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 2 

ABSTRACT 10 

Maintaining surveillance of emerging infectious diseases presents challenges for monitoring their 11 

transmission and burden. Incomplete observation of infections and imperfect diagnosis reduce 12 

the observed sizes of transmission chains relative to their true sizes. Previous studies have 13 

examined the effect of incomplete observation on estimates of pathogen transmission and 14 

burden. However, each study assumed that, if observed, each infection was correctly diagnosed. 15 

Here, I leveraged principles from branching process theory to examine how misdiagnosis could 16 

contribute to bias in estimates of transmission and burden for emerging infectious diseases. 17 

Using the zoonotic Plasmodium knowlesi malaria as a case study, I found that, even when 18 

assuming complete observation of infections, the number of misdiagnosed cases within a 19 

transmission chain for every correctly diagnosed case could range from 0 (0 – 4) when 𝑅! was 20 

0.1 to 86 (0 – 837) when 𝑅! was 0.9. Data on transmission chain sizes obtained using an 21 

imperfect diagnostic could consistently lead to underestimates of 𝑅!, the basic reproduction 22 

number, and simulations revealed that such data on up to 1,000 observed transmission chains 23 

was not powered to detect changes in transmission. My results demonstrate that misdiagnosis 24 

may hinder effective monitoring of emerging infectious diseases and that sensitivity of 25 

diagnostics should be considered in evaluations of surveillance systems.   26 
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INTRODUCTION 27 

For pathogens with sub-critical transmission (i.e., 𝑅! < 1), a robust surveillance system that 28 

identifies and correctly diagnoses infections is necessary to monitor changes in pathogen 29 

transmission and burden (1). Such pathogen surveillance is important both for measuring 30 

progress towards elimination of diseases with immediate public health importance, such as 31 

measles (2–4) and malaria (5), and for assessing the future threat of emerging infectious diseases 32 

(6), such as avian influenza (7), human monkeypox (1,8), and Middle East respiratory syndrome 33 

coronavirus (2,9).  34 

 Considerable work has been devoted to advance a mathematical framework that 35 

leverages the data collected by surveillance systems to obtain estimates of transmission and 36 

burden for pathogens with sub-critical dynamics (1,2,4,10,11). These studies have improved our 37 

understanding of a wide range of emerging infectious diseases and have critically evaluated the 38 

sensitivity of these estimates to the quality of data from the surveillance system. Crucially, each 39 

study modeled variation in surveillance quality through variation in the ascertainment fraction 40 

(i.e., the proportion of infections that are detected) and assumed that, once detected, all infections 41 

were correctly diagnosed. In reality, however, non-specific clinical and biological features are 42 

likely to limit the sensitivity of clinical diagnosis, particularly for emerging infectious diseases 43 

(12,13). The extent to which misdiagnosis affects estimates of transmission and burden for 44 

pathogens with sub-critical dynamics remains largely unaddressed.   45 

  The zoonotic Plasmodium knowlesi malaria offers a natural case study to examine the 46 

impact of misdiagnosis on estimates of transmission and burden. Endemic to Southeast Asia 47 

(14), P. knowlesi is a vector-borne disease with most or all infections in humans caused by 48 

spillover transmission from the long- and pig-tailed macaque reservoir (15,16). The extent of 49 
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transmission between humans is currently unknown (17). Due to morphological similarities with 50 

other Plasmodium spp., P. knowlesi is routinely misdiagnosed by light microscopy (18). A recent 51 

systematic review and meta-analysis estimated that the sensitivity of light microscopy for 52 

diagnosing P. knowlesi infections was less than 1% (19). This high rate of misdiagnosis greatly 53 

affects the quality of surveillance data on P. knowlesi, potentially biasing estimates of 54 

transmission and burden.  55 

 In this study, I aimed to evaluate the extent to which misdiagnosis of a pathogen affected 56 

the ability to monitor its change in transmission and burden. Using P. knowlesi as a case study, I 57 

leveraged an established framework based upon branching process theory to first quantify the 58 

potential magnitude of underestimation of pathogen burden on account of misdiagnosis. Next, I 59 

considered how underestimates of pathogen burden could lead to bias in estimates of 𝑅!, the 60 

basic reproduction number. Finally, I quantified the degree to which misdiagnosis reduced the 61 

statistical power to detect changes in transmission from surveillance data for emerging infectious 62 

diseases, such as P. knowlesi.  63 

 64 

METHODS 65 

Branching Process Framework of Sub-Critical Transmission 66 

To explore the effects of misdiagnosis on the monitoring of sub-critical transmission (i.e., 𝑅! <67 

