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ABSTRACT 32 

Biological and translational insights from large-scale, array-based genetic studies of fat distribution, a key 33 

determinant of metabolic health, have been limited by the difficulty in linking identified predominantly 34 

non-coding variants to specific gene targets. Rare coding variant analyses provide greater confidence that 35 

a specific gene is involved, but do not necessarily indicate whether gain or loss of function would be of 36 

most therapeutic benefit. Here we use a dual approach that combines the power of genome-wide analysis 37 

of array-based rare, non-synonymous variants in 184,246 individuals of UK Biobank with exome-sequence-38 

based rare loss of function gene burden testing. The data indicates that loss-of-function (LoF) of four genes 39 

(PLIN1, INSR, ACVR1C and PDE3B) is associated with a beneficial impact on WHRadjBMI and increased 40 

gluteofemoral fat mass, whereas PLIN4 LoF adversely affects these parameters. This study robustly 41 

implicates these genes in the regulation of fat distribution, providing new and in some cases somewhat 42 

counter-intuitive insight into the potential consequences of targeting these molecules therapeutically.  43 

 44 

Word count: 161  45 
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INTRODUCTION  46 

Fat distribution is a heritable trait, commonly estimated by the relative amounts of waist and hip fat (waist-47 

to-hip ratio, WHR) for a given body size. Genetic mechanisms linked to either relatively lower 48 

gluteofemoral or higher abdominal fat or both, have been shown to contribute to a greater WHR and its 49 

consistently adverse cardiometabolic consequences (1). Genome-wide array-based association studies have 50 

robustly identified many loci linked to WHR but thus far provided relatively limited biological and 51 

translational insights due to poor coverage of rare protein-coding variants and uncertainties connecting 52 

associated non-coding variants to functional genes (2, 3). Consequently, very few genes have been 53 

definitively linked to WHR and it is generally unknown whether a gain or loss of gene function is likely to 54 

drive observed associations.  55 

The low frequency of rare (minor allele frequency [MAF] <0.5%, as defined by the 1000 Genomes Project 56 

(4)) functional variants which may have sizable effects on the encoded protein, may be a consequence of 57 

selective pressure acting against them,  and previous studies have shown inverse relationships between 58 

allele frequency and effect size for complex traits (5, 6). Rare variants that occurred recently are also likely 59 

to be in low linkage disequilibrium (LD) with nearby common variants, facilitating fine-mapping and 60 

identification of causal variants and genes (7). However, rare variants are difficult to impute (8) so their 61 

study requires large, homogeneous samples and direct genotyping. To date, the vast majority of studies 62 

have explored the contribution of common variants in relation to WHR including the largest meta-analysis 63 

of imputed genome-wide association studies which included up to 694,649 individuals but only identified 64 

two variants at MAF 0.1-0.5% (3). The only other study which investigated the role of rare variants for 65 

WHR was a subsequent trans-ethnic Exomechip effort that identified 9 low frequency or rare variants with 66 

a lowest MAF of 0.1% (9).  67 

The contribution of the full spectrum of rare variants to WHR using sequence data has not been studied, 68 

yet has the potential to provide a more direct link between gene and phenotype, and to facilitate translation 69 

from gene identification to drug development. Whilst the identification of coding variants in a specific gene 70 

clearly increases confidence in linking that particular gene to a trait, the impact of individual coding variants 71 

can still be very, or at least relatively, subtle.  Individual variant testing, even using exome sequencing data 72 

in large populations, therefore still provides limited power and leaves residual uncertainty about the benefits 73 

of gain or loss of function of a particular gene. Exome wide scans of gene-based burden of rare loss-of-74 

function variants have the potential to address this limitation (10-14). In this study, we use a dual approach 75 

that combines the power of large-scale genome-wide analysis of array-based rare, non-synonymous variants 76 

with exome-sequence-based rare gene burden testing to identify the putative function of variants, genes and 77 
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pathways regulating body shape and fat distribution (assessed by BMI-adjusted WHR [WHRadjBMI]) and to 78 

determine their effects on body composition and metabolic health.  79 

RESULTS 80 

A genome-wide analysis of directly genotyped, rare (0.1%≤MAF≤0.5%) non-synonymous variants 81 

associated with WHRadjBMI at p<5×10-8 in 450,562 European ancestry individuals from  UK Biobank 82 

identified lead variants in PLIN1 p.L90P (rs139271800, EAF=0.1%), PDE3B p.R783X (rs150090666, 83 

EAF=0.1%), ACVR1C p.I195T (rs56188432, EAF=0.2%), CALCRL p.L87P (rs61739909; EAF=0.3%), 84 

ABHD15 p.G147D (rs141385558; EAF=0.2%) and PYGM p.R50X (rs116987552, EAF=0.4%) (Figure 1, 85 

Supplementary Table 1). We observed a correlation of 0.99 and minor allele concordance of 0.99 comparing 86 

genotyped to whole-exome sequenced rare (0.1≤MAF≤0.5%) non-synonymous variants when testing the 87 

validity of rare, genotyped variants using exome-sequencing data from the overlapping samples 88 

(Supplementary Table 2).  89 

Sex-differences in genetic effects of rare variants on WHRadjBMI  90 

Common variant analyses have provided evidence of differences in genetic associations with fat distribution 91 

between men and women (3). In line with this, we found evidence of significant sex interactions, with 92 

stronger genetic effects in women, compared to men for all lead variants, except for ACVR1C p.I195T and 93 

PYGM p.R50X (Table 1). We therefore conducted sex-specific analyses which revealed two additional 94 

variants, PLCB3 p.V806I (rs145502455, EAF=0.4%) and FNIP1 p.R518Q (rs115209326, EAF=0.3%) to 95 

be genome-significant in (p<5×10-8) in women, with no effect in men (Table 1, Supplementary Table 1). 96 

