells. Of note, TGF-β has previously been shown to regulate the 

chronic immune response to SARS-CoV-2 in severe COVID-19 patients41. Thus, TGF-

β-mediated strong secretory and Treg cell interaction may explain the longer duration of 

hospitalization in aged COVID-19 patients (Supplementary Fig. 1b).  

          We also observed distinct immune-epithelial cell interactions in younger COVID-

19 patients. For example, secretory and CTL cells expressed high levels of several 

ligand-receptor pairs, including HLA-B – KIR3DL2, TNF – RIPK1 and TNF – PTPRS (p 

< 0.05, permutation test), and secretory and Neu cells highly co-expressed CXCL2/3 

and CXCR2 (p < 0.05, permutation test). In addition, we found that secretory/ciliated – 
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CTL cells showed a similar IFNG – IFNGR pattern, while the expression level in aged 

patients was much lower (Fig. 5b). In particular, secretory/ciliated – CTL cell interaction 

in younger patients showed strong IFNG – IFNGR interaction compared to aged 

patients with moderate COVID-19 (Supplementary Fig. 6). In summary, these 

observations revealed that immune-epithelial cell interactions are associated with critical 

COVID-19 in aged patients. In particular, reduced expression of IFNR signaling is 

associated with greater severity of COVID-19 in aged individuals (Fig. 4a). 

 

 

Discussion 

This study provides a comprehensive analysis of immune profiles in aged and younger 

COVID-19 patients. Previous epidemiologic studies have identified age as an important 

risk factor for severe COVID-191,42,43, and our large COVID-19 registry data further 

confirmed the elevated likelihood of severe COVID-19 in aged individuals even after 

adjusting for sex, race, smoking and multiple disease comorbidities (Fig. 1c). 

Mechanistically, aged hospitalized COVID-19 patients showed elevated levels of D-

dimer, CRP (Fig 1d) and NLR (Fig 1e), which are inflammatory markers associated with 

severity and death in COVID-1916,44. 

       Via deep immune cell profiling data analysis, we identified distinct immune 

responses in younger and aged COVID-19 patients (Fig. 6). For example, both younger 

and aged COVID-19 patients showed increased ncMono cells and elevated IL6 (Fig. 2, 

Fig. 6), while only aged COVID-19 patients displayed elevated plasma IL8 and IL27 

(Fig. 2g and Supplementary Fig. 2b). IL-6 is a potential therapeutic target since it is a 
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critical mediator of cytokine storm in COVID-1945. However, a recent Phase III clinical 

trial (NCT04320615) showed no reduced mortality in severe COVID-19 patients treated 

with the anti-IL-6R monoclonal antibody tocilizumab46. Younger COVID-19 patients in 

the ICU also showed significantly higher IL10 (Supplementary Fig. 2b). Our 

observations suggest that targeting IL-10 might reduce mortality in younger patients 

with severe COVID-19, whereas IL-8- and IL-27-based therapies might benefit aged 

COVID-19 patients.  

        We also found reduced lymphocytes in hospitalized aged COVID-19 patients (Fig. 

1d). In particular, the abundance of naïve CD8 T cells was decreased in aged patients 

with severe COVID-19 (Fig. 2d). Reduction of naïve CD8 T cell is a hallmark of 

immunosenescence in older individuals47, and through scRNA-seq data analysis we 

observed significant enrichment of upregulated apoptosis genes in CD8 naïve T cells 

from aged COVID-19 patients. Mechanistically, the apoptosis driver gene CTSD27 is 

significantly elevated in naïve CD8 T cells from aged severe/critical COVID-19 patients 

compared to younger patients (q < 2.0 x 10-16). Thus, modulation of CD8 naïve T cell 

dysfunction, especially targeting apoptosis pathway48, may provide a new treatment 

strategy for severe COVID-19 in aged patients. 