1) of P. knowlesi, I extended a framework that uses branching process theory to estimate a 68 

pathogen’s 𝑅! from its size distribution of stuttering transmission chains. Here, I followed 69 

Blumberg and Lloyd-Smith (1,11) and defined a transmission chain as a primary infection (i.e., a 70 

spillover infection from a zoonotic reservoir) and all secondary infections arising from that 71 

primary infection through at least one generation of pathogen transmission.  72 
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 Assuming that the number of secondary infections caused through one generation of 73 

pathogen transmission followed a negative binomial distribution with mean 𝑅! and dispersion 74 

parameter 𝜅, I used the branching framework to calculate summary statistics of the transmission 75 

chains. Specifically, I solved for the probability that a transmission chain was truly of size j 76 

infections, 𝑟", and the mean size of transmission chains, 𝜇.  77 

Following Blumberg and Lloyd-Smith (11), I considered two models of observation of 78 

infections: (i) independent observation and (ii) size-dependent observation. The model of 79 

independent observation assumes that each infection is subject to an independent probability of 80 

observation and correct diagnosis, 𝑝#$%, that is equal to the product of the observation 81 

probability, 𝑝%&', and the diagnostic sensitivity, 𝑠𝑒. By comparison, the model of size-dependent 82 

observation assumes that observation of transmission chains occurs through sentinel infections. 83 

Each infection within a transmission chain is a sentinel infection with probability, 𝑝(&$', and, if 84 

there is at least sentinel infection within the transmission chain, then all infections within the 85 

transmission chain are observed. Diagnosis of each infection occurs independently and is subject 86 

to sensitivity, 𝑠𝑒.  87 

 I then computed the mean observed transmission chain size, 𝜇∗, as a function of the 88 

transmission parameters (𝑅! and 𝜅), the observation model (𝑝%&' or 𝑝(&$'), and the diagnostic 89 

accuracy (𝑠𝑒). This allowed me to relate the distribution of observed transmission chain sizes to 90 

the distribution of true transmission chain sizes and quantify bias in the maximum-likelihood 91 

estimates of transmission, 𝑅+! = 1 − *
+∗

.  If all infections are observed and correctly diagnosed, 92 

then 𝜇∗ = 𝜇 and thus  𝑅+! = 𝑅!. Violations of this assumption, either through incomplete 93 

observation or misdiagnosis, introduce bias into transmission estimates. A full description of the 94 

branching process framework can be found in the Supplement.  95 
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 96 

Analyses  97 

Quantifying the Bounds of Total Burden 98 

To first demonstrate how misdiagnosis, in addition to incomplete observation, may lead to an 99 

underestimate of P. knowlesi burden, I computed the probability distribution of the true size of a 100 

transmission chain conditional upon the observed size of a transmission chain. That is, given that 101 

I observed a transmission chain of size 𝚥,̂ the probability that the transmission chain is truly of 102 

size 𝑗 is equal to  103 

 104 

Pr(𝑗|𝚥̂) =
Pr(𝚥̂|𝑗) Pr(𝑗)

Pr(𝚥̂) .						(1) 105 

 106 

In eq. (1), Pr	(𝑗) is the probability that a transmission chain is of size 𝑗, 𝑟", computed using eq. 107 

