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Abstract 

Background 

Testing for ‘recent HIV infection’ is common in surveillance, where only population-level 

estimates (of incidence) are reported. Typically, ‘recent infection’ is a category, obtained by 

applying a threshold on an underlying continuous biomarker from some laboratory assay(s). 

Somehow interpreting the biomarker values obtained for individual subjects, for example 

interpreting them as estimates of the date of infection, has obvious potential applications in the 

context of studies of early infection, and has also for some years attracted significant interest as 

an extra component of post-test counselling and treatment initiation. The applicable analyses 

have typically run aground on the complexity of the full biomarker growth model, which is in 

principle a non-linear mixed-effects model of unknown structure, the fitting of which seems 

infeasible from realistically obtainable data. 

Methods 

It is known that to estimate Mean Duration of Recent Infection (MDRI) at a given value of the 

recent/non-recent -infection discrimination threshold, one may compress the full biomarker 

growth model into a relation capturing the probability of a recent test result as a function of time 

since infection. Noting that the time-derivative (gradient) of this curve (for a value of threshold – 

ℎ) is identical to the formal likelihood relevant to Bayesian inference of the infection date, for a 

subject yielding an assay result * ℎ * on the date of their first positive HIV test. This observation 

bypasses the need for fitting a complex detailed biomarker growth model. Using publicly 

available data from the CEPHIA collaboration, we calculated curves for a range of thresholds for 

the Sedia Lag assay and performed Bayesian inference of infection data, given a uniform prior 

implied by a last negative and first positive test. 

Results 

We demonstrate the generation of posteriors for infection date, for patients with various delays 

between their last negative and first positive HIV test, and a range of LAg assay results (ODn) 

hypothetically obtained on the date of the first positive result. 
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Conclusion 

Depending on the last-negative / first-positive interval, there is a range of ODn values that yields 

posteriors significantly different from the uniform prior one would be left with based merely on 

interval censoring. Hence, a LAg ODn obtained on the date of, or soon after, diagnosis contains 

potentially significant information about infection dating. It seems worth analysing other assays 

with meaningful dynamic range, especially tests already routinely used in primary HIV diagnosis 

(for example chemiluminescent assays and reader/cartridge lateral flow tests which admit 

objective variable line intensity readings) which have a sufficient dynamic range that 

corresponds to a clinically meaningful range of times-since-infection that are worth 

distinguishing from each other.  
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Introduction 

 

There are many reasons to want to establish timelines of infection and disease progression in 

patients, across a variety of diseases. In the case of HIV, which is our current application, 

estimating the time of infectious exposure can assist in further investigations within studies of 

early pathogenesis, and also support difficult conversations during post test counselling, which 

touch on such sensitive matters as where and when one may have become infected, and whom 

one may have put at risk.  

 

It is understood that such estimates, based on laboratory assays, will always be subject to 

significant uncertainty, most notably from inter subject variability of biological processes, but it 

seems important to formally assess what is and is not possible, given current biomarkers which 

provide some sort of calibratable clock for post-infection time. Numerous HIV infection 

biomarkers of this kind have been identified [1–4] though they are almost exclusively used for 

surveillance purposes. Despite their increasing use in clinical diagnosis [5], the use of infection-

dating markers in individuals remains somewhat controversial – in part because of the lack of a 

systematic framework for the interpretation of such data. 

 

One of the few well-known schemes for making some estimate of the stage or timing of 

infection, usually called the Fiebig staging system, provides for a number of categorical stages 

post infectious exposure, defined by various combinations of test positivity and test negativity of 

assays of varying detection sensitivity during early stages of viral replication and immune 

system response [6]. Most of the laboratory assays used to define these ‘Fiebig Stages’ are no 

longer routinely available, given the rapid evolution of the diagnostic industry, and so the original 

estimates of the location in time, relative to infectious exposure, of these stages are of limited 

practical application.  