        IFN-mediated immunity provides initial rapid protection against viral infection49, and 

about 3.5% of patients with life threatening COVID-19 show genetic aberrations in the 

type I IFN pathway50. A recent genetic study in European ancestry revealed that the cis-

protein quantitative trait loci (pQTL, rs4767027) in OAS1 (an IFN-stimulated gene) was 

significantly associated with decreased likelihood of COVID-19 susceptibility and 

severity51. Herein, we found that aged individuals with severe COVID-19 show reduced 
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expression of type I IFN genes (Fig. 3c, 4a, 5b). Notably, aged patients with high 

SARS-CoV-2 viral load show reduced expression of OAS1 and IFNA1, IFNA5, and 

IFNA7 (Fig. 4a) compared to younger patients. On the contrary, aged patients with high 

SARS-CoV-2 viral load have elevated expression of the pro-inflammatory cytokine IL-8 

and decreased lymphocyte cell counts in plasma (Fig. 4c), demonstrating dysregulation 

of cytokine responses that has been well described for COVID-1952. Of note, the 

dysregulated cytokine response is likely the effect of a variety of immunomodulatory 

strategies employed by SARS-CoV-2 that are used to manipulate specific signaling 

pathways that lead to cytokine induction such as the RIG-I-like receptor pathway. 

Therefore, the type I IFN pathway offers a potential therapeutic target for aged severe 

COVID-19 patients. 

         Although aged adults show increased susceptibility to SARS-CoV-2 infection 

compared to children5, we did not find differences in SARS-CoV-2 viral load in the upper 

airways between younger and aged patients (Supplementary Fig. 7). Using large-scale 

scRNA-seq data analysis, we did find, however, that the SARS-CoV-2 entry genes 

(ACE2, BSG, TMPRSS2, FURIN and NPR1) showed cell type-specific expression 

profiles in both aged and younger individuals. In aged patients with critical COVID-19, 

expression of BSG was increased in secretory, rMa and CTL cells, and elevated 

expression of FURIN was found in Treg and CTL cells. Thus, cell type-specific host 

factor expression may play an important role in age-mediated disease susceptibility and 

severity in COVID-19. 

         We also identified age-specific increases in immune-epithelial cell interactions. For 

example, we found strong TGF-β mediated immune-epithelial cell interactions in aged 
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severe COVID-19 patients. TGF-β plays a crucial role in pulmonary fibrosis53,54, which is 

a common complication in severe COVID-19 patients55. The nucleocapsid protein of 

SARS-CoV-1 also upregulates TGF-β expression56. Thus, TGF-β targeted therapies 

may be of utility in aged patients with COVID-19. We additionally identified receptor 

interacting serine/threonine kinase 1 (RIPK1)-mediated immune-epithelial cell 

interactions (secretory/ciliated -CTL cell pairs) in younger patients with critical COVID-

19. RIPK1 is a key mediator of inflammation57, and a RIPK1 inhibitor (SAR443122) has 

been tested in a phase I clinical trial (ClinicalTrials.gov Identifier: NCT04469621) to treat 

tissue damage resulting from inflammation in severe COVID-19 patients. Altogether, 

RIPK1 inhibitors58 may offer a potential treatment for young COVID-19 patients, such as 

COVID-19 related multisystem inflammatory syndrome in Children (MIS-C) in children59. 

        Lastly, we acknowledge the potential limitations of our study. Although we 

inspected omics data from multiple tissues, including PBMCs, plasma, and nasal 

tissues, additional analysis of other COVID-19 and aging relevant tissues, such as lung 

and brain, should be investigated in the future. In addition, our COVID-19 database and 

omics data were generated from acute COVID-19 patients, and identification of the 

underlying genetic and molecular basis of aging differences for long-haul COVID-19 

patients will be an important area of future investigation60. Finally, investigation of 

COVID-19 vaccine responses between aged and young patients are also warranted in 

the future. 