(S1), and Pr	(𝚥̂) is the probability that a transmission chain is of observed size 𝑗, 𝑠",, computed 108 

using eq. (S2) for the model of independent observation and using the numerator of eq. (S7) for 109 

the model of size-dependent observation. For the model of independent observation, the 110 

probability of observing a transmission chain of size 𝚥̂ given that the transmission chain is truly 111 

of size 𝑗 is  112 

 113 

Pr(𝚥̂|𝑗) = 7
𝑗
𝚥̂8 ∙ 𝑝#$%

-̂ ∙ (1 − 𝑝#$%)"/-̂,					(2) 114 

 115 
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where 𝑝#$% is equal to the product of the probability of detection, 𝑝%&', and the sensitivity of 116 

diagnosis, 𝑠𝑒. By comparison, for the model of size-dependent observation, this quantity is 117 

computed as  118 

 119 

Pr(𝚥̂|𝑗) = <1 − (1 − 𝑝(&$')"= ∙ 7
𝑗
𝚥̂8 ∙ 𝑠𝑒

-̂ ∙ (1 − 𝑠𝑒)"/-̂.					(3) 120 

 121 

Substituting the respective terms into eq. (1), for the model of independent observation, I 122 

computed the probability that a transmission chain is of true size 𝑗 given that it is observed to be 123 

of size 𝚥 ̂as  124 

 125 

Pr(𝑗|𝚥̂) =
?"-̂@ ∙ 𝑝#$%

-̂ · (1 − 𝑝#$%)"/-̂𝑟"
𝑠",

.					(4) 126 

 127 

For the model of size-dependent observation, I computed this quantity as  128 

 129 

Pr(𝑗|𝚥̂) =
<1 − (1 − 𝑝(&$')"= ∙ ?"-̂@ ∙ 𝑠𝑒

-̂ ∙ (1 − 𝑠𝑒)"/-̂𝑟"
𝑠",

.					(5) 130 

 131 

I used eqs. (4-5) to compute the expected true transmission chain sizes given observed 132 

transmission chains of one, two, or three cases while varying the probability of observation, 𝑝%&' 133 

or 𝑝(&$', from 0.1 to 1.0 in increments of 0.1. I sampled the sensitivity of the diagnostic method 134 

from the posterior estimate of sensitivity of light microscopy for P. knowlesi with mean equal to 135 

1.19 x 10-3 (19). For each combination of observed chain size and probability of observation, I 136 
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calculated the expected true transmission chain size, assuming that the true value of 𝑅! was 137 

equal to 0.1, 0.5, or 0.9. These values of 𝑅! represent low, medium, and high values of sub-138 

critical transmission and fall within the plausible range of human-to-human transmission of P. 139 

knowlesi (20). The dispersion parameter 𝜅 was assumed to be 0.1 in all scenarios, though a 140 

supplementary analysis was performed where 𝜅 → ∞.   141 

 142 

Effect of Misdiagnosis on Estimates of Transmission 143 

On account of incomplete observation and misdiagnosis, the observed burden of P. knowlesi may 144 

not reflect the true burden. It follows that the mean observed transmission chain size will not 145 

equal the true mean transmission chain size, biasing our estimates of 𝑅!. To explore the extent of 146 

this bias in scenarios where 𝑅! was equal to 0.1, 0.5, or 0.9, I calculated the mean observed 147 

transmission chain sizes while varying the probabilities of observation, 𝑝%&' or 𝑝(&$', from 0.1 to 148 

1.0 in increments of 0.1 and while using posterior samples of sensitivity of light microscopy for 149 

P. knowlesi (19). I then compared the maximum-likelihood estimates of 𝑅+! to the true values of 150 

𝑅! for both the models of independent observation and size-dependent observation. In all 151 

scenarios, I assumed that the dispersion parameter 𝜅 was 0.1, and a supplementary analysis was 152 

performed were 𝜅 → ∞.   153 

 154 

Effect of Misdiagnosis on Statistical Power to Detect Changes in Transmission 155 

Bias in 𝑅! estimates on account of misdiagnosis could reduce the statistical power to detect 156 

changes in 𝑅! over time using data on the size of transmission chains. To measure statistical 157 

power as a function of the number of observed transmission chains, I followed an approach taken 158 

by Blumberg et al. (2). I assumed that 𝑅! was historically equal to 0.1 and then increased to 159 
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𝑅! + Δ𝑅!, where Δ𝑅! was set to 0.1, 0.5, or 0.9. I then simulated 𝑁 observed transmission chains 160 

and estimated 𝑅+! while varying 𝑁 from 1 to 1,000. I then compared the model in which 𝑅! was 161 

estimated to have changed to the null hypothesis that there was no change in transmission (i.e., 162 

