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Abstract 
 

The incredible variety of proteins associated with immune responses presents a major 

challenge in immune monitoring. When combinations of these proteins are measured, 

cell types that influence disease can be precisely identified. Here, we introduce 

TerraFlow, a novel data analysis tool that performs an exhaustive search of disease-

associated cell populations from high-parameter flow cytometry experiments. Using a 

newly generated dataset, from 24-color immune checkpoint-focused and 18-color 

immune function-focused experiments, we apply TerraFlow to classical Hodgkin 

lymphoma (cHL), where systemic T-cell immunity has not been investigated in detail. We 

reveal novel immune perturbations in newly diagnosed cHL, as well as persistent immune 

perturbations after treatment. Newly diagnosed patients have elevated levels of activated 

(CD278+), exhausted (e.g., CD366+ and CD152+ phenotypes), and IL17-expressing 

cells, along with diminished levels of naïve and central memory (CD127+) T-cells and 

fewer IFNγ+ and TNF+ T-cells. Exhaustion signatures are reduced with treatment, but 

compared to healthy individuals, treated patients still exhibit more activated (CD278+ 

phenotypes), exhausted (CD366+), and IL17-expressing cells. Notably, TerraFlow 

identifies more phenotypic differences between patient groups than FlowSOM and 

CellCNN, often with better predictive power. Finally, we introduce a new non-gating 

approach for data analysis that obviates the need for time-consuming and subjective 

setting of fluorescence thresholds. Our results benchmark TerraFlow against common 

methods, provide mechanistic support for past reports of immune deficiency in cHL, and 

provide a roadmap for future immunotherapy and biomarker studies. 
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Introduction 
  

Immune responses are coordinated by a myriad of proteins distributed across a wide 

variety of cell types. The presence or absence of particular cell types may significantly 

influence the immune response in malignancy.  In lymphoma, for example, the immune 

landscape of the tumor microenvironment (TME) plays a clear role in disease. Patients 

with classical Hodgkin lymphoma (cHL) possess rare, malignant Hodgkin/Reed Sternberg 

(HRS) cells that shape their microenvironment to prevent immune surveillance and inhibit 

cytotoxic immune responses1-5. Various mechanisms underlying this phenomenon have 

been proposed including the secretion of inhibitory cytokines such as TARC (CCL17), 

attraction of suppressive T helper 2 (Th2) and regulatory T (Treg) cells to the TME, and 

differentiation of naïve CD4+ T-cells into forkhead box P3 (FoxP3+) regulatory (Treg) T-

cells6-8. 

 

Less, however, is known about the systemic immune system of patients with cHL. 

Specifically, are immune perturbations in cHL global or local, and what influence does 

TME exert on systemic immunity? Several studies suggest systemic immune 

dysregulation in early and advanced cHL, as demonstrated by poor responses to recall 

antigens in delayed-type hypersensitivity testing9 and systemic elevations of a variety of 

secreted immune modulators, including CCL17 (TARC)8-10, IL611, IL2R11, galectin-112, 

and soluble CD3013. Importantly, these studies did not detail the specific cell subsets that 

are altered in cHL. Characterization of immune cell subsets in lymphoma is important, 

because systemic immune dysfunction can influence anti-tumor immunity, treatment 

responses, or immunity to other diseases or to vaccination. Furthermore, the 

development of prognostic and treatment related biomarkers is most efficient when 

candidates are identified from peripheral blood, since this sample type is amenable to 

routine monitoring. Characterizing the systemic immune landscape of cHL will 

significantly advance immune biomarker development in cHL. 

 

High-parameter flow cytometry is a particularly established and robust platform for 

characterizing immunophenotypes but can be limited by bottlenecks in data analysis14. 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted November 21, 2022. ; https://doi.org/10.1101/2021.09.10.21263388doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.10.21263388


Unsupervised methods such as k-means and FlowSOM partition cells into clusters based 

on similar protein expression profiles. Downstream analyses then compare cluster 

abundance between patient groups. While unsupervised methods are useful for detecting 

natural groupings, they do not account for heterogeneity within clusters. Moreover, many 

antibody panels do not resolve biologically distinct subtypes15. Recently, supervised 

methods have begun to couple cell representation and disease association into one 

iterative process. For example, CellCNN uses a convolutional neural network to 

automatically learn the molecular features of disease-associated cell types. Because 

supervised models are directly optimized to predict patient groups, they are more 

sensitive to rare populations than unsupervised methods16. However, models may only 

report a subset of cell types affected by disease. Moreover, extensive downstream 

analysis is needed to interpret selected populations and develop biomarkers to define 

them. There remains a need for a method that can clearly define a complete and 

interpretable set of cell phenotypes associated with disease. 