No variants reached genome-wide significance in men only. 97 
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 98 

Figure 1. Miami plot for sex-combined and sex-specific single marker association results for WHRadjBMI. Top:  99 
Manhattan plot representing results from the main, sex-combined GWAS for WHRadjBMI for genotyped, rare non-100 
synonymous variants (0.1%≤MAF≤0.5%, correlation and rare allele concordance >0.9 when compared to the exome 101 
sequencing data). Gene annotations for the genome-wide significant variants from the main, sex-combined analyses 102 
are shown in black; gene annotations and significance from the main, sex-combined analyses for variants that were 103 
genome-wide significant in sex-specific analyses (women) only are shown in red. Bottom: Sex-specific significance 104 
of the variants highlighted above.  105 

 106 

Table 1: Sex-stratified results for variants identified in joint and sex specific analyses of genotyped rare variants 107 
in UK Biobank. Unshaded rows present results discovered from the sex-combined analysis and grey shaded rows 108 
represent results from variants identified only in the sex-stratified (women) analysis. Abbreviations: p value Women, 109 

Variant rsID 

Sex 

interaction 

p value 

p value  

Women 

p value  

Men 

Beta 

Women 

Beta 

Men 

SE 

Women 

SE 

Men 
 

PLIN1 p.L90P rs139271800 4.07×10-3 1.90×10-13 4.50×10-3 -0.273 -0.126 0.039 0.042  

PDE3B p.R783X rs150090666 5.66×10-5 1.00×10-19 4.10×10-2 -0.392 -0.102 0.042 0.048  

ACVR1C p.I195T rs56188432 3.61×10-1 1.10×10-8 3.40×10-4 -0.16 -0.109 0.028 0.032  

CALCRL p.L87P rs61739909 4.30×10-3 4.30×10-13 2.50×10-3 -0.171 -0.082 0.024 0.026  

ABHD15 p.G147D rs141385558 4.53×10-3 3.40×10-10 3.80×10-2 0.168 0.057 0.026 0.029  

PYGM p.R50X rs116987552 3.56×10-1 2.90×10-4 5.40×10-5 0.079 0.095 0.021 0.024  

PLCB3 p.V806I rs145502455 2.34×10-2 1.60×10-10 2.00×10-1 0.126 0.029 0.021 0.024  

FNIP1 p.R518Q rs115209326 6.09×10-4 4.80×10-9 8.40×10-1 -0.128 -0.003 0.023 0.026  
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BOLT LMM p-value in women; p value Men, BOLT LMM p-value in men; Beta Women, effect size in women; Beta 110 
Men, effect size in men; SE Women, standard error in women; SE Men, standard error in men. 111 

Genomic context and fine-mapping analyses 112 

We found strong statistical evidence for causal associations of rare non-synonymous variants in PLIN1, 113 

PDE3B, ACVR1C and CALCRL (Supplementary Note 1, Supplementary Table 3, Supplementary Figure 1) 114 

through conditional analysis and fine-mapping, whereas genomic context analyses did not support the 115 

causality of the identified rare lead variants in ABHD15 or PYGM from the joint (sex-combined) analysis, 116 

and of PLCB3 and FNIP1 in the women-only analysis (Supplementary Note 2, Supplementary Table 4). 117 

Bioinformatic analysis of these variants strongly predicted that the PDE3B variant p.R783X would truncate 118 

PDE3B within the catalytic site, impairing PDE3B catalytic activity if expressed (Supplementary Note 3), 119 

whereas predictions of the functional impact of the PLIN1, ACVR1C and CALCRL variants were less 120 

conclusive (Supplementary Note 3). 121 

Exome-sequenced based burden testing of rare, loss-of function variants 122 

Next, we considered the genes identified in the single variant analysis for exome-sequence-based gene rare 123 

LoF and missense burden testing in 184,246 individuals in UK Biobank (see Methods, Gene-based 124 

association testing) and found that PLIN1, PDE3B, ACVR1C, and CALCRL were all significantly associated 125 

with lower WHRadjBMI at a Bonferroni corrected threshold (p<0.0125). Predicted loss of function (pLoF) 126 

variants showed the most significant association for PLIN1 and PDE3B, moderate impact variants for 127 

CALCRL, and the combination of pLoF with moderate impact variants for ACVR1C (Supplementary Table 128 

5). 129 

In order to identify additional genes where loss of function may regulate fat distribution, we extended this 130 

approach to a hypothesis free, exome-wide analysis (p<2.53×10-6) for WHRadjBMI using more stringent 131 

quality control (QC) parameters (see Methods). This identified PLIN4 and INSR in at least one of the variant 132 

categories (see Methods), in addition to PLIN1, ACVR1C and PDE3B (Figure 2, Supplementary Table 6). 133 

PLIN4, INSR and PDE3B all showed significantly larger standardized effect sizes for women compared to 134 

men (p<0.05) in gene-based analyses, in line with the single marker results (Supplementary Table 7).  135 
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 136 

Figure 2. Gene-based association results. Gene-based exome-wide discovery results for WHRadjBMI. The horizontal 137 
dashed line represents the exome-wide significance threshold (p=2.53×10-6).  138 

 139 

While the joint effect of rare LoF variants in PLIN4 (65 variants, 1,065 carriers) was associated with a 140 

higher WHRadjBMI (Beta = 0.16 [0.10 – 0.22], p=5.86×10-7), the combination of rare LoF variants in PLIN1 141 

(31 variants, 393 carriers) was associated with a lower WHRadjBMI, (Beta = -0.27 [-0.17 – -0.36], p=9.82×10-142 