Δ𝑅! = 0) using the Akaike Information Criterion (AIC) (21). For each number of observed 163 

transmission chains 𝑁, I repeated this procedure 1,000 times and computed statistical power as 164 

the proportion of simulations in which I detected a change in transmission on the basis of AIC. 165 

To measure the minimum effect of misdiagnosis on statistical power, I set 𝑝%&' and 𝑝(&$' equal 166 

to 1. Because all infections are observed under this assumption and diagnosis is performed 167 

independently across infections in both models, the models of independent and size-dependent 168 

observation yield identical results. In all scenarios, I assumed that the dispersion parameter 𝜅 169 

was 0.1, and a supplementary analysis was performed were 𝜅 → ∞.   170 

 171 

RESULTS 172 

Assuming complete observation of infections (i.e., 𝑝%&' and 𝑝(&$' equal to 1), misdiagnosis of P. 173 

knowlesi infections would underestimate the true P. knowlesi burden, with the magnitude of this 174 

effect depending upon 𝑅! (Fig. 1). For a scenario in which 𝑅! was 0.1, the expected true size of a 175 

transmission chain is one infection (95% CI: 1 – 5) if the observed size is one case, four 176 

infections (2 – 12) if the observed size is two cases, and seven infections (3 – 17) if the observed 177 

size is three cases. Under an alternative scenario in which 𝑅! was 0.9, the expected true size of 178 

the transmission chains increased to 87 (1 – 838), 461 (49 – 965), and 650 (157 – 983) 179 

infections, respectively.  180 

 The effect of incomplete observation (i.e., 𝑝%&' or 𝑝(&$' < 1) on the expected burden was 181 

most apparent at an intermediate 𝑅! of 0.5 and with the model of size-dependent observation 182 
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(Fig. 1D). Under this scenario, given a transmission chain of size one, the expected true 183 

transmission chain was 18 infections (1 – 107) if 𝑝(&$' was equal to 0.1, compared to 3 infections 184 

(1 – 80) if 𝑝(&$' was equal to 1. In all other scenarios, the expected burden did not change 185 

significantly with 𝑝%&' or 𝑝(&$'. This occurred because, even with complete observation (i.e., 186 

𝑝%&' and 𝑝(&$' equal to 1), 99.881% of P. knowlesi cases were expected to be misdiagnosed, 187 

given a sensitivity of 0.119%. Therefore, irrespective of the observation probability, only a 188 

subset of true transmission chain sizes is consistent with the sizes of the observed transmission 189 

chains, given this high percentage of false negatives. If I instead assumed perfect sensitivity of 190 

the method, I observed a greater effect of the observation probability on the expected burden 191 

(Fig. S1).  192 

 193 

 194 
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Figure 1. Effect of misdiagnosis and imperfect observation on the expected burden. The mean 195 

true transmission chain size (dots) and  95% CI (segments) are shown conditional upon on an 196 

observed transmission chain size of one (yellow), two (orange), or three (red) cases and an R0 of 197 

0.1 (A,B), 0.5 (C,D), and 0.9 (E,F). The horizontal axis is the observation probability, 198 

representing pdet for the Model of Independent Observation (A, C, E) and psent for the Model of 199 

Size-Dependent Observation (B, D, F). 200 

 201 

Given that misdiagnosis underestimated the burden of P. knowlesi in this analysis, I assessed its 202 

effect on my estimates of transmission, 𝑅+!. Because misdiagnosis caused the average observed 203 

size of transmission chains to be less than the average true size of transmission chains, I 204 

consistently underestimated 𝑅+!, with the effect being more severe at lower 𝑅! (Fig. 2). For 205 

example, with an 𝑅! of 0.1 and assuming perfect observation of infections (i.e., 𝑝%&' and 𝑝(&$' 206 