 

In this paper, we introduce TerraFlow (www.terraflow.app), a novel data analysis tool that 

performs an exhaustive search of disease-associated cell populations and returns results 

in a directly interpretable format. Past tools we (and others) developed systematically 

measured every possible phenotype generated from Boolean combinations of all markers 

in an antibody panel15. Complete enumeration can produce hundreds of significant 

phenotypes, many of which contain extraneous or overlapping markers. TerraFlow 

resolves these redundancies by selecting the smallest set of phenotypes that capture 

major cohort differences.  Each phenotype contains the minimum number of markers 

needed to define the target population; the addition or subtraction of additional markers 

reduces the phenotype’s association with outcome. Meanwhile, a recursive feature 

elimination (RFE) module identifies the smallest set of markers that can be used to 

discriminate patient groups.  This information can be used to design large-scale validation 

or correlates studies on lower-parameter instruments. Because the output of TerraFlow 

consists of precisely-defined phenotypes, rather than clusters of cells on a plot, cell 

populations of importance can be easily interpreted, purified by cell sorting, or developed 

as clinical biomarkers. 
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TerraFlow also introduces a novel non-gating approach for generating phenotypes. 

Traditional flow analyses use hand-drawn gates to define populations of interest. While a 

convenient method for measuring complex phenotypes, manual gates can obscure 

expression patterns that do not conform to a strict on/off binary. Take, for example, a 

setting where cells expressing high levels of both IFNγ and TNF are important in disease 

outcome (like what is observed for polyfunctional T-cells). Whereas traditional gates treat 

each population as an on/off binary, we introduce a non-gating approach that incorporates 

the number of expressing cells as well as their relative brightness. Because IFNγ and TNF 

are each relatively rare, we first transform fluorescent intensities with a sigmoidal function 

that inflates the value of bright cells over neutral or dim cells. Because the double-positive 

population may be rare compared to the single-positive populations, we next apply a root 

product calculation that favors the double-positive population. Finally, we calculate the 

average cell weight within each patient and compare population abundance between 

cohorts. We show that the non-gating method approximates Boolean phenotypes while 

also capturing important variation within the positive and negative regions. 

 

By combining the power of high-parameter flow cytometry with our novel data analysis 

platform, we investigated whether newly-diagnosed cHL was associated with 

perturbations in the T-cell compartment and whether these perturbations resolved after 

treatment. We assayed cellular proteins associated with activation, exhaustion, and 

suppression of peripheral T-cells. We also studied cytokine expression after in vitro 

polyclonal re-stimulation in the context of cell differentiation, activation, and exhaustion. 

Our results catalog peripheral immunity in cHL patients with unprecedented depth, 

revealing previously unappreciated systemic immune abnormalities in cHL patients.  

 

Methods 
 

Cell processing and high-parameter flow cytometry. PBMCs were derived from whole 

blood using density-gradient centrifugation, resuspended at 10 million cells/mL, and 

cryopreserved at -135o C. Samples were thawed, washed in RPMI (Invitrogen, Carlsbad, 
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CA), and split into two equal aliquots. The first aliquot was stained with a panel of 

antibodies described in previous work15,17 and Supplemental Table 1 (“Immune 

Checkpoint Panel”). The second was stimulated with phorbol myristate acetate (PMA) 

and ionomycin (Sigma, St. Louis, MO) in the presence of Golgi Plug containing Brefeldin 

A (BD Biosciences, San Jose, CA). After four hours, cells were stained with the flow 

cytometry antibodies described in Supplemental Table 2 (“Cytokine Panel”). Samples 

were immediately analyzed on a Symphony Flow Cytometer (BD Biosciences, San Jose, 

CA). Flow cytometry staining from a representative patient is shown in Supplemental 
Figure 1A. 