9) (Supplementary Table 6). The lead PLIN1 LoF variant (PLIN1 p.T338DfsX51, rs750619494) is predicted 143 

to result in a frameshift from amino acid 338 with a premature stop at amino acid 388, though it may well 144 

be subject to nonsense mediated RNA decay. Several additional PLIN1 variants are similarly expected to 145 

result in early truncations or nonsense mediated RNA decay (Supplementary Table 8). In either instance, 146 

these variants are expected to impair Plin1 interaction with ABHD5 and thus it’s regulation of adipose 147 

triglyceride lipase (ATGL) (15). In the case of PLIN4 (p.Q372X, rs201581703), the variant list also included 148 

early frameshift/premature stop variants predicted to result in nonsense mediated RNA decay. 149 

We next assessed phenotypic associations with refined measures of fat distribution and cardiometabolic 150 

parameters and diseases. Bioelectrical Impedance Analysis (BIA) derived body fat compartment 151 

measurements (16) showed that PLIN4 (pLoF) was associated with higher android and trunk fat, and lower 152 

gynoid and leg fat (Figure 3, Supplementary Figure 2, Supplementary Table 9) whereas PLIN1 (pLoF) 153 

acted in the opposite direction. Fat distribution is strongly linked to insulin resistance, but as direct 154 

indicators of insulin resistance are not currently available in UK Biobank, we evaluated the impact of these 155 

genes on metabolic indicators typically associated with insulin resistance (17, 18) (Figure 3, Supplementary 156 

Figure 2, Supplementary Table 9). PLIN4 LoF was associated with higher triglycerides (TGs), TG/HDL 157 

(triglyceride/high-density lipoprotein cholesterol) ratio and higher HbA1c levels. The associations for 158 

PLIN1 consistently contrasted with those of PLIN4 with lower TGs, TG/HDL ratio and additionally higher 159 
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HDL cholesterol levels, in keeping with a beneficial impact on insulin sensitivity. In keeping with these 160 

findings, PLIN4 LoF was nominally associated with an increased risk for type 2 diabetes (T2D) (OR=1.36 161 

[1.06-1.66], p=0.04) in the Type 2 Diabetes Knowledge Portal (T2DKP; https://t2d.hugeamp.org/), though 162 

none of the genes showed a significant association with T2D in UK Biobank through our analysis or in the 163 

AstraZeneca PheWAS Portal (https://azphewas.com/) (Supplementary Figure 2; Supplementary Table 9; 164 

Supplementary Table 10). PLIN1 LoF showed nominal significance for a lower risk of cardiovascular heart 165 

disease (CHD) (p=0.03, OR=0.55[0.31-0.91]) in our analysis of UK Biobank, a finding supported by 166 

association between PLIN1 LoF and reduced susceptibility to chronic ischemic heart disease (OR=0.40 167 

[0.32-0.75], p=4.49×10-4) in the AstraZeneca PheWAS Portal (14). 168 

 169 

Figure 3. Forest plot of phenotypic associations for significant variant-gene categories. Black represents the sex-170 
combined, blue represents the men-only and red represents the women-only analysis. Horizontal lines represent 95% 171 
confidence intervals. Waist-to-hip ratio adjusted for BMI (n=184,246), gynoid fat adjusted for total body fat (n= 172 
178,143), trunk fat adjusted for total body fat (178,143), triglyceride levels (n=175,271) and HDL cholesterol 173 
(n=161,239) were all driven from UK Biobank (See Supplementary Table 12 for details).  174 

Similarly to PLIN1, the combined effect of LoF variants in the INSR (27 variants, 61 carriers) was 175 

associated with lower WHRadjBMI (Beta=-0.64[-0.39 – -0.88], p=6.21×10-7; Supplementary Table 6). 176 

Although a few common intronic variants (rs1035942, rs1035940, rs62124511, rs34194998) and a low-177 
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frequency synonymous variant (rs1799815) in the INSR have previously been associated with WHRadjBMI 178 

(3, 19), the causal mechanism underlying these associations remains unknown. Our gene-based findings 179 

indicate that the lNSR can alter body fat distribution through loss of function. Given the fact that the INSR 180 

gene encodes the insulin receptor itself and that both biallelic and heterozygous loss of function variants in 181 

this gene have long been linked with monogenic severe insulin resistance syndromes (20), this evidence for 182 

loss of function of the INSR having a seemingly beneficial effect on fat distribution i.e. lower WHRadjBMI is  183 

surprising. Importantly, none of the INSR mutations previously linked to monogenic disease were present 184 

in our UK Biobank analysis. The lead INSR variant (p.R525X) is predicted to result in truncation of the 185 

protein within the extracellular domain preventing interaction of the extra- and intra-cellular domains, and 186 

thus formation of a functional receptor. In the homozygous state, this would be expected to lead to 187 

monogenic severe insulin resistance. In terms of body fat distribution, heterozygous INSR LoF was also 188 

associated with higher gynoid and leg fat, and lower android and trunk fat mass (Figure 3, Supplementary 189 

Figure 2, Supplementary Table 9). Similarly to the cardio-metabolic associations of PLIN1 indicating a 190 

beneficial effect, heterozygous loss of INSR was associated with lower TGs and a lower TG/HDL ratio 191 

(Figure 3, Supplementary Figure 2, Supplementary Table 9). It was also associated with lower LDL (low-192 

density lipoprotein) cholesterol levels but was not associated with altered HDL (Figure 3, Supplementary 193 

Figure 2, Supplementary Table 9). Despite these seemingly favourable changes in fat distribution and 194 

plasma lipids, INSR LoF showed a nominal association for increased susceptibility to T2D in the T2DKP 195 