equal to 1), my median 𝑅+! estimate was 1.9 x 10-4 (95% PPI: 2.0 x 10-5 – 2.9 x 10-3), 207 

corresponding to a 520-fold (34 – 4900) underestimate of transmission. Under an alternative 208 

scenario in which 𝑅! was 0.9, my median 𝑅+! was 0.26 (0.046 – 0.66), corresponding to a 3.5-209 

fold (1.4 – 19.4) underestimate in transmission.  210 

 My estimates of transmission were sensitive to the simulated observation probability, 211 

though the direction of the effect depended upon the assumed model of observation. For the 212 

model of independent observation, 𝑅+! estimates increased with increasing 𝑝%&', because the 213 

average observed size of transmission chains increased as more infections were observed (Fig. 2, 214 

left column). By contrast, 𝑅+! estimates decreased with increasing 𝑝(&$' for the model of size-215 

dependent observation (Fig. 2, right column). This counterintuitive effect can be explained by the 216 

observation that, if 𝑝(&$' is low, larger transmission chains have a greater probability that at least 217 
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one infection is a sentinel infection. This causes a bias in the size of the transmission chains that 218 

are observed at low values of 𝑝(&$', increasing the mean observed transmission chain size 219 

relative to that at higher values of 𝑝(&$' and thus inflating the 𝑅+! estimate.  220 

 221 

 222 

Figure 2. Effect of misdiagnosis and imperfect observation on estimates of transmission. The 223 

posterior median (blue line) and 95% posterior prediction interval (blue shaded region) of 224 

maximum-likelihood estimates of R0 are shown as a function of the observation probability. The 225 

observation probability represents pdet for the Model of Independent Observation (A, C, E) and 226 

psent for the Model of Size-Dependent Observation (B, D, F). The solid black denotes the true R0 227 

in each panel, and the grey lines denote two-to-five-fold underestimates of R0 in each panel.  228 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 16, 2021. ; https://doi.org/10.1101/2021.09.13.21263501doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.13.21263501
http://creativecommons.org/licenses/by/4.0/


 13 

 229 

 The underestimates of burden (Fig. 1) and transmission (Fig. 2) indicated that 230 

misdiagnosis of P. knowlesi may affect the statistical power to detect changes in transmission 231 

based on the size of observed transmission chains. To test this, I simulated changes in 232 

transmission and measured the statistical power to detect that change. I observed that, under 233 

scenarios in which 𝑅! increased by 0.9, data on 1,000 observed transmission chains provided 234 

only 10.3% power using an imperfect diagnostic method, compared to 100% if using a perfect 235 

diagnostic method (Fig. 3). At smaller increases in 𝑅!, data on observed transmission chain sizes 236 

obtained using an imperfect diagnostic method had effectively no power to detect a change in 237 

transmission. 238 

 239 
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 240 

Figure 3. Effect of misdiagnosis on the statistical power to detect changes in transmission. The 241 

statistical power (%) to detect an increase in transmission is shown as a function of the number 242 

of observed chains for a transmission increase (Δ𝑅!) of 0.1 (yellow), 0.5 (orange), and 0.9 (red). 243 

Solid lines and points represent an imperfect diagnostic method (i.e., LM) and the dotted lines 244 

represent perfect diagnosis (i.e., PCR).  245 

 246 

DISCUSSION 247 

Obtaining accurate estimates of transmission and burden is important for monitoring the 248 

emergence of infectious diseases. Previous studies have explored the extent to which incomplete 249 

observation of infections affects the estimates of transmission for such pathogens (1,2,7,11). In 250 
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this work, I built upon these studies by considering the effect of misdiagnosis on estimates of 251 

pathogen transmission and burden. Using the zoonotic P. knowlesi malaria as a case study, I 252 

found that misdiagnosis—independent of incomplete observation of infections—may cause us to 253 

underestimate the transmission and burden of pathogens with sub-critical dynamics and hinders 254 

effective, prospective monitoring of changes in transmission. 255 

 My results demonstrate that, for pathogens with sub-critical transmission, misdiagnosis 256 

leads to an underestimate of overall pathogen burden. Depending upon the 𝑅! simulated, I found 257 