 

Recently, the underlying logic and statistical consistency of the concept of test-discrepancy 

have been more carefully elucidated by Grebe et al [6], leading to a generalisation of the Fiebig 

staging scheme. This generalisation provides for a flexible family of test-discordant states 

whose temporal meaning can be made precise with widely accessible data, which has also 

been curated for the benefit of potential users [7]. The notion of categorical infection ‘stages’ 

implies estimates of infection dates which are almost uniform probability/confidence distributions 

within boundaries set by test dates, with offsets implied by typical ‘diagnostic delays’ of the 

relevant tests [8]. In other words, while the ‘edges’ are not sharp, complete knowledge of last 

negative and first positive tests (ideally, but not necessarily, from different tests performed on 

the same date) is equivalent to the estimation of an interval in which infection is almost certainly 

located. Beyond the not entirely perfect boundaries of these intervals, there is little information, 

in such a scheme, about when, within that interval, infection is more likely to have occurred. 

 

In order to go beyond these almost ‘pure interval’ estimates, the most obvious idea is to use the 

dynamic range of the biomarkers to hand, and to attempt to calibrate some informative dynamic 

range of values of these markers, to serve as some kind of approximate clock. While, as noted 

above, there is now increasing use of recent infection testing in clinical contexts, this is still 

largely based on categorical interpretation using some threshold [9,10], the choice (and not very 

clearly spelled out meaning) of which is informed from application to surveillance.  
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We adopt, according to Grebe et al 2016 [8] and Facente et al 2020 [11], the notion of 

‘Estimated Date of Detectable Infection’ (EDDI), by which we mean the date at which the 

infection in a particular individual would first have been detectable, using a particular diagnostic 

algorithm being applied. (it has previously been used to specifically imply diagnosis by a 

sensitive viral load assay with a diagnostic threshold of one copy per ml of blood.) We will treat 

this, heuristically, as if it were the infection date, and thus avoid repeated cumbersome 

reference to the details of the formal procedure for incorporating the notion of assay-specific 

‘diagnostic delays’ [8]. In the present context, these (heuristically bluntly interval censored) 

estimates are in any case merely used as Bayesian priors of infection date estimates, which 

precede knowledge of the continuously variable recency biomarker values.   

 

In the present work, we demonstrate a simple approach, informed by precise formal statistical 

arguments, to generate continuously variable infection date estimates, when a sufficiently well 

characterised continuously variable infection marker is available from a test performed at or 

around the time of first objective evidence of infection.  

 

Our investigation is substantially inspired by our work in using markers of infection timing to 

support surveillance – in particular incidence estimation. As we recycle not just the intuition 

about biomarkers developed for that purpose, but also analytical concepts, we briefly recap that: 

 Incidence surveillance using markers of ‘recent infection’ is based on the heuristic that a 

large ‘prevalence’ of a categorically defined ‘recent infection’, among HIV positive 

respondents in a survey, is an indication of high incidence in a time window preceding 

the survey. 

 This idea has been made precise by the work of Kassanjee et al 2012 [12], which 

defines the key concepts and analytical relationships that are required. 

 A logically valid recent infection test can essentially be constructed from almost any 

continuous biomarker with a reasonable dynamic range post infection / initial 

detectability of infection. 

 Whether a test for recent infection is usefully statistically informative of HIV incidence 

depends in considerable detail on many factors, including context, limitations of survey 

size, etc. but also, crucially, on the two key performance characteristics of the test 

(understood to be comprised of one or more assays, with rules for dichotomising the net 

result into recent infection versus non-recent infection): 

o The Mean Duration of Recent Infection (MDRI) is the mean time which 

individuals spend exhibiting the ‘recent’ range of the biomarker(s) employed in 

the test for recent infection. There is nominally a time cutoff, 𝑇, which is required 

to define the upper limit of ‘valid’ recent results – one of several fine points of 

statistical bookkeeping. The MDRI captures mainly the biology of early 

pathogenesis, and, in order for the recency test to be truly useful, should not 

have much variation between contexts. 