(OR=3.67[ 2.50-4.83], p=0.02) (Supplementary Table 10).   196 

For ACVR1C, the genetic architecture of gene-based results was slightly different, gene-based association 197 

results were significant for (i) the combined burden of pLoF and moderate impact variants and (ii) for 198 

moderate impact variants only. There were 130 rare moderate impact variants and 9 rare high impact 199 

variants included in this analysis [1414 and 16 carriers, respectively]. The combined effect of pLoF and 200 

moderate impact variants and moderate impact only variants were both associated with lower WHRadjBMI 201 

(Beta=-0.15 [-0.10 – -0.20] and -0.15[-0.10 – -0.20], p=1.68×10-7 and 4.57×10-7, respectively; 202 

Supplementary Table 6). In this instance, the highest-ranking variant was the previously reported p.I195T 203 

variant  (19, 21). In silico predictions including M-CAP (22), REVEL (23), SIFT (24), PolyPhen-2 (25) and 204 

PROVEAN (26) all asses this variant to be damaging to the protein and structural modelling also suggests 205 

that it is likely to have a sizable impact (Supplementary Note 3). CADD (27) also estimates this variant to 206 

be among the top 1% of the deleterious variants ranked by CADD (score = 27.1). To test this prediction, 207 

we performed a luciferase reporter assay in HEK293 cells which strongly suggested that the mutation 208 

impairs ACVR1C signalling (Figure 4). 209 
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 210 
 211 
Figure 4. Functional impact of ACVR1C I195T variant on Smad signalling. HEK293 cells were transiently 212 
transfected with ACVR1C expression constructs and their receptor components, along with firefly and Renilla 213 
luciferase expression plasmids. Firefly luciferase activity was normalised to Renilla activity and the luciferase 214 
activity in non-stimulated cells transfected with empty vector (EV) was set to 1. A constitutively active (CA) 215 
ACVR1C variant T194D and a kinase dead (KD) variant K222R were included for comparison. Results from 216 
three independent experiments are presented as mean ± SD. Statistical significance was evaluated by one-way 217 
ANOVA with Tukey’s post hoc test for multiple comparisons between pairs. WT, wild type ACVR1C. * P < 218 
0.001, ns not significant. 219 
 220 

The phenotypic associations for ACVR1C LoF for fat categories were similar to PLIN1 LoF, with significant 221 

associations with higher gynoid and leg fat, and lower android and trunk fat. However, the cardio-metabolic 222 

associations were less clear for ACVR1C with an association with lower TG and but not HDL or the 223 

TG/HDL ratio (Figure 3, Supplementary Figure 2; Supplementary Table 9).  224 

 225 

Finally, the combined effect of LoF variants in PDE3B was also significantly associated with lower 226 

WHRadjBMI. However, leave-one-out analysis suggested that this association was mainly driven by the 227 

premature stop variant (p.R783X, rs150090666; p-value after dropping the variant=0.49; Supplementary 228 

Table 11). All other candidate genes remained at least nominally significant after dropping the most 229 

significant variant (Supplementary Table 11). Our analysis of the PDE3B p.R783X variant was in line with 230 

previous reports associating it with lower triglyceride levels and higher HDL (28, 29). PDE3B p.R783X 231 

has also been reported to be associated with higher apolipoprotein B, lower apolipoprotein A1 levels and 232 

other haematological traits (30). This variant was reported to be significantly associated with cardiovascular 233 

disease when meta-analysed in UK Biobank and other cohorts (29, 31). 234 

 235 

 236 

 237 
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DISCUSSION  238 

Central adiposity has long been linked to insulin resistance and metabolic disease (32-37) but exactly why 239 

this is the case and, other than sex hormones, what exactly determines fat distribution remains incompletely 240 

understood. So, what have we learnt from human genetics thus far? Firstly, that inheritance contributes to 241 

WHR (3, 38). Secondly, monogenic partial lipodystrophies indicate that single gene variants can be 242 

sufficient to mediate substantial changes in fat distribution, classic examples being mutations in LMNA and 243 

PPARG. Interestingly, both proteins are expressed in all white adipocytes and yet specific loss of function 244 

variants are consistently associated with loss of hip and leg fat whereas visceral fat is preserved (39). 245 

Thirdly, whilst the beneficial impact of thiazolidinediones, one of very few drugs that clearly improve 246 

insulin sensitivity, was recognised before the discovery of PPARG mutations in patients with partial 247 

lipodystrophy, this link attests to the potential for human genetics to inform drug discovery. Fourthly, 248 

GWAS studies have identified many loci associated with WHR (2, 3, 9) though these have yet to be 249 

translated into therapeutic targets. Finally, Mendelian Randomization has been used to establish that genetic 250 

mechanisms linked to greater WHRadjBMI can be causally linked to the risk of cardiovascular disease and 251 

type 2 diabetes through either relatively lower gluteofemoral or higher abdominal fat or both (40). 252 

Furthermore, these associations are very likely to be underpinned by insulin resistance as the genetic risk 253 

score for WHRadjBMI was also shown to be strongly associated with elevated fasting insulin, higher 254 

triglycerides and lower HDL cholesterol (40).  255 

Our WHRadjBMI single variant analysis in samples from 450,562 UK Biobank participants revealed missense 256 

variants in 3 genes (CALCRL, PLIN1 and ACVR1C) and a nonsense variant in PDE3B. All these genes are 257 

highly expressed in adipose tissue in keeping with emerging evidence that adiposity itself is largely 258 

centrally mediated whereas where excess energy is stored is regulated within adipose tissue itself (2, 41). 259 

CALCRL is also expressed in a host of other tissues and its role in adipose tissue remains to be established 260 