 

Human subjects. Informed consent was obtained from 44 cHL patients treated at NYU 

Langone Health and New York-Presbyterian Weill Cornell between 2011 and 2016. Blood 

samples were drawn before treatment and at a three-month follow up. 25 age-matched, 

cryopreserved, healthy donor PBMCs were also obtained from STEMCELL Technologies 

(Cambridge, MA). Each cohort compared in this study was represented by 25-33 

individuals (Supplemental Table 2). Typical of cHL, patients had a median age of 34.5 

and a range of 18-90 years. 52% were male and 48% female. Patients had nodular 

sclerosing (80%), mixed cellularity (10%), lymphocyte rich (3%), and unspecified (2%) 

histology. Most had stage II disease (64%) followed by stage III (14%) and IV (21%). 

Patients with active viral infection or autoimmune disease were excluded. For post-

treatment analyses, patients had received ABVD +/- consolidative radiation. 

Non-gating combinatorics to generate phenotypes.  Fluorescent intensities are linearized 

with the logicle method (F), rescaled to a variable range [α, β] and transformed with a 

sigmoidal function (θ) that inflates the expression of brighter cells. For negative markers, 

the transformation is reversed to favor dimmer cells. Sample expression (s) was 

calculated by taking the root mean product of the transformed cell values. Formally, 

expression of a given combinatoric phenotype was defined as: 
 

𝑔𝑔(𝑥𝑥) = �
𝑥𝑥 − min(𝑥𝑥)

max(𝑥𝑥) − min(𝑥𝑥) ⋅
(𝛽𝛽 − 𝛼𝛼)� + 𝛼𝛼 

𝜎𝜎 =
1

1 + 𝑒𝑒−𝑔𝑔(𝑥𝑥) 
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where 𝐹𝐹 = Linearized flourescent signal 

𝐾𝐾 = Number of proteins 
𝑁𝑁 = Number of cells 

 

For example, CD95+CCR7- expression in sample 1 was defined as: 

 

𝑠𝑠1𝐶𝐶𝐶𝐶95+𝐶𝐶𝐶𝐶𝐶𝐶7− =
1
𝑁𝑁
���{𝜎𝜎(CD95!𝐹𝐹𝑛𝑛) ⋅ 𝜎𝜎(−CCR7!𝐹𝐹𝑛𝑛)�
𝑁𝑁

𝑛𝑛=1

 

 

In this study, we used α = −9 and β = 5 for both panels.  

 

Detection limit. The number of possible combinations increases factorially with the 

number of proteins. However, fewer cell types are detectable as phenotypes become 

more complex. TerraFlow excludes phenotypes represented by fewer than 100 

cells/sample on average. Samples can have fewer than 100 cells if frequencies follow a 

non-uniform distribution. For example, a detectable phenotype could be represented by 

200 cells/sample in one cohort and completely absent in the other. TerraFlow also 

excludes gates containing more than 95% of parent events. After filtering out sparse and 

redundant phenotypes, we found that combinations of 1-5 proteins were sufficient to 

capture ~95% of all detectable phenotypes in the Hodgkin’s checkpoint dataset 

(Supplemental Figure 1B). Stratification of healthy and cHL patients did not improve 

when Elastic Net models were trained on higher-order combinations (alpha=0.1, 

Supplemental Figure 1B). Based on these results, all subsequent results are based on 

combinations of 1-5 proteins. 

 

Identification of phenotypes enriched in a patient group. Many canonical immune 

populations are defined by the combination of proteins they express on their surface. For 

example, naïve T-cells are defined by CCR7+CD45RA+ while central memory cells are 

defined by CCR7+CD45RA−. Each additional marker resolves subtypes with deeper 
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levels of granularity. TerraFlow extends this intuition by systematically evaluating every 

combination of 1 to 5 markers that could be measured within a given panel, generating 

∼200,000 phenotypes per dataset. Here, we introduce a novel search algorithm then 

arranges features into a network that captures gradient changes as markers are 

successively added, removed, and swapped between related phenotypes. First, linear 

correlation is calculated between the abundance of each phenotype and patient outcome. 

Next, phenotypes are arranged into a network by adding edges where nodes differ by the 

addition or removal of one marker. For example, one path through the network might pass 

through nodes CCR7+ → CCR7+CD4+ → CCR7+CD4+CD8−. Finally, each node is 

queried to determine if its correlation is stronger than any adjacent node. These optima 

are selected to represent unique differences between patient cohorts. 