o The False Recent Rate (FRR) is the proportion of individuals who, despite being 

infected for longer than the time cut off 𝑇, nevertheless are classified as ‘recent’ 

by the laboratory procedures used to define that. At least for surveillance 

purposes, for this to be a tolerable feature of the test, the FRR should be very 
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small (less than one percent), though it is expected to inevitably vary between 

contexts. 
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Methods 

In this analysis, we use publicly available data for the Sedia LAg assay published as part of 

Sempa et al 2019 [3]. From the 2424 samples in the CEPHIA Evaluation Panel, we used 928 

unique samples, with a wide range of times since infection, mostly infected with HIV-1 subtype 

B (51%), C (28%), A1 (12%), and D (6%). The panel contains specimens from ART-suppressed 

individuals and the majority of subjects (68%) had sufficient clinical background data to produce 

Estimated Dates of Detectable Infection (EDDIs). These are infection time ‘point estimates’ 

accompanied by plausible intervals of first detectability, obtained by systematically interpreting 

diverse diagnostic testing histories according to the method previously described [8].   

Laboratory procedures 

The CEPHIA Evaluation Panel was tested with the Sedia™ HIV-1 Limiting Antigen Avidity EIA 

(LAg) assay [13]. The LAg assay is microtitre-based with the solid phase of the microtitre plate 

coated with a multi-subtype recombinant HIV-1 antigen. This antigen is coated in a limiting 

concentration to prevent crosslinking of antibody binding, making it easier to remove weakly-

bound antibody. Specimen dilutions are incubated for 60 minutes and then a disassociation 

buffer is added for 15 minutes to remove any weakly-bound antibody. A goat anti-human, 

horseradish peroxidase (HRP)-conjugated IgG is added and this binds to any remaining IgG; a 

tetramethylbenzidine substrate is added and a colour is generated which is proportionate to the 

amount of HRP. An optical density (OD) is measured for each sample and then normalized by 

the use of a calibrator specimen. On each plate, the calibrator is tested in triplicate, with the 

median of the three ODs used to normalize specimen readings, producing normalized optical 

density (ODn) measurements. The Sedia LAg testing procedure requires that specimens 

producing an initial ‘screening’ OD of ≤2.0 be subjected to triplicate confirmatory testing. 

Statistical analysis 

The key point of the present analysis is to demonstrate 

 how it is possible to perform a fully-fledged Bayesian inference of infection date, for 

subjects who are newly diagnosed at a known time after a last negative diagnostic test 

result,  

if,  

 on or near the date of the first positive diagnosis, there is also a result from a well 

characterised and calibrated continuous biomarker assay with a ‘sufficient’ dynamic 

range.  

 

The fundamental requirements for performing a Bayesian analysis are: 

 A ‘prior’ distribution of the target variable, i.e. a distribution governing what is known 

about the target variable, even before the particular context-specific crucial 

experimental result is known. 

 A fully specified ‘likelihood’ function, which gives the probability (or probability density, 

for continuous variables) of the biomarker, given a hypothetical value of the target 

variable (for example, probability density of obtaining a LAg ODn value ℎ, given that the 

subject has been infected for time 𝑡).  

 

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 21, 2021. ; https://doi.org/10.1101/2021.09.13.21263495doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.13.21263495
http://creativecommons.org/licenses/by-nc/4.0/


7 

In the present case, as we are interested in someone about whom it is initially known that they 

had a most recent negative test at some time, and a first positive diagnosis some time 

thereafter, the prior distribution on infection time is (almost) just the interval between the last 

negative and first positive test. To be more precise, there is an offset at each end (not 

necessarily the same amount – a subtle point explained elsewhere [8]) to account for ‘diagnostic 

delay’ – i.e. typical, delay, given the applicable diagnostic algorithm, between infection 

(infectious exposure) and algorithm-specific detectability of infection. 

 

We are not aware that the analysis which follows, to calculate the likelihood, has been 

previously presented, though there have been numerous efforts to summarise biomarker 

progression into what would traditionally be formally called (non-linear, probably) ‘mixed effects 

models’. This is a technical way of saying that: 

 The biomarker follows some potentially complex function over time 

 The ultimate biomarker values attained by a laboratory assay would additionally have 

some kind of measurement noise. 