(42, 43). PLIN1 is a lipid droplet surface protein almost exclusively expressed in adipocytes and has a well-261 

established role in regulating both triglyceride and diacylglycerol hydrolysis (44). PDE3B is expressed in 262 

many tissues but has long been linked to adipocyte lipolysis, and specifically to insulin mediated inhibition 263 

of lipolysis (45, 46). Several lines of evidence have recently implicated ACVR1C in the regulation of 264 

lipolysis, but it is expressed in many tissues in addition to adipose tissue and further work is required to 265 

convincingly establish exactly what it does in adipocytes (47-49). 266 

In terms of the impact of the specific mutations present in each gene, the PDE3B p.R783X is clearly 267 

expected to impair PDE3B catalytic activity, and thus potentially to increase cAMP levels and lipolysis, 268 

but the impact of the other three variants is far less certain (see Supplementary Note 3). Interestingly, gene 269 

based LoF burden analyses for all four genes were at least nominally significant, suggesting that the single 270 
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variants were most likely to impair function of the encoded proteins. At least when transiently transfected 271 

into cultured cells, our functional data is also consistent with the LoF predictions for the ACVR1C p.I195T 272 

variant. 273 

Our exome wide analyses confirmed significant effects of LoF variants in PLIN1, ACVR1C and PDE3B. In 274 

the cases of ACVR1C and PDE3B, the lead LoF variants were the same as single variants reported above, 275 

namely the ACVR1C p.I195T and PDE3B p.R783X variants. The fact that the phenotypic associations of 276 

the PLIN1 p.L90P variant are directionally consistent with the PLIN1 LoF gene burden data suggests that 277 

this variant is likely to be a loss of function variant too. Both the lead PLIN1 variant and several additional 278 

PLIN1 variants are expected to result in early truncations or nonsense mediated RNA decay. These data are 279 

consistent with Laver et al.’s assertion that PLIN1 haploinsufficiency is not associated with lipodystrophy 280 

(50). Interestingly, several heterozygous PLIN1 frameshift variants had previously been linked to partial 281 

lipodystrophy (51). None of these variants overlap with those identified in UK Biobank to date and none 282 

are predicted to result in nonsense mediated RNA decay. Instead, in several cases, immunoblotting of 283 

adipose tissue lysates confirmed expression of an elongated form of Perilipin 1 in addition to the wildtype 284 

copy, so perhaps expression of these mutant forms with an altered carboxy-terminus, accounts for the 285 

seemingly ‘opposite’ phenotypes (51, 52). 286 

Gene burden testing also highlighted the role of PLIN4 LoF variants in fat distribution, though in this case, 287 

these had an adverse impact on WHRadjBMI. Whilst a higher WHRadjBMI would conventionally be deemed to 288 

be metabolically adverse, it is possible that this need not be the case for all genetic perturbations, however, 289 

our phenotypic analyses were consistent with the predicted outcomes for all the above genes, in fact, the 290 

phenotypic associations for PLIN1 and PLIN4 were consistently opposite. Similar to PLIN1, PLIN4 is 291 

highly expressed in adipose tissue, but it is also expressed in heart and skeletal muscle, and the PLIN4 292 

knockout mouse has not been reported to have an adipose tissue phenotype to date (53). 293 

The last gene identified in the exome wide gene burden analysis was the INSR. In this instance, the lead 294 

variant (p.R525X) is expected to truncate the protein in the alpha subunit shortly before the disulphide bond 295 

normally connecting alpha and beta subunits. This is expected to abrogate synthesis of functional receptor. 296 

Even if truncated protein were synthesised this would not be able to dimerise with or exert dominant 297 

negative activity over co-expressed wild type receptor, and so heterozygosity for the truncating variant 298 

would be expected to reduce functional receptor protein by ~50%. In keeping with this, biallelic mutations 299 

in this domain usually cause extreme IR classified as Donohue or Rabson-Mendenhall syndrome. Parents 300 

of affected children have not been systematically studied and are generally held to be metabolically normal. 301 

In contrast, heterozygous INSR variants in the intracellular beta subunit, which are synthesised and interfere 302 
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with wild type receptor function, cause type A insulin resistance (20). Whilst fat mass is often reduced in 303 

Donohue’s syndrome, heterozygous variants associated with type A insulin resistance are not reported to 304 

be associated with fat redistribution and interestingly do not typically lead to fatty liver or dyslipidaemia 305 

(20). Our data suggest, surprisingly, that the INSR LoF variants favourably impact WHRadjBMI and LDL 306 

cholesterol. Whilst the INSR LoF association with T2D was relatively weak statistically and not seen in all 307 

the cohorts assessed, it is conceivable that INSR LoF might adversely affect pancreatic beta cell function 308 

and/or insulin sensitivity despite the apparently beneficial impact on fat distribution. The change in 309 

triglycerides is somewhat reminiscent of the well described absence of dyslipidaemia in patients with 310 

monogenic severe insulin resistance due to bi- or mono-allelic INSR mutations, so again this does not 311 

preclude the INSR LOF variants being associated with reduced insulin sensitivity. 312 

Our sex-specific analyses consistently revealed stronger effects in women than in men. These data are 313 

consistent with the fact that WHR is more strongly associated with insulin resistance in women than in men 314 

(54). Fat mass in women is consistently significantly higher than men of a similar BMI, who typically have 315 

higher lean/muscle mass. The adverse impact of a lack of lower limb/gluteofemoral fat on metabolism is 316 

strikingly apparent in patients with familial partial lipodystrophy, particularly types 2 and 3, due to specific 317 

mutations in LMNA and PPARG respectively (39). In these and in fact in all forms of partial lipodystrophy, 318 

metabolic disease manifests considerably earlier and is typically more severe in women than in men (39, 319 