 

Selected phenotypes are queried again, this time to determine if any markers can be 

removed without compromising correlation. If a simpler version of a phenotype has a 

correlation within 97% of the optimal, the extra marker is removed. For example, 

CD95+CD4+ may have a correlation of 0.90 but CD95+ alone may have a correlation of 

0.89. The extra CD4 marker is dropped in favor of the simpler representation. Phenotypes 

are pruned to convergence, further reducing the total number of selected populations. 

 

Finally, phenotypes are grouped together if they define overlapping cell populations. For 

example, CD4+ and CD8− both describe helper T-cells. TerraFlow resolves redundant 

phenotypes by hierarchically clustering populations with Jaccard similarity indices of 50% 

or greater. Each group is represented as a set of alternative gating strategies or collapsed 

into the phenotype with the strongest correlation. 

 

Selected phenotypes meet a rigorous, independently verifiable set of criteria. First, each 

phenotype is represented by an optimal phenotype. Adding additional markers to these 

phenotypes will not improve association between population abundance and disease 

status. Conversely, removing any one marker will severely weaken disease association. 

Second, each phenotype represents a unique cell type. Overlapping cell populations are 

grouped together, even if defined by distinct molecular features. Finally, each phenotype 
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represents a statistically significant correlate of disease. Together, these criteria allow 

TerraFlow to return a tractable set of phenotypes without sacrificing important disease 

information. 

 

Recursive feature elimination to guide development of simpler antibody panels. While 

large panels are useful for exploratory purposes, they often contain more markers than 

are needed to predict the phenotype of interest. TerraFlow uses recursive feature 

elimination (RFE) to identify the smallest set of markers that allow accurate predictions of 

patient group. A regularized logistic regression model uses the full set of combinatoric 

features to predict patient group. Once baseline performance is established, every 

combination containing the first marker is removed from the feature set and a new model 

is trained on the remaining phenotypes. The first marker was restored to the feature set 

and a second marker was removed. The process is repeated for every marker in the 

panel. At each iteration, the model’s ability to predict sample labels is reevaluated using 

10-fold cross-validation and compared to the baseline. The marker whose removal has 

the least detrimental impact on performance is permanently removed from the feature 

set. The process repeats until one marker remains. In many cases, performance held 

constant or even improved until a critical set of markers remained. Removing any of these 

markers from the panel results in a sharp drop in accuracy. Conversely, restoring any one 

marker does not significantly improve performance. 

 

Weighted Lasso maximizes accuracy and interpretability. A custom logistic regression 

model predicted patient groups during RFE. As in Lasso, an L2 penalty encouraged 

sparse models by eliminating predictors that were not relevant to the classification task 

or were highly correlated to each other. Lasso models tend to select complex phenotypes 

that are overrepresented in the feature set. Here, an additional tiebreaker term penalized 

predictors based on the number of markers in the phenotype. If two predictors were highly 

correlated to clinical outcome and each other, the tiebreaker term ensured that the simpler 

phenotype prevailed. 
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Evaluating and confirming model results. Models were evaluated using 10-fold stratified 

cross-validation. Test set predictions were pooled from each fold before calculating 

accuracy or area under the curve (AUC). At each fold, we enumerated every combination 

of 1-5 markers that was detectable in the training set. We then used TerraFlow to identify 

unique disease-associated cell types. From those, we subset the 20 phenotypes with 

strongest correlation to patient label or those with an FDR-adjusted P-value smaller than 

0.05 (whichever was more stringent). Finally, we trained a ridge logistic regression model 

to use selected phenotypes to predict patient labels in the test set. Lambda was optimized 

by performing 10-fold CV within each training set and selecting a value one standard 

deviation greater than the optimal. 

 

For comparison to existing algorithms, we used the FlowSOM package in R to partition 

cells into 8 clusters. Fluorescent intensities were logicly-transformed and Z-score 

normalized. We decreased grid dimensions until the largest cluster contained fewer than 

50% of total events. The final model used xdim=5 and ydim=5 for both panels. A simple 

logistic regression model used cluster frequencies to predict patient labels. 

 

We also used the Python implementation of CellCNN to automatically learn disease-

associated cell types. The same preprocessed data was used for FlowSOM and CellCNN 

analysis. Within each training set, we used nested 3-fold CV to select from the following 

hyperparameters: maxpool percentages=(0.01, 1.0, 5.0, 20.0, 100.0), nfilters=(3, 4, 5, 6, 

7, 8, 9), learning rate=[0.001, 0.01]. We used 3,000 cells per multi-cell input and 200 multi-

cell inputs based on previous experiments on PBMCs. To describe selected populations, 

CellCNN automatically compiled a matrix of filter weights from all runs achieving a 

validation accuracy above 95%. It then performed hierarchical clustering with a cosine 

similarity cutoff of 0.4. One representative filter was selected from each cluster to display 

in the heatmap. We obtained population frequencies by transforming FCS data with each 

selected filter and measuring the percent of cells with a response greater than 0.  