 The biomarker ‘trajectory’ is different for different people 

 Individual ‘trajectories’ can be simulated via a specific functional form, with parameters 

(scale and shape parameters, asymptotes, etc.) drawn from certain distributions. 

This is indeed a very broad family of behaviours, and it is logically sufficient to describe an 

arbitrarily complex biomarker. It also leads to severe (we suspect, unsurmountable) challenges 

to those wishing to fit the parameters of an appropriate functional form to available data. 

Certainly, if a fully specified model of biomarker growth were somehow available, it would 

provide a fully specified likelihood function, in the sense that this model would determine the 

probability (density) of attaining a biomarker result ℎ, at some time 𝑡 post infection. The fully 

specified model would also implicitly specify many other things, including correlations between 

measurements from an individual via samples taken at particular (different) times. We show 

below that because we require just likelihood of obtaining a single observation, and are not 

currently interested in a larger complex set of statistical metrics, we do not need the full 

biomarker evolution model! 

 

In order to estimate the MDRI (see above) at a given value of the recent/non-recent -infection 

discrimination threshold, one can in principle:  

 obtain a fully specified biomarker regression model (though, as noted above, this is no 

small task, and may actually not be possible in practice) 

 perform the relevant integrations over all possible realisations of the biomarker value at 

a time 𝑡 post infection, and hence 

 derive the mean time which individuals spend displaying the ‘recent’ range of values.  

 

Given the keen interest in estimates of MDRI for various biomarkers, for the purpose of 

estimating HIV incidence, there has been some investment of thought in how to circumvent 

reliance on a detailed, difficult-or-impossible-to-obtain, biomarker progression model. It has 

been shown Kassanjee et al 2017 [14] that one may robustly estimate an MDRI (for a given 

assay and specified value of the recent/non-recent threshold, ℎ) by empirically compressing the 

full biomarker growth model into a relation capturing just the probability of obtaining a recent (vs 

non-recent) test result, as a function of time since infection. This function has previously been 

denoted 𝑃𝑟(𝑡|ℎ), and it can be fitted, without much fanfare, to data of the kind that is in fact 
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available from studies which have intensively followed up individuals in the weeks and months 

post diagnosis.  

 

Typically, the raw data from such studies provides numerous observations (recency test results) 

of people who have a last negative diagnostic test not too long before a first positive test, 

making the time of infection known with reasonable precision (typically locating the time of 

infection within a window of a several weeks). The recency test results are prototypically based 

on continuously variable values of some underlying biomarker, which is reduced to a 

recent/non-recent verdict by use of a threshold.  

 

For each threshold value, ℎ, of interest, one needs to perform the dichotomisation of the 

recency marker data, and then perform some sort of bionomial regression which leads to a (in 

practice, parametrized) function 𝑃𝑟(𝑡|ℎ). Mathematically, this is just a function of two variables - 

ℎ and 𝑡. To produce this function with a reasonable level of ‘resolution’ we need to merely pick a 

sufficiently narrowly spaced set of values of ℎ, and perform the fitting procedure for each of 

these recent/non recent thresholds. Now we note that:  

 a likelihood density is nothing more than the derivative of a cumulative likelihood 

 the function 𝑃𝑟(𝑡|ℎ), read as a function of ℎ, is the probability of obtaining values below 

ℎ, at time 𝑡. 

 so the likelihood density of obtaining biomarker values near ℎ, at time 𝑡 post infection, is 

given by 𝐿(ℎ|𝑡) =
𝜕

𝜕ℎ
𝑃𝑟(𝑡|ℎ) 

Given the construction of 𝑃𝑟(𝑡|ℎ), the variation in the 𝑡 direction can be obtained analytically 

from the parametrisation of the fitting procedure. However, the required derivative is with 

respect to ℎ, and variation in the ℎ direction is not analytically available, since the function is 

fitted separately for each value of ℎ. This is merely a numerical problem, and there are in 

practice many ways to obtain these derivatives with sufficient numerical smoothness in order to 

produce plots of the likelihood, and posteriors.  