 

Methods and Materials 

‘Young’ was defined as 18 to 55 years of age, and ‘aged’ was defined as ³ 65 years old.  
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U.S. CDC COVID-19 epidemiological data  

Publically-accessible COVID-19 death counts in 54 states in United States (U.S.) were 

downloaded from the Centers for Disease Control and Prevention (CDC) website 

(https://data.cdc.gov/NCHS/Provisional-COVID-19-Death-Counts-by-Sex-Age-and-

S/9bhg-hcku/data ) on December 23th, 2020 (Supplementary Table 1). Publically-

accessible statistics of influenza mortality across 10 flu seasons (November, 2010 - 

2020) in U.S. was downloaded from CDC website 

(https://catalog.data.gov/dataset/deaths-from-pneumonia-and-influenza-pi-and-all-

deaths-by-state-and-region-national-center- ) on June 20th, 2020. Both COVID-19 and 

influenza datasets include three age-stratified groups: 0-17 years, 18-64 years, 65 years 

and older. These datasets were used for epidemiological prevalence analysis of 

COVID-19 and influenza. 

We collated U.S. COVID-19 Case Surveillance Public Use Data from the CDC 

website (https://healthdata.gov/dataset/covid-19-case-surveillance-public-use-data) 

from December, 2019 to December 28th, 2020. This dataset includes age-stratified 

COVID-19 case counts in hospitalization, ICU admission, death, sex, and race. We 

extracted two age subgroups from all laboratory-confirmed cases using the following 

criteria: i) the age range of younger group from 20 to 49 years, and the age range of 

older group over than 60 years (Supplementary Table 2); ii) deletion of all cases in 

which sex and race information was missing. In total, the younger subgroup includes 

2,369,919 cases, with 94,161 in hospitalization, 9,138 in ICU admission, and 6,469 

death cases. The older subgroup has 1,048,011 cases in total, with 243,109 in 
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hospitalization, 29,671 in ICU admission, and 124,566 death cases. This dataset was 

used to determine odds ratio analysis. 

 

COVID-19 registry 

We used institutional review board–approved COVID-19 registry data, including 45,077 

individuals (12,651 were aged patients and 32,426 were younger patients, 

Supplementary Table 3) tested during March to December, 2020 from the Cleveland 

Clinic Health System in Ohio and Florida. All tested samples were pooled 

nasopharyngeal and oropharyngeal swab specimens. Infection with SARS-CoV-2 was 

confirmed by RT-PCR in the Cleveland Clinic Robert J. Tomsich Pathology and 

Laboratory Medicine Institute. In total, 12,304 patients (aged n= 3,559, younger n = 

8,745) tested COVID-19 positive by the end of December, 2020. All SARS-CoV-2 

testing was authorized by the Food and Drug Administration under an Emergency Use 

Authorization, in accord with the guidelines established by the Centers for Disease 

Control and Prevention.  

       The data in COVID-19 registry includes COVID-19 test results, baseline 

demographic information, and all recorded disease conditions (Supplementary Table 3). 

We conducted a series of retrospective studies to test the association of aging with 

COVID-19 outcomes, including hospitalization, ICU admission, mechanical ventilation, 

and death. Data were extracted from electronic health records (EPIC Systems), and 

patient data was managed using REDCap electronic data capture tools. To ensure data 

quality, a study team trained on uniform sources for the study variables manually 

checked all datasets. Statistical analysis for smoking, hypertension, diabetes, coronary 
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artery disease asthma, and emphysema & chronic obstructive pulmonary disease 

[COPD] were calculated after missing value deletion. 