 

For validation results from the newly-diagnosed comparison to healthy patients, an 

independent dataset was generated from a new experiment with unique patient samples. 
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Results 

TerraFlow: A New High Parameter Data Analysis Pipeline 
TerraFlow is a multi-step pipeline for analysis of high parameter single-cell data. It uses 

an efficient combinatorics approach to enumerate cells expressing every possible 

combination of up to five markers at a time.  Figure 1 describes each step in the pipeline. 

First, cell populations are constructed using TerraFlow’s novel “non-gating” approach. 

Raw fluorescent intensities are transformed with a set of functions that favor bright, multi-

positive cells, allowing rare events to affect the overall mean. Expression levels for each 

marker are automatically translated into the familiar “positive” and “negative” terminology, 

reflecting relative levels of expression.  Thus, cells with high expression are “positive,” 

while cells with low levels of (or no) expression are called “negative.” TerraFlow can also 

create Boolean combinations of traditional, user-defined thresholds (i.e., gates, Figure 
1A). The process is repeated for every possible combination of 1-5 markers, generating 

~200,000 phenotypes per panel. 

 

To identify phenotypes differentially expressed between patient groups, we use a novel 

form of network analysis (Figure 1B). To demonstrate, we simulate a flow cytometry 

dataset in which there are no differences between two cohorts aside from random noise. 

We then inject CCR7+CD95+ cells into the treatment cohort. Injection affects the 

frequency of CCR7+CD95+ but also of related phenotypes such as CCR7+ and 

CCR7+CD95+GITR+ (boxplots, Figure 1B). Rather than report out all three populations 

as significant, TerraFlow finds the phenotype that best represents cohort differences. 

First, linear correlation is calculated between population abundance and patient outcome. 

Next, phenotypes are arranged into a network by adding edges where nodes differ by the 

addition or removal of one marker. For example, one path through the network might pass 

through CCR7+ → CCR7+CD95+ → CCR7+CD95+GITR+ (Figure 1B). Finally, each 

node is queried to determine if its correlation is stronger than any adjacent node. These 

optima are selected to represent unique differences between patient cohorts. 

 

Finally, while large panels are useful for exploratory purposes, they often contain more 

markers than are needed to predict the clinical outcome of interest. TerraFlow uses 
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recursive feature elimination to identify the smallest set of markers that allow accurate 

predictions of clinical outcome. A machine learning model uses the entire combinatoric 

feature set to classify samples (Baseline, Figure 1C). The model then iteratively removes 

the least important marker from the panel and reevaluates performance using 10-fold 

cross-validation. The process continues until one marker remains. In the simulated 

dataset, performance remains stable until two markers are left, correctly highlighting the 

importance of the injected CCR7 and CD95 cells in the simulated dataset (red box, Figure 
1C). To summarize, the algorithm (Figure 1D) constructs ~200,000 cell populations 

based on combinations of protein expression, from these about 5,000 are detectable in a 

typical dataset (see Methods), and network analysis typically identifies around 30 unique, 

disease associated cell types (as described in the results below). The RFE module also 

identifies the minimal set of markers that can be used to define the difference between 

patient groups. 

 

Using data generated from our study of cHL, we compare non-gating and Boolean 

analyses. For various 1-4 marker phenotypes from the Checkpoint panel (see Methods), 

cells identified as positive by user-defined threshold-based gating have higher expression 

values on the non-gating scale (Figure 1E). The non-gating approach also captures 

extensive variation in expression level within the positive and negative regions. Patient-

level expression, as defined by the non-gating approach or the threshold-based 

approach, is highly correlated for phenotypes containing 1-3 markers, and slightly less 

correlated for higher-order phenotypes (Supplemental Figure 2A). Finally, cell 

populations (i.e., phenotypes) associated with healthy controls or newly-diagnosed-cHL 

patients have similar associations with outcome, regardless of whether they are defined 

by the non-gating or threshold-based approaches. These correlations are very high for 

populations defined by a single marker (1N, Supplemental Figure 2B), and good for 

populations defined by two (2N) or three (3N) markers. Populations defined by more 

markers show less correlation. Nevertheless, since various features of the algorithm favor 

simpler phenotypes, the non-gating approach performance is strong, saving the time 

needed for manual, threshold-based gating. 
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We use TerraFlow to explore several clinical research questions in the setting of cHL. 