 

We obtained a family of 𝑃𝑟(𝑡|ℎ) functions using a binomial regression with a logit link function 

and up to cubic terms in time. We stored the fitted parameters for various values of LAG ODn 

threshold, ℎ, from 0.1 to 4, in steps of 0.01. We want to evaluate likelihood densities some 

combination of ℎ0 (the observed ODn which forms the basis of an infection time estimate) and 𝑡 

(which takes various values in the range of plausible times-since-infection). To do this, we  

 look up the precomputed values 𝑃𝑟(𝑡|ℎ) at the target value of 𝑡, for the nearest four 

stored values of ℎ (nearest ℎ0).  

 fit 𝑃𝑟(𝑡|ℎ) as a cubic spline in the 𝒉 direction, and  

 evaluate the derivative, with respect to ℎ, of this fitted spline, at ℎ0. 

This provides fast and smooth evaluation of the likelihood densities which are required to 

perform the infection time inference. 

 

In order to demonstrate the application to infection time inference, we considered hypothetical 

newly diagnosed individuals with a range of intervals between a last negative and first positive 

diagnostic test. In practice, there is a delay between infectious exposure and detectability of 

infection, but this is a point which we do not consider in detail here – it will merely require adding 

(usually slightly different) offsets on each end of the interval over which the bayesian ‘prior’ for 
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infection time is taken to be uniform. Then, adding the recency marker value as the critical 

additional information, and using the likelihood density constructed as outlined, we obtain 

posteriors, which in this case (uniform priors) are simply the correctly normalised likelihood 

densities. 

 

Statistical analysis was done using R, version 4.0.2 (R Foundation for Statistical Computing, 

Vienna, Austria) 
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Results 

Figure 1 shows, as a scatterplot, the values of ‘time since EDDI’ and Sedia LAg Avidity 

normalised optical density (ODn) for the specimens in the CEPHIA evaluation panel data set 

which were used for the present analysis. The clustering in the time direction not surprising, and 

arises from the estimation of EDDI as the midpoint of the (often whole months) interval between 

last negative test and first positive diagnostic test. 

 

Figure 1: Distribution of ODn vs days since EDDI of CEPHIA evaluation panel specimens from 

subejcts who were HIV positive, ART-naïve and non-elite controllers. 

 

Figure 2 shows 𝑃𝑟(𝑡) curves for the LAg assay, out to 600 days, for a range of threshold to 

define recent infection. At lower ‘recency’ thresholds, the 𝑃𝑟(𝑡) curves approach zero 

convincingly, while for higher ODn values (roughly ODn >2) they clearly do not approach zero.  

 

Figure 2: Probability of exhibiting the recent marker as a function of time since detectable 

infection. 

 

Using the logic described in the methods section, we transformed the 𝑃𝑟(𝑡) curves into 

likelihoods. Figure 3 captures these likelihoods through the lens of percentile ‘growth curves’ for 

Sedia LAg ODn, which can be read much as one reads baby growth curves for height and 

weight, for example. Given a value of time since infection (X axis), a vertical slice through the 

percentile curves indicates what percentage of subjects’ ODn values lie below the Y values of 

the contours as they cross the chosen X value. These growth curves are one obvious way one 

might interpret/present ODn values obtained at the date of first diagnosis. However, this is still a 

fundamentally frequentist presentation, telling us the probabilities of seeing various values of 

ODn, given a time since infection, without telling us the probabilities of hypothetical values of 

time since infection, given an ODn. Hence, we find the Bayesian posterior approach more 

appealing. 

 

Figure 3: Percentile curves generated from probability of exhibiting the recent marker as a 

function of time since detectable infection--𝑃𝑟(𝑡). 