 

Clinical outcome analysis 

The odds ratio (OR) was used to measure the association between COVID-19 

outcomes and aging based on logistic regression. An OR > 1 indicates that aged 

patients are associated with a higher likelihood of the outcome. To reduce the bias from 

confounding factors, we employed OR analysis in two datasets. For U.S. CDC datasets, 

the OR model was adjusted by sex and race, due to limited information of other 

confounding factors. However, in the COVID-19 registry we adjusted for sex, race, 

smoking, hypertension, diabetes, coronary artery disease, asthma, emphysema, and 

chronic obstructive pulmonary disease. The Kaplan-Meier method was used to estimate 

the cumulative hazard of hospitalization of COVID-19 patients across age groups. For 

hospitalization outcome, the time was calculated from the start date of COVID-19 

symptoms to hospital admission date. Log-rank test was used for comparison across 

different age groups with Benjamini & Hochberg adjustment. Cumulative hazard 

analysis was performed using the Survival and Survminer packages in R 3.6.0 

(https://www.r-project.org). 

 

Published available COVID-19 datasets were used in this study.  

Detailed information of the list datasets id shown in Supplementary Table 4. 

        Two single-cell sequencing datasets. In this study, we used two COVID-19 single-

cell datasets (Supplementary Table 1). First, the CD8+ T cells dataset25 is a sub-
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dataset from original PBMC single cell data61. We re-analyzed 59,815 single cell 

transcriptomes of CD8 T cells, which revealed 5 distinct CD8 sub-clusters (Fig. 3a), 

including CD8 naïve (CCR7+, LEF1+), Tcm (GZMK+,LTB+, CCR7-), Tem (GZMK+, 

CCR7-), CD8-proliferation (MKI67+), CD8 T effector (ZNF683+, GZMB+, GNLY+). Based 

on our aging criteria, the final subpopulation included 32 aged patients (mild/moderate, 

n = 20; critical/severe, n = 12) and 40 younger patients (mild/moderate, n = 27; 

critical/severe, n = 13). Second, a single cell dataset from nasal tissues36 (European 

Genome-phenome Archive repository: EGAS00001004481) was from COVID-19 

positive patients (11 critically ill patients and 8 moderately ill patients). Based on our 

aging criteria, we extracted a subpopulation from the original cohort. The final COVID-

19 cohort used in this study included 8 critically ill patients (5 younger and 3 older 

patients) and 7 moderately ill patients (4 younger and 3 older patients). As the original 

dataset supplied cell type information, additional analysis was based on cell type 

annotation. The dataset contained 115,895 cells across 15 cell types (B cell, Basal, 

Ciliated, Ciliated-diff, CTL, moDC, Neu, NKT, NKT-p, nrMa, rMa, Secretory, Secretory-

diff, Squamous and Treg).  

Bulk RNA- sequencing dataset in nasal tissue31. The dataset was publically 

available from NCBI GEO database (GSE152075). Based on original meta-information, 

we extracted COVID-19 positive sample data with high or low viral load, deleting 

samples in which sex and age information were missing. 147 bulk RNA-seq samples 

were used in this study, including 61 aged patients (high viral load n = 27, low viral load 

n =34) and 86 younger patients (high viral load n = 46, low viral load n =40).  
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SARS-CoV-2 viral load dataset62. We quantified SARS-CoV-2 RNA load from 5 

specimen types, including upper airway specimens (oropharyngeal swab [detectable 

percentage was 67%], nasopharyngeal [detectable percentage was 50%], sputum 

[detectable percentage was 85%]), plasma (detectable percentage was 27%), and urine  

(detectable percentage was 10%). We selected hospitalized patients with at least one 

COVID19-positive test among upper airway or plasma specimens. Finally, 72 patients 

were used for correlation analysis between age and viral loading. 43 patients (older 

patients n = 18, younger patients n = 25) with SARS-CoV-2 RNA detectable testing in 

upper airway were used to analyze the change of clinical inflammatory variables in both 

aged and younger groups. In our study, 54 patients tested positive for plasma SARS-

CoV-2 RNA, including 21 patients with SARS-CoV-2 RNA (aged patients n = 13). There 

were 35 SARS-CoV-2 RNA undetectable patients (aged patients n = 7).  