First, we asked whether measures of T-cell phenotype and function, such as cell 

activation, exhaustion, and/or cytokine production, are impaired in newly diagnosed cHL 

patients, compared to healthy controls. Next, we asked whether any differences emerged 

or persisted after treatment. These analyses compared pre- and post-treatment patients, 

as well as post-treatment patients and healthy donors.  Results are benchmarked against 

popular methods such as UMAP, FlowSOM, and CellCNN. 

 

Mapping the topology of T-cell phenotype and function in newly-diagnosed cHL 
patients 
 

Immunophenotypes.  We first ask whether systemic T-cell functions such as activation, 

exhaustion, and suppression were impaired in newly diagnosed cHL patients compared 

to healthy controls. Our examination begins with TerraFlow’s network analysis (Figure 
1B). Our non-gating approach evaluated every combination of 1-5 markers that could be 

formed within the immune checkpoint flow cytometry panel (i.e., Checkpoint dataset), 

generating approximately 230,000 phenotypes. Of those, approximately 4,800 

phenotypes were expressed at detectable levels (see Methods for description of detection 

threshold). 313 were significantly overexpressed in healthy or newly-diagnosed cHL 

patients (FDR-adjusted P<0.01). Of those, TerraFlow defined 30 optimal phenotypes. 

Overlapping populations were further grouped together to produce 27 unique disease-

associated cell types. Figure 2A describes the top eight phenotypes with the strongest 

correlation to patient groups (in this case, healthy donors vs. pre-treatment cHL patients). 

Figure 2B defines the expression level of other markers (columns) for 12 

immunophenotypes (rows) within a heatmap. The heatmap feature allows investigators 

to quickly scan expression of other markers, beyond those within the 1-5 parameter 

phenotypes initially defined by Terraflow. This feature provides more biological insight 

into each population. For each of the phenotypes, the correlation with outcome is also 

depicted (right side of the panel); the phenotypes are ordered by the strength and 

directionality of their correlation. 
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Models are evaluated using 10-fold cross-validation. TerraFlow achieves excellent 

separation between healthy and cHL patients, outperforming FlowSOM and approaching 

CellCNN (AUC=0.96, P<0.001, Figures 2C and 2D).  Additional validation steps are 

described later in this manuscript. 

 

Our results reveal that cell populations expressing combinations of GITR, CD366, CD152, 

CD272, and PD1 are the most enriched in newly diagnosed cHL patients versus healthy 

individuals (e.g., GITR+CD45RO-CD366+, Figure 2A).  In contrast, cells expressing 

CD127 are enriched in healthy individuals (and thus diminished in cHL patients, e.g., 

CD127+GITR-CD272-, Figures 2A and 2B). In sum, these results suggest increased 

exhaustion (elevated frequencies of GITR+, CD366+, CD152+, and/or PD1+ subsets), 

activation (CD272+ cells), and differentiation (reduced CD127) of peripheral T-cells in 

cHL patients. 

 

TerraFlow can also identify the minimal combination of markers that distinguish two study 

groups through Recursive Feature Elimination (RFE). TerraFlow first trains a regularized 

logistic regression model to use the full non-gating combinatoric feature set to classify 

healthy and newly-diagnosed cHL patients. It then iteratively removes the least predictive 

marker from the panel and reevaluates performance using 10-fold cross-validation. 

Performance improved as markers were removed from the panel until eight remained. Six 

markers achieved performance within 95% of the optimal, highlighting the importance of 

PD1, CD103, CCR7, and GITR (Figure 3A). A machine learning model that only includes 

the RFE-selected markers in combination (Figure 3B) distinguishes newly-diagnosed 

cHL patients from healthy donors in an independent cohort of 20 patients (Figure 3C; 