 

In Figure 4, we present the posterior density for a selection of values of ODn (0.2, 0.3, 0.5, 1.5 

and 4) obtained on the day of first positive test, for different inter-test intervals (50, 100, 300 and 

600 days). In each case, the EDDI point estimate is the midpoint of the inter-test interval. As 

expected, not all values of ODn are equally informative, and the value of the ODn data varies 

significantly with the inter-test interval. Note that in our case, where the prior distribution is 

always uniform, the shape of the posteriors is always the same as the likelihood itself, 

viewed/sliced as a function of time since infection. The families of curves look slightly different 

between the panels of figure 4 because in each case we normalise the posterior sensibly to 

provide a cumulative probability of 1 over the inter-test interval. Figure 5 applies to the same 

scenario as panel D in Figure 4, but reveals a little more detail through the inclusion of a few 

additional values of ODn.  
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Figure 4: Posterior distribution of various ODn values and inter-test intervals of last negative 

and first positive HIV test, i.e. 𝐿(ℎ|𝑡). Legend: A—inter-test interval of 50 days; B— inter-test 

interval of 100 days; C—inter-test interval of 300 days; D— inter-test interval of 600 days. 

 

Figure 5: Posterior distribution of various ODn values for an inter-test interval of 600 days. 

 

Note that not all posteriors have a well-defined mode inside the sensible range of values. This 

merely captures that for some situations there is no internal ‘most likely’ region for the infection 

date – it is merely increasingly likely to lie ever further to one side, within the limits sets by the 

diagnostic tests.   
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Discussion 

Our ‘efficient’ derivation of the likelihood density, which is the crux of infection date estimation 

procedure, is nothing more than a usually neglected interpretation of constructs which have long 

been routinely used to estimate MDRI for putative recent infection tests. It does not rely on any 

special or controversial assumptions. Whether there is sufficient data to estimate this likelihood 

density without significant parametric artifacts will be a question that must be investigated for 

any particular biomarker intending to be used in infection timing estimates of the kind we are 

proposing here. For previously described markers such as the Sedia LAg avidity assay, and 

numerous others which have been well studied by both an original developer and an 

independent laboratory [1–4], it seems clear that sufficient data is available to use the proposed 

method outlined here for estimating infection dates. 

 

Given a particular biomarker, we believe that the fundamental analysis developed here presents 

the most efficient/informative extraction of infection date posteriors that one can hope for. How 

useful these estimates are, in practice, will depend on a number of details which we do not 

claim to be investigating at the present time. In particular: 

 We propose that there be some qualitative investigation into how either the ‘percentile 

curves’ or the ‘posterior infection date’ estimates can be used in clinical settings, to 

ascertain how patients and healthcare providers understand and value this information, 

and hence to propose meaningful guidelines for clinicians to speak about them. 

 Details of biological studies and early intervention trials will determine how significantly 

more useful the fully developed posterior estimates are, compared to the priors obtained 

by the post Fiebig interval censoring of Grebe et al 2019 [8]. 

 

Given that the statistical ‘heavy lifting’ is done once, up front, when fitting 𝑃𝑟(𝑡|ℎ) for various 

values of ℎ, the computational effort involved in generating these estimates for individual 

patients is very modest. If there is sufficient interest, such as for a serious study of utility in a 

clinical context, it will be easy to develop browser based code (such as using the R-shiny 

framework) which requests  

 the last-negative / first positive test interval,  

 (optionally) the specification of the diagnostic tests, or their mean ‘diagnostic delays’, 

and  

 the specification, and value, of the recency marker obtained at or near the time of first 

diagnosis 

and, from this information, generates the infection date posterior, possibly with some annotation 

like specific percentile ranges, etc. 

 

Despite the hesitancy in some quarters about using recent infection tests for individual level 

rather than population level testing [15], we note that it is increasingly being done, and will 

continue to be done, whether or not there is consensus on its meaning and appropriate use. We 

would argue that the formalisation of Bayesian infection date estimates, which we have 

developed here, is a crucial component of a rational discussion about such applications.  
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