Circulating cell flow cytometry datasets17. This dataset included 12 major immune 

cell types as a percentage of PBMC and 32 T cell subtypes as a percentage of CD3 

positive cells through flow cytometry (Supplementary Table 8). It also detected the 

plasma concentration of 71 cytokines through cytokine array. Based on our age criteria, 

the dataset included 81 hospitalized patients, 40 with longitudinal data. When the 

second follow-up time of a patient was greater than 7 days, it was recorded as two 

samples. Hence, 114 samples were analyzed, which included 94 older samples (non-

ICU n = 66, ICU = 26) and 50 younger samples (non-ICU n = 37, ICU = 13).  

Single-cell sequencing data analyses 

All single-cell data analyses and visualizations were performed with the R package 

Seurat v3.1.4 40. The data quality filtering was strictly followed by the original 
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literature19,36. “NormalizeData” was used to normalize the data. 

“FindIntegrationAnchors” and “IntegrateData” functions were used to integrate cells from 

different samples. Principal component analysis (PCA) and t-distributed Stochastic 

Neighbor Embedding (tSNE) with 15 principal components were used. A resolution of 

0.5 was used in ‘FindClusters()’ step. ‘FindAllMarkers’ function with the MAST test was 

employed as the finding maker method for each cell type.  

Cell-cell interaction analysis. Cell-cell interactions analysis was based on 

normalized expression data of known ligand–receptor pairs in 15 cell types of nasal 

single cell sample. The analysis was performed by CellPhoneDB40 v2.1.4 

(https://github.com/Teichlab/cellphonedb) based on the python 3.7 platform. Statistical 

analysis mode was used to identify significant ligand–receptor pairs in each cell 

number. A permutation test with 1,000 times were used to evaluate the significance.  

 

Bulk RNA-sequencing data analysis 

All bulk RNA-sequencing data analysis started from raw counts value. R package 

edgeR63 v3.12 was used to analyze differentially expressed genes in older vs. younger 

groups. Correction for sex and batch effects was added into the formula of design 

model. Statistical significance p values were adjusted by Benjamini–Hochberg (q value) 

method. Differentially expressed genes were identified as adjusted p value (q) < 0.05 

and log fold change > 0.5.  

Immune gene set enrichment analysis 

To evaluated the immune pathway profiles in young and aged COVID-19 patients, 

GSEA was conducted as previously described64. Immune gene profiles were retrieved 
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from the KEGG database65. We selected 22 immune-related pathways and 1241 genes 

from KEGG belonging to the immune system subtype. For each cell type, we performed 

a GSEA on the list of differential expressed genes (DEGs) ranked by the log2FC. The 

normalized enrichment score (NES, Equation 1) was calculated for 22 immune 

pathways in young and aged specific gene sets (Supplementary Fig 2a), 

NES = !"
!"#$%&'()(*+,--------------------          (1) 

in which ES64 denotes enrichment score. Normalization of the enrichment score 

reduced the effect of the differences in gene set size and in correlations between gene 

sets and the expression dataset. NES score > 0 and q < 0.05 indicates that up-

regulated DEGs in aged vs. young are significantly enriched in immune pathways, while 

NES score < 0 and FDR < 0.05 indicates down-regulated DEGs in aged vs. young are 

significantly enriched in immune pathways. Permutation test (1000 times) was 

performed to evaluate the significance. All analyses were performed with the prerank 

function in GSEApy package (https://gseapy.readthedocs.io/en/master/index.html) on 

Python 3.7 platform. 

 

Statistical analysis  

Statistical tests for assessing categorical data through χ2 test, and the two-tailed Mann–

Whitney U test was used to compare the difference of continuous variable by aged vs. 

younger. Spearman's ρ was assessed for correlation between two variables. Statistical 

significance level was set at p < 0.05 and corrected by Benjamini–Hochberg (false 

discovery rate) method. All statistical analysis was performed by SciPy Statistics 