AUC = 0.97; p<0.001, Figure 3D). Cells that are GITR+PD1+ (Figure 3E) are significantly 

higher in cHL patients than healthy controls. Thus, the ensemble of PD1, CD103, CCR7, 

and GITR represent the simplest set of markers that could be incorporated into a flow 

cytometry panel to distinguish cHL patients from healthy donors, with GITR+PD1+ cells 

particularly valuable for identification of newly-diagnosed patients.  
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Traditional Boolean Gating. Supplemental Figure 3 depicts TerraFlow analysis of cell 

populations defined by combinations of manually gated thresholds. TerraFlow’s network 

analysis found that cell populations expressing combinations of GITR, CD152, CD366, 

CD272, CD278, and HLADR are enriched in newly diagnosed patients (Supplemental 
Figures 3A and B). TerraFlow models trained on Boolean frequencies demonstrate lower 

performance than models trained on non-gating expression levels (cross-validated 

AUC=0.88, p<0.0001; Supplemental Figures 3C and 3D). Like the non-gating approach, 

the phenotypes identified in this analysis also suggest that cHL patients exhibit increased 

exhaustion (GITR+, CD152+, CD366+ phenotypes) and activation (CD278+ and 

HLADR+ phenotypes).   

 

Recursive feature elimination shows that CD152, CD95, PD1, TIGIT, CCR7, CD8, and 

GITR are important to define the difference between healthy donors and cHL patients 

(Supplemental Figure 3E).  Amongst the cell populations defined by these markers, 

CD8+CD95+ and CCR7+CD95+ cells have the largest coefficients in the final logistic 

regression model (Supplemental Figure 3F); the complete set of phenotypes formed 

from these markers can distinguish newly diagnosed patients from healthy donors with 

high separation (AUC=0.97, p<0.001 for the independent validation study). However, the 

individual phenotypes with the largest coefficients do not describe statistically significant 

differences alone (Supplemental Figure 3F), suggesting that the full ensemble of RFE-

selected markers (CD152, CD95, PD1, TIGIT, CCR7, CD8, and GITR) are required to 

discriminate patient groups when traditional Boolean gating is used. 

 

Immune Function.  In the cytokine panel, our non-gating approach generates 

approximately 1,100 phenotypes significantly overexpressed in healthy or newly-

diagnosed cHL patients (FDR-adjusted p<8.5E-6). TerraFlow’s network approach 

reduces these to 25 unique disease phenotypes (Figures 4A and B shows the top 

phenotypes). TerraFlow distinguishes healthy and newly-diagnosed cHL patients with a 

cross-validated AUC of 0.82 (not shown), and p<0.001), comparable to FlowSOM 

(AUC=0.85) but lower than CellCNN (AUC=0.96, not shown). Still, Terraflow defines more 

disease-associated cell types than either alternative.  
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Our results reveal that cell populations expressing combinations of CD152, CD366, 

CD57, CD95, CD278, CD134 and IL17 are the most enriched in newly diagnosed cHL 

patients versus healthy individuals.  In contrast, cells expressing IFNγ, TNF, and/or IL4 

are enriched in healthy individuals (Figures 4A and 4B). In sum, these results suggest 

that peripheral T-cells in cHL patients are exhausted and skewed toward Th17 and Tc17 

responses, with a loss of IFNγ, TNF, and IL4-producing cells. 

 

RFE analysis shows that just two markers, CD278 and IL4 (Figure 4C), are sufficient to 

distinguish newly-diagnosed cHL patients and healthy donors (AUC=0.978, p<0.0001 in 

the independent validation data; Figure 4D-F). IL4 distinguishes patients particularly well 

(Figure 4G). Manual, threshold-based Boolean analysis provided similar results 

(Supplemental Figure 4A-D) but did not identify a reduced set of markers for 

identification of newly-diagnosed patients (data not shown). 

 

Comparison to Common Analysis Approach.  We next compared TerraFlow to popular 

methods such as UMAP, FlowSOM, and CellCNN. UMAP requires visual inspection to 

identify differences between patient groups, a subjective and time-consuming process. 

FlowSOM introduces more rigor by automatically clustering cells with similar attributes. 

FlowSOM results were sensitive to multiple tuning parameters. Furthermore, clusters 

were contiguous or overlapping in the UMAP projection, reflecting the lack of obvious 

subtypes in the checkpoint dataset (Supplemental Figure 4E). FlowSOM identified three 

clusters significantly enriched in newly-diagnosed cHL patients. Of those, only one cluster 

validated in the follow-up experiment (P<0.05). CellCNN learned populations that were 

stronger correlates of cHL but only reported two phenotypes (Supplemental Figure 4F). 