55, 56). 320 

Our analyses have several limitations which future work should help to resolve. Firstly, the statistical power 321 

to detect associations, particularly when examining rare variants, depends on the sample size. Hence, there 322 

is the opportunity to discover additional findings when the WES data is released in the full UK Biobank 323 

cohort or other large-scale studies. Secondly, the phenotypic follow up of cardiometabolic diseases for the 324 

candidate genes was primarily conducted in UK Biobank, a population cohort with a limited number of 325 

cases of specific diseases. Our follow-up in T2DKP revealed the potential of datasets enriched for cases to 326 

increase statistical power in phenotypic follow ups. Thirdly, fat distribution is strongly associated with 327 

insulin resistance, but the UK Biobank cohort did not provide fasting samples so direct measures of insulin 328 

and inferred indices of insulin sensitivity are not available.  329 

In conclusion, our analysis strongly implicates at least four genes in the regulation of fat distribution. 330 

Furthermore, the data suggests that inhibitors of PLIN1, PDE3B and ACVR1C might favourably impact fat 331 

distribution and associated metabolic phenotypes whereas PLIN4 inhibition is likely to have adverse health 332 

consequences. The data in PLIN1 needs to be tempered by the earlier reports linking some specific PLIN1 333 

LoF variants with partial lipodystrophy. Finally, the data on the INSR seemed to suggest a potential 334 

disconnect between an apparently favourable impact of LoF variants on WHR and an apparently adverse 335 
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impact on T2D risk. These findings provide valuable insight into the potential of these genes as therapeutic 336 

targets. 337 

  338 
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METHODS 339 

 340 

The UK Biobank Resource 341 

The UK Biobank is a large-scale prospective population-based study of approximately 500,000 participants 342 

aged 40 – 69 at the time of recruitment (57). Recruitment took place between 2006 – 2010 in centres across 343 

the United Kingdom and participants have deep phenotypic information collected from initial and repeat 344 

assessment visits, health records, self-reported survey information, linkage to death and cancer registries, 345 

urine and blood biomarkers and other phenotypic endpoints.  A Seca 200 cm tape was used to measure 346 

waist and hip circumference at the baseline visit, and BMI was calculated from height and weight 347 

measurements. WHRadjBMI was constructed as the ratio of waist and hip circumferences adjusted for age, 348 

age2 and BMI (measured at the baseline assessment visit). Residuals were calculated for men and women 349 

separately and then transformed using the rank-based inverse normal transformation. All additional 350 

phenotypes are described in Supplementary Table 12. 351 

 352 

Genome-wide association scan of genotyped rare nonsynonymous genetic variants 353 

Genetic variants were genotyped in UK Biobank using the Affymetrix UK BiLEVE or the Affymetrix UK 354 

Biobank Axiom arrays (57). Genotyping underwent quality control procedures including (a) routine quality 355 

checks carried out during the process of sample retrieval, DNA extraction, and genotype calling; (b) checks 356 

and filters for genotype batch effects, plate effects, departures from Hardy Weinberg equilibrium, sex 357 

effects, array effects, and discordance across control replicates; and (c) individual and genetic variant call 358 

rate filters as previously described (57). We further excluded genetic variants with a genotype call rate 359 

below 95% and variants that were (i) not rare (0.1%≤MAF≤0.5%) or (ii) not non-synonymous or (iii) had 360 

poor correlation (r<0.9) or rare allele concordance (<0.9) when compared to the whole exome sequence 361 

data (Supplementary Table 2). Genomic annotations were performed using the ANNOVAR software (58). 362 

The coordinates of genotyped rare variants were lifted over from GRCh37 to GRCh38 using liftOver and 363 

all reported positions in this study are in GRCh38.  A total of 13,181 genetic variants in 7,481 genes were 364 

available for analysis. Genome-wide association analyses were performed using the BOLT-LMM software 365 

(59) in 450,562 participants of European Ancestry defined using a K-means clustering approach applied to 366 

the first four principal components calculated from genome-wide SNP genotypes.  367 

Sex-specific genome-wide association analyses were performed using the BOLT-LMM software (59) in 368 

206,082 men and 244,478 women of European ancestry from UK Biobank. Evidence for sex differences at 369 

the variants identified in the sex combined analysis were formally tested in unrelated individuals using a 370 
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linear regression model including an interaction term between the genetic variant and sex using the same 371 

covariates used in the discovery analysis.   372 

 373 

Conditional analyses and fine-mapping 374 

At each associated genomic region, we conducted systematic analyses of the genomic context of 375 

associations. Our goal was to establish whether or not the identified rare nonsynonymous variants are likely 376 

to be the causal variants for the association with WHRadjBMI. At each region 1 Mb either side of the 377 

nonsynonymous genetic variants associated with WHRadjBMI, we conducted both approximate and formal 378 

conditional analyses. We considered the association of all genetic variants in the regions regardless of 379 

functional annotation or allele frequency using directly-genotyped and imputed data (imputed using the 380 

Haplotype Reference Consortium (HRC) and UK10K haplotype resource). First, approximate conditional 381 

analyses were conducted on summary-level estimates using GCTA (60, 61) to identify sets of conditionally-382 

independent index genetic variants (p<5×10-8). Individual-level genotypes for the conditionally-383 

independent variants identified in this first step were then extracted in 350,721 unrelated European ancestry 384 

participants of UK Biobank and their independent association was confirmed in multivariable linear 385 

regression models including all variants put forward from approximate analyses. Then, at each region, we 386 

statistically decomposed the identified index signals by conditioning on the other conditionally-independent 387 

index variants. We then performed Bayesian fine-mapping (62) to estimate the posterior probability of 388 

association for each variant (PPA, where 0% indicates that the variant is not causal and 100% indicates the 389 

highest possible posterior probability that the variant is causal) and define the 99% credible set at that signal 390 