(https://docs.scipy.org/doc/scipy/reference/stats.html#module-scipy.stats). 
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Figure 1. Epidemiological data analysis between aged and younger COVID-19 patients. 
a, The percentage of fatal-cases of COVID-19 and flu across three age groups. Data source from 
United States (U.S.) CDC. The upper panel shows the percentage of fatal-cases of COVID-19 in 
U.S. Each dot in the boxplot represents one state. The lower panel shows the percentage of 
fatal-cases of flu from 2010-2020. Each dot in the boxplot represent one flu season. Statistical 
p-value was computed by two tailed paired t-test. b, Sex differences in the percentage of 
fatal-cases of COVID-19 across three age groups. c, Odds ratio (OR) analysis of U.S. CDC and 
COVID-19 registry datasets. U.S. CDC dataset. d and e Boxplot show the lab testing values of 
four inflammatory markers between aged and younger individuals. Adjusted p-value [q] was 
computed by Mann–Whitney U test with Benjamini–Hochberg (BH) multiple testing correction. 

Figure 1
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Figure 2

Figure 2. Deep immune-profiling of aged and younger patients with COVID-19. a and e
Scatterplot shows the differential immune cell type (a) and cytokines (e) between ICU (n = 39 

samples) versus non-ICU (105 samples) COVID-19 patients. b and f, Scatterplot shows the 

differential immune cell type (d) and cytokines (h) in aged (n = 94 samples) versus younger 

(50 samples) COVID-19 patients. c, The abundance of major immune cell types in PBMC and 

(d) subtypes of CD8+ T cells in all CD3 positive cells. g, The abundance of IL6 and IL8 change 

between younger and aged COVID-19 patients in hospital, ICU and non-ICU groups. 
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a b

c

Figure 3

Figure 3. Single cell transcriptome of CD8 T cells in aged COVID-19 patients. a UMAP plot 
displays 8 identified CD8 T cell subpopulations. b The expression of marker genes shown on the 
UMAP plot. The expression levels are blue color coded. c A highlighted protein-protein interaction 
subnetwork for age-biased differentially expressed genes in CD8 naïve T cells from patients with 
critical COVID-19. The colors for nodes and edges represents different immune pathways. 
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Figure 4
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Figure 4. Analysis of SARS-CoV-2 viral load and related entry gene expression in 
nasal tissues. a, Volcano plot showing the differential genes of bulk RNA-sequencing 
data in aged versus younger patients in high viral load nasal tissues. b, Gene-set 
enrichment analysis (GSEA) of 22 immune pathways for differential gene set in two 
comparable conditions. The gradient color bar shows the NES score (see Method). 
NES score > 0 and q < 0.05 indicates that up-regulated DEGs in aged vs. young are 
significantly enriched in immune pathways, while NES score < 0 and q < 0.05 indicates 
down-regulated DEGs in aged vs. young are significantly enriched in immune pathways. 
Black dots denote FDR < 0.05. c, Boxplot showing the lab testing data changes in aged 
and younger COVID-19 patients with high (> 4.5 log10 RNA copies/ml) and 
low (< 4.5 log10 RNA copies/ml) viral load. d, SARS-CoV-2 related entry gene 
expression profile across 15 cell types of nasal tissue between aged and younger 
patients. The size of dot denotes the percentage of the positive cell which expressed
the tested genes. The gradient color bar represents the z-score scaled average 
expression of genes in each cell type.
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Figure 5

Figure 5. Distinct epithelial-immune cell interaction profile in aged and younger 
patients with critical COVID-19. a, Heatmap showing the total log-scaled interaction 
number between epithelial-immune cells in critical COVID-19 disease. Aged group, 
n= 3 patients, younger group, n = 5 patients. The cell-cell interaction network depicted 
all cell pairs in which the number of cell-cell interaction > 50. Edge size denotes the 
number of interactions between two cell types. Different colors indicate the immune or 
epithelial cell types. b, Dot plot showing significant ligand-receptor interactions between 
epithelial-immune cell interaction in critical COVID-19 disease. The circle size indicates 
-log10-scaled p values by permutation test, and gradient color bar shows the log2-scaled 
means of average expression of interacted cell pair.
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Figure 6