that there could be as many as 86 misdiagnosed cases, on average, for each correctly diagnosed 258 

case of P. knowlesi, even when assuming complete observation of infections. This effect 259 

increased under select settings when the assumption of complete observation of infections was 260 

relaxed. The underestimation of burden due to misdiagnosis has the potential to shape our 261 

epidemiological understanding of an emerging pathogen. For instance, singleton cases of a 262 

zoonotic pathogen, such as P. knowlesi, are commonly assessed as dead-end spillover events 263 

from the zoonotic reservoir (17). However, my simulations suggest that such singleton cases 264 

could instead represent a broad range of epidemiological outcomes, spanning dead-end spillover 265 

events to larger transmission chains.  266 

 Due to its effect on observed pathogen burden, misdiagnosis contributed a downward 267 

bias in estimates of transmission. Except for scenarios in which the true simulated 𝑅! was close 268 

to one, my maximum-likelihood estimates of 𝑅! approached zero, representing situations in 269 

which we would incorrectly conclude that human-to-human transmission of the pathogen was 270 

unlikely to be occurring. For every scenario considered, the estimate of 𝑅! was less than the true 271 

value, indicating that bias due to misdiagnosis exceeds the competing positive bias from 272 

incomplete observation when assuming size-dependent observation (1). For pathogens such as P. 273 
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knowlesi, these simulation results suggest that, in settings where misdiagnosis is common, the 274 

extent of human-to-human transmission could be greater than previously thought. To date, it has 275 

been believed that nearly all cases of P. knowlesi in humans are caused by spillover from long-276 

tailed and pig-tailed macaques, the zoonotic reservoir (17). The lack of observed human-to-277 

human transmission may be explained by multiple factors, including low parasite densities in 278 

humans (16) and restricted vector habitat preference (15), and is supported by a lack of genetic 279 

diversity across human P. knowlesi infections (22). Nevertheless, human-to-human transmission 280 

of P. knowlesi has been demonstrated experimentally (23), and these results suggest that, if or 281 

when human-to-human transmission occurs, misdiagnosis could cause us to underestimate its 282 

magnitude.  283 

 Finally, I demonstrated that data on the sizes of transmission chains diagnosed using a 284 

diagnostic with realistic sensitivity would be insufficient to monitor changes in transmission. 285 

Even with 1,000 observed transmission chains, I calculated a power of only 10% to detect an 286 

increase in 𝑅! from 0.1 to 1. This empirical power calculation assumed complete observation of 287 

infections, so it represents an upper bound on the statistical power that we might expect if a 288 

diagnostic with realistic sensitivity was used. Therefore, more sensitive diagnostics, such as 289 

polymerase chain reaction, may be needed to detect changes in transmission that could result 290 

from pathogen evolution (24), among other factors (25–27). 291 

 This analysis is subject to a number of limitations. First, the conclusions that I reached 292 

were based upon simulated data only. I used simulations representative of P. knowlesi to 293 

illustrate possible outcomes that may occur due to misdiagnosis (19,20), yet I lacked empirical 294 

data on the distribution of transmission chain sizes for P. knowlesi. As such, this analysis is not 295 

estimating the true extent of human-to-human transmission of P. knowlesi. Second, methods 296 
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exist to account for incomplete observation of infections in estimates of R0 (11). However, as 297 

noted by Blumberg et al. (2), it is challenging to estimate the proportion of infections that are 298 

captured by the surveillance system. Consequently, these calculations were conditioned upon the 299 

assumption of complete observation and perfect diagnoses, so violations therein should be 300 

interpreted as the upper bound on the bias that would likely be observed. Finally, I considered a 301 

single pathogen in isolation, though misdiagnosis is commonly due to co-circulation of related 302 

pathogens (12,13,18). Accounting for the upward bias due to false-positive diagnoses from other 303 

pathogens and exploring the magnitude of this effect across epidemiological settings could be 304 

important directions for future work.  305 
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 313 