(i.e. a set of variants in a genomic window that accounts for 99% of the PPA at that association signal). To 391 

generate credible sets, the association results at each locus were converted to Bayes factors (BF) for each 392 

variant within the locus boundary. The posterior probability that a variant-j was causal was defined by: 393 

Φ𝑗 =  
𝐵𝐹𝑗

∑ 𝐵𝐹𝑘𝑘
 394 

 395 

where, BFj denotes the BF for the jth variant, and the denominator is the sum of BFs for all included variants 396 

at that signal. A 99% credible set of variants was created by ranking the posterior probabilities from highest 397 

to lowest and summing them until the cumulative posterior probability exceeded 0.99 (i.e. 99%). 398 
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 399 

UK Biobank exome-sequence data processing and QC 400 

Whole exome sequencing (WES) data of 200,643 UK Biobank participants made available in October 2020 401 

were downloaded in VCF and PLINK formats. The details of the UK Biobank WES data processing are 402 

provided in detail elsewhere (63, 64). Further data processing and quality control has been described 403 

previously (65). In brief, we did not apply additional QC based on QUAL (variant site-level quality score, 404 

Phred scale) or AQ measures (variant site-level allele quality score reflecting evidence for each alternate 405 

allele, Phred scale). Site-level filtering was applied for targeted biallelic calls if the AB ratio (no. of alternate 406 

allele reads/total depth) was ≤0.25 or ≥0.8. Variant-level QC filters were applied if any of the variants had 407 

(i) genotype missingness > 5%, (ii) maximum read depth (DP) of less than 10 across samples or (iii) had 408 

GQ less than 20 for over 20% of the calls. After applying these filters, 7.3% of the variants were flagged as 409 

poor quality and not taken forward for further analysis.  410 

 411 

Variant annotation and definition of gene burden sets 412 

We annotated variants released in UK Biobank 200K whole exome sequencing VCF files in build hg38, 413 

using the Variant Effect Predictor (VEP) tool release 99 provided by Ensembl (66).  In addition to default 414 

VEP features such as the consequence and impact of the variant, overlapping gene, position at cDNA and 415 

protein level and codon and amino acid change, if applicable, we have used the following plugins for 416 

annotation: (i) SIFT (67), which predicts whether an amino acid substitution affects protein function based 417 

on sequence homology and the physical properties of amino acid, (ii) Polyphen-2 (25), which predicts 418 

possible impact of an amino acid substitution on the structure and function of a human protein, (iii) CADD 419 

(27) which provides deleteriousness prediction scores for all variants based on diverse genomic features 420 

and (iv) LOFTEE (68)which provides loss of function prediction for variants. We annotated each variant 421 

using the most severe consequence across overlapping transcripts in Ensembl. We defined loss of function 422 

variants as those with ‘high’ impact predict by VEP. This includes frameshift variants, transcript ablating 423 

or transcript amplifying variants, splice acceptor or splice donor variants, stop lost, start gained or stop 424 

gained variants. ‘Moderate impact’ variants include missense variants, in-frame deletion or insertions, 425 

missense variants and protein altering variants.  426 

 427 

 428 

Gene-based association testing 429 
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In our discovery stage, we used the method STAAR (variant-Set Test for Association using Annotation 430 

infoRmation), which is a computationally scalable method for very large whole-exome sequence (WES) 431 

and whole-exome sequence (WGS) studies and large-scale biobanks. STAAR uses a Generalized Linear 432 

Mixed Model (GLMM) framework that includes linear and logistic mixed models and can also account for 433 

both relatedness and population structure for both quantitative and dichotomous traits (69). In our analysis, 434 

we used the genotype dosage matrix as the genotype input and covariates including age at first check (age), 435 

age2, sex, genotyping array, top ten genetically derived principal components (PC1-PC10) generated from 436 

the SNP array data, exome sequencing batch and the sparse GRM. For rank-based inverse normal 437 

transformed WHRadjBMI, we also added BMI as a covariate. We excluded the samples from our analysis if 438 

they did not pass UK Biobank quality control parameters, were non-European ancestry or if they withdrew 439 

consent from the study (n=184,246) (65). 440 

We ran STAAR with its default options without additional functional annotations.  For each gene, with at 441 

least two variants with MAF ≤ 0.5%, we conducted gene-based association analysis for the following three 442 

variant categories:  rare variants predicted by VEP to be a) loss of function (pLoF; i.e. high impact), b) 443 

missense (Moderate; i.e. moderate impact) or c) both (pLoF+Moderate). For each variant clustering of a 444 

gene, STAAR will provide p-values for several collapsing burden tests including SKAT (sequence kernel 445 

association test), Burden test, and ACAT-V (set-based aggregated Cauchy association test). In addition, the 446 

output of STAAR also includes the omnibus p-value (STAAR-O) by using the combined Cauchy 447 

association test to aggregate the association across the different tests. 448 

After identifying the genes with STAAR-O p-value over the threshold for exome-wide significance 449 