Figure 6. Proposed mechanistic models for age-biased COVID-19 severity in aged 
individuals. Several age-related pathophysiologic immune responses are associated 

with disease susceptibility and severity in COVID-19: a) decreased lymphocyte count 

and elevated inflammatory markers (C-reactive protein [CRP], D-dimer, and 

neutrophil-lymphocyte ratio); b) elevated pro-inflammation cytokines IL-8, IL-27 and

IL-6 in aged COVID19 patients; c) reduced abundance of naïve CD8 T cells with 

decreased expression of antiviral defense genes (i.e., IFITM3 and TRIM22) in 

aged individuals with severe COVID-19; d) type I interferon deficiency is associated 

with SARS-CoV-2 viral load in aged individuals; e) elevated expression of SARS-CoV-2

entry factors (BSG and FURIN) and reduced expression of antiviral defense genes 

(IFNAR1, OAS1, IFIT1) in the secretory cells of critical COVID-19 in aged individuals;

f) strong TGF-beta mediated immune-epithelial cell interactions (i.e., secretory –

T regulatory cells) in aged individuals with critical COVID-19. 
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Supplementary Figure 1 

a b

Supplementary Figure 1. Aged COVID-19 patients with elevated hazard of 
Hospitalization. a, Cumulative hazard of COVID-19 hospitalization. The log-rank 
test with the Benjamini & Hochberg (BH) adjustment are used to compare the 
statistical significance of cumulative hazard of hospitalization. The shadow represents 
95% confidence interval. b, Boxplots of the straying duration in hospital between 
aged (older) and younger patients. Statistical p-value was computed by 
Mann–Whitney U test.
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Supplementary Figure 2 

Supplementary Figure 2. Comparison of the abundance of B cells in PBMCs and 
cytokines in plasma between aged and younger COVID-19 patients. a, The 
abundance of B cells subtype in all CD3 positive cells. b, Boxplot showing the plasma
levels of cytokines and chemokines between younger and aged COVID-19 patients. 
Statistical p-value was computed by Mann–Whitney U test.
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Supplementary Figure 3 

Supplementary Figure 3. The expression of marker genes shown on the UMAP
plot. The expression levels are blue color coded.
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Supplementary Figure 4 

Supplementary Figure 4. Analysis of relationship between age and SARS-CoV-2 
viral load in nasal tissues. Volcano plot show the differential genes of bulk 
RNA-sequencing data in aged (older) versus younger in low viral load nasal tissues. 
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Supplementary Figure 5 

Supplementary Figure 5. Gene-set enrichment analysis (GSEA) of 22 immune pathways 
across 15 cell types of nasal tissues. The gradient color bar shows the normalized enrichment 
score (NES) score. NES score > 0 indicates the immune pathway significantly enriched in 
upper-regulated genes. NES score < 0 indicates the immune pathway significantly enriched 
in down-regulated genes. Black dots denote the FDR < 0.05.
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Supplementary Figure 6 

Supplementary Figure 6. Distinct epithelial-immune cell interaction profile in aged and 
younger patients with moderate COVID-19. a, Heatmap show the total log-scaled interaction 
number between epithelial-immune cells in moderate COVID-19 disease. Aged group, n= 3 
patients, younger group, n = 4 patients. The cell-cell interaction network depicted all cell pairs 
which the number of cell-cell interaction > 50. Edge size denotes the number of interactions 
between two cell types. Different colors indicate the immune or epithelial cell types. b, Dot plot 
showing the significant ligand-receptor interactions between epithelial-immune cell interaction 
in moderate COVID-19 disease. The circle size indicated -log10-scaled p values by permutation 
test. Gradient color bar shows the log2-scaled means of average expression of interacted cell pair.
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Supplementary Figure 7 

Supplementary Figure 7. Correlation analysis between age and upper airway 
viral load. The upper airway data from three sample source, oropharyngeal swab,
nasopharyngeal and sputum.
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