SUPPLEMENT 314 

Methods 315 

Mean Transmission Chain Size 316 

Complete Observation and Correct Diagnosis 317 

For a pathogen with sub-critical transmission dynamics, I modeled the number of offspring 318 

caused by a single infection through one generation of transmission as a negative binomial 319 
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distribution with mean 𝑅! and dispersion parameter 𝜅 (1,11). Therefore, it follows that 320 

transmission chains of size 𝑗 occur with probability, 321 

 322 

𝑟" =
Γ(𝜅𝑗 + 𝑗 − 1)
Γ(𝜅𝑗)Γ(𝑗 + 1)

?𝑅! 𝜅K @
"/*

L1 + ?𝑅! 𝜅K @M
0"1"/* .					(𝑆1) 323 

 324 

In eq. (S1), Γ(·) is the gamma function. Because 𝑅! < 1, the mean transmission chain size 𝜇 can 325 

be calculated as the mean of a geometric series with common ratio 𝑅! and is equal to *
*/2"

. 326 

 327 

Incomplete Observation and Imperfect Diagnosis  328 

In the case of P. knowlesi and many other pathogens, the size of transmission chains that are 329 

identified by a surveillance system will be affected by two factors. First, infections in a 330 

transmission chain may not present within the health system, due to a lack of symptoms or 331 

access to treatment. Second, infections in the transmission chain that do present within the health 332 

system may be misdiagnosed and thus inaccurately recorded within the surveillance system. 333 

Both factors will make the observed transmission chain appear smaller in size than the true 334 

transmission chain. Previous work by Blumberg and Lloyd-Smith (1) has quantified the effect of 335 

two models of incomplete observation on estimates of transmission and burden. Here, I build 336 

upon this work by integrating the effect of (mis)diagnosis of infections that occurs secondary to 337 

the observation of infections within the health system.  338 

 339 

Model of Independent Observation  340 
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The first model of incomplete observation and diagnosis assumes that each individual is subject 341 

to an independent probability 𝑝#$% equal to the product of observation probability, 𝑝%&', and the 342 

sensitivity of the diagnostic method, 𝑠𝑒. Therefore, the probability that we observe and correctly 343 

diagnose 𝑗 cases from a transmission chain is equal to  344 

 345 

𝑠", =O𝑟3 ∙ 7
𝑘
𝑗8 ∙ 𝑝#$%

" ∙ (1 − 𝑝#$%)3/"
4

35"

,					(𝑆2) 346 

 347 

where 𝑟3 is the probability that a transmission chain is of true size 𝑘, calculated using eq. (S1). 348 

The probability that a transmission chain is of observed size 𝑗 is equal to the normalized 349 

probability of 𝑠",, computed as  350 

 351 

𝑟", =
𝑠",

1 − 𝑠!,
.					(𝑆3) 352 

 353 

In eq. (S3), 𝑠!,  is the probability that a transmission chain is neither observed nor correctly 354 

diagnosed. Due to incomplete observation and misdiagnosis, the probability that a transmission 355 

chain is of observed size 𝑗, 𝑟",, is not equal to the probability that a transmission chain is of true 356 

size 𝑗, 𝑟". Finally, because each infection within the transmission chain is subject to an 357 

independent probability of observation and correct diagnosis, the probability 𝑝67( that a 358 

randomly sampled infection is observed and correctly diagnosed is equal to 𝑝#$%.  359 

 360 

Model of Size-Dependent Observation 361 
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The alternative model assumes that transmission chains are observed through a sentinel 362 

infection, such that, if the sentinel infection is observed, then all other infections in the 363 

transmission chain will be observed. Incorporating the effect of imperfect diagnosis, the 364 

probability that we do not observe a transmission chain of size 𝑗 is equal to  365 

 366 

𝑣" = (1 − 𝑝(&$')" + <1 − (1 − 𝑝(&$')"=(1 − 𝑠𝑒)" .					(𝑆4) 367 

 368 

In eq. (S4), the first term in the summation is the probability that none of the 𝑗 infections of the 369 

transmission chain are a sentinel infection, and the second term in the summation is the product 370 

of the probability that at least one infection is a sentinel infection (i.e., the probability that we 371 

observe the transmission chain) and the probability that all 𝑗 infections are misdiagnosed. Using 372 

eq. (S4), I calculated the probability that a transmission chain is neither observed nor correctly 373 

diagnosed as  374 

 375 

𝑠!, = O𝑟3 ∙ 𝑣3

4

35*

.					(𝑆5) 376 

 377 

The probability that a transmission chain is of observed size 𝑗 is then equal to  378 