(p<2.53×10-6), we applied more stringent QC filters on the genotype calls of the included variants. We set 450 

to missing genotype calls which did not meet the following QC criteria: 1. Genotype Quality (GQ) ≥ 20 for 451 

heterozygous variants; 2. Depth (DP) ≥ 7 for SNVs and DP≥ 10 for InDels; 3. A binomial test on allelic 452 

balance using the Allelic Depth (AD) FORMAT field for heterozygous variants with p≥1x10-3. We then 453 

repeated the STAAR analysis using the filtered genotype dosage matrix. 454 

To examine the extent to which the gene-based association is driven by single variants, we conducted a 455 

sensitivity leave-one-out analysis for each significant gene (p<2.53x10-6), testing the significance of the 456 

gene-based association after excluding each variant.  457 

 458 

Secondary association testing 459 

We created dichotomous dummy variables using the filtered genotype dosage matrix for each identified 460 

gene, where samples with one or more rare alleles were set as “1” and the samples without rare alleles were 461 
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set as “0” for different variant clustering settings of each gene. Then we combined these dummy variables 462 

into a single file and transformed it to BGEN format, which was used as the genotype input for association 463 

testing using a linear mixed model implemented in BOLT-LMM to account for cryptic population structure 464 

and relatedness (59). The GRM in BOLT-LMM was generated from the autosomal genetic variants that 465 

were common (MAF > 1%), passed quality control in all 106 batches, and were present on both genotyping 466 

arrays (65). Covariates included age, sex, and PC1-PC10, genotyping chip and exome sequencing batch. 467 

For rank-based inverse normal transformed WHRadjBMI, covariates also included BMI. We excluded the 468 

same group of samples as we did for STAAR analyses. 469 

To test for heterogeneity of effect sizes between men and women for significant genes identified in the 470 

gene-based analyses, we used a Z-test to compare effect size estimates for each gene calculated in the sex-471 

specific analyses. 472 

  473 

Phenotypic associations 474 

The gene-based phenotypic associations using the same STAAR and BOLT-LMM pipelines for the 475 

following continuous phenotypes: BMI, BIA-derived gynoid fat, BIA-derived leg fat, BIA-derived android 476 

fat, BIA-derived trunk fat, BIA-derived arm fat, triglyceride levels, HDL cholesterol, LDL cholesterol, 477 

HbA1c levels (see Supplementary Table 12 for phenotype details).  Body fat compartments were predicted 478 

using bioimpedance measurements in UK Biobank. The details for the prediction of body fat compartments 479 

in UK Biobank are described elsewhere (16). 480 

We have also investigated gene-based phenotypic associations for binary disease outcomes: type 2 diabetes 481 

and cardiovascular heart disease. As BOLT-LMM is based on the linear mixed model which cannot give 482 

an accurate effect estimate for binary variables, we have also applied a generalized linear model (GLM) to 483 

estimate the Odd Ratio (OR) for binary phenotypes. We also looked up these binary outcomes in other 484 

resources such as the AstraZeneca PheWAS Portal (https://azphewas.com/, accessed on 02/09/2021) (14) 485 

and the Type 2 Diabetes Knowledge Portal (T2DKP; https://t2d.hugeamp.org/, accessed on 02/09/2021). 486 

The AstraZeneca PheWAS Portal also uses UK Biobank as their primary resource, but have access to a 487 

larger dataset of 281,104 exomes. We looked up results for T2D (N cases = 1,671; N controls = 160,949) 488 

and chronic ischaemic heart disease (defined by ICD-10 code I25; N cases =24,147, N controls = 176,170). 489 

In the T2DKP, we also looked up results for T2D (N=43,125).  490 

 491 

 492 
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 ACVR1C dual-luciferase assay 493 

HEK293 cells were seeded at a density of 150,000 cells per well in 24-well tissue culture plates pre-treated 494 

with poly-D-lysine. On the following day, medium was replaced with Opti-MEM I Reduced Serum medium 495 

and a total of 550 ng of plasmid DNA; this included different pcDNA3.1 based ACVR1C constructs listed 496 

in the table below, as well as constructs encoding receptor components (ACVR-IIB and CRIPTO) along 497 

with firefly (consisting of the SMAD binding elements) and Renilla (control) luciferase reporter plasmids. 498 

Lipofectamine 3000 Reagent was used for the transfection according to the manufacturer’s protocol. Opti-499 

MEM I Reduced Serum medium was then replaced with DMEM growth medium 6 hours post transfection.  500 

 501 

pcDNA3.1 construct Receptor components 

WT ACVR-IIB, CRIPTO, pGL4.48[luc2P/SBE/Hygro], pRL-SV40 

I195T ACVR-IIB, CRIPTO, pGL4.48[luc2P/SBE/Hygro], pRL-SV40 

K222R ACVR-IIB, CRIPTO, pGL4.48[luc2P/SBE/Hygro], pRL-SV40 

T194D ACVR-IIB, CRIPTO, pGL4.48[luc2P/SBE/Hygro], pRL-SV40 

EV (empty vector) ACVR-IIB, CRIPTO, pGL4.48[luc2P/SBE/Hygro], pRL-SV40 

 502 

The dual-luciferase reporter assay was performed according to the manufacturer’s protocol (Promega, 503 

USA). Cells were washed once with DPBS, followed by an active lysis procedure. Briefly, 125 µl of passive 504 

lysis buffer was added in each well and the cells were subjected to one cycle of a freeze-thaw process. Cell 505 

lysates were cleared of cell debris by centrifugation at 21,130 x g for one minute. The assay was conducted 506 

in a 96-well plate format. In each assay, 20 µl of cleared supernatant was pre-dispensed, followed by 507 

sequential measurement of firefly and Renilla luciferase using a Tecan Spark 10M plate reader (Tecan, 508 

Switzerland). Firefly luciferase activity was normalised for Renilla luciferase activity, and then further 509 

normalised with values from non-stimulated cells transfected with empty pcDNA3.1 vector (EV). We also 510 

studied a constitutively active (ACVR1C p.T194D) mutant and a kinase dead (ACVR1C p.K222R) mutant 511 

for comparison (70, 71). The experiment was repeated with fresh transfections on three separate occasions.  512 

 513 

  514 
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