 379 

𝑟", =
∑ 𝑟3 ∙ (1 − (1 − 𝑝(&$')3) ∙ ?3"@ ∙ 𝑠𝑒

" ∙ (1 − 𝑠𝑒)3/"4
35"

1 − 𝑠!,
,				(𝑆6) 380 

 381 
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and the probability that a randomly chosen infection is observed and correctly diagnosed is equal 382 

to  383 

 384 

𝑝67( =
∑ 𝑗 ∙ 𝑟" ∙4
"5* <1 − (1 − 𝑝(&$')"= ∙ 𝑠𝑒

𝜇 .						(𝑆7) 385 

 386 

Eq. (S7) accounts for the probability that non-sentinel infections are detected, a quantity that 387 

increases as a function of the transmission chain size.  388 

 389 

Mean Transmission Chain Size 390 

For both the model of independent observation and the model of size-dependent observation, the 391 

mean observed size of transmission chains is calculated as  392 

 393 

𝜇∗ =O𝑗 ∙ 𝑟",
4

"5*

=
𝑝67( ∙ 𝜇
1 − 𝑠!,

.					(𝑆8) 394 

 395 

Results 396 
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 397 

Figure S1. Effect of misdiagnosis and imperfect observation on the expected true pathogen 398 

burden assuming perfect diagnosis. The mean true transmission chain size (dots) and  95% CI 399 

(segments) are shown conditional upon on an observed transmission chain size of one (yellow), 400 

two (orange), or three (red) cases and an R0 of 0.1 (A,B), 0.5 (C,D), and 0.9 (E,F). The 401 

horizontal axis is the observation probability, representing pdet for the Model of Independent 402 

Observation (A, C, E) and psent for the Model of Size-Dependent Observation (B, D, F). 403 

 404 
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 405 

Figure S2. Effect of misdiagnosis and imperfect observation on the expected true pathogen 406 

burden when 𝜿 → ∞. The mean true transmission chain size (dots) and  95% CI (segments) are 407 

shown conditional upon on an observed transmission chain size of one (yellow), two (orange), or 408 

three (red) cases and an R0 of 0.1 (A,B), 0.5 (C,D), and 0.9 (E,F). The horizontal axis is the 409 

observation probability, representing pdet for the Model of Independent Observation (A, C, E) 410 

and psent for the Model of Size-Dependent Observation (B, D, F). 411 

 412 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 16, 2021. ; https://doi.org/10.1101/2021.09.13.21263501doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.13.21263501
http://creativecommons.org/licenses/by/4.0/


 24 

 413 

Figure S3. Effect of misdiagnosis and imperfect observation on estimates of transmission 414 

when 𝜿 → ∞. The posterior median (blue line) and 95% posterior prediction interval (blue 415 

shaded region) of maximum-level estimates of R0 are shown as a function of the observation 416 

probability. The observation probability represents pdet for the Model of Independent 417 

Observation (A, C, E) and psent for the Model of Size-Dependent Observation (B, D, F). The solid 418 

black denotes the true R0 in each panel, and the grey lines denote two-to-five-fold underestimates 419 

of R0 in each panel.  420 

 421 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 16, 2021. ; https://doi.org/10.1101/2021.09.13.21263501doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.13.21263501
http://creativecommons.org/licenses/by/4.0/


 25 

 422 

Figure S4. Effect of misdiagnosis on the statistical power to detect changes in transmission 423 

when 𝜿 → ∞. The statistical power (%) to detect an increase in transmission is shown as a 424 

function of the number of observed chains for a transmission increase (Δ𝑅!) of 0.1 (yellow), 0.5 425 

(orange), and 0.9 (red). Solid lines and points represent an imperfect diagnostic method (i.e., 426 

LM) and the dotted lines represent perfect diagnosis (i.e., PCR).  427 
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