Populations are described using mean fluorescent intensities (for FlowSOM) or learned 

filter weights (for CellCNN, Supplemental Figure 4G). However, because populations 

are defined with complex transformations of the entire panel, it is not clear if a smaller set 

of markers would have been sufficient to capture the population of interest. Phenotypes 

could not be validated by manually gating populations in traditional flow cytometry 

software. 
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Changes in T-cell phenotype and function with treatment for cHL  
 

Immunophenotype and Function. TerraFlow’s non-gating approach identifies 387 

phenotypes that change significantly (FDR-adjusted p<0.05) between the paired 

comparison of patients before and after their treatment.  Amongst these phenotypes, 12 

are unique, including those expressing combinations of PD1+ and CD366+ (elevated pre-

treatment) and those expressing HLA-DR+, CD95+, or TIGIT+ (elevated post-treatment; 

Supplemental Figures 5A and 5B). During cross-validation, TerraFlow correctly 

identified the post-treatment sample in 83.3% of individuals, rivaling CellCNN (85.2%) 

and outperforming FlowSOM (62.3%, Supplemental Figure 5C; TerraFlow validation 

results shown in Supplemental Figure 5D). These results suggest that circulating 

exhausted cells before treatment are replaced by activated (HLADR+) cells, with one 

exhausted TIGIT+ cell population persisting post-treatment. 

 

RFE analysis (data not shown) could not identify a minimal set of markers from the 

Checkpoint panel that could distinguish pre- and post-treatment time points. Traditional 

Boolean analysis, based on investigator-defined thresholds, also could not identify an 

ensemble of Checkpoint panel phenotypes that distinguished pre- and post-treatment in 

a machine learning model in the validation dataset (data not shown, mean accuracy = 

55%).  For the cytokine panel, there was no statistically significant difference observed 

between pre- and post-treatment, with either the non-gating or traditional Boolean gating 

approaches (data not shown). 

 

Do T-cell phenotype and function normalize after treatment for cHL? 

 

Immunophenotypes. For the Checkpoint panel, strong differences were observed 

between cHL patients after treatment and healthy individuals (26 unique phenotypes 

detected, TerraFlow AUC=0.94, p<0.0001 with 10-fold cross-validation; data not shown). 

The performance of TerraFlow’s machine learning model rivaled CellCNN (AUC = 0.96) 

and exceeded FlowSOM (AUC = 0.79). After treatment, cHL patients continue to exhibit 
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higher levels of activated and exhausted cells than healthy donors, including various cell 

populations expressing CD272, GITR, or CD152 (Supplemental Figures 6A and 6B), 

as defined with our non-gating approach. Notably, cell populations expressing PD1 are 

lower in patients after treatment than healthy donors, suggesting heterogeneity in 

checkpoint responses to treatment, and reinforcing the importance of high-parameter, 

single-cell analysis of multiple markers of exhaustion (Supplemental Figures 6A and 
6B).  RFE of non-gating data did not identify an interpretable minimal set of markers that 

distinguish post-treatment patients from healthy donors (data not shown). 

 

Traditional, threshold-based comparison of post-treatment patients and healthy donors 

gave largely similar results, highlighting in addition the elevation of a CD366+ cell 

phenotype (data not shown). RFE of the threshold-based data showed that the most 

important markers for describing immunophenotypic differences between post-treatment 

patients and healthy controls were CD4, CCR7, CD152, and CD57 (Supplemental 
Figure 6C); models built from the phenotypes that include these markers have an AUC 

of 0.726, with high statistical significance in the test set (p<0.01; Supplemental Figure 
6D).  In particular, CD152+CD57- cells are elevated post-treatment. The overall pattern 

from both analysis approaches reveals continued exhaustion of cells post-treatment (as 

evidenced by CD152, and CD57 phenotypes), without normalization to healthy donor 

levels.  

 

Immune Function.  TerraFlow revealed 25 disease-associated differences in functional 

phenotypes between healthy donors and post-treatment cHL patients. Cell types enriched 

post-treatment included stimulated cells expressing multiple activation and exhaustion 

markers (CD366, CD95, CD57, CD278, CD152, CD134; Figure 5A), as well as cell 

populations expressing IL17 (e.g., CD366+ IL17+; Figure 5B) and IL4 (CD57+ CD4+ 

CD278+ CD152+ IL4+; Figure 5B). In contrast, cell populations expressing TNF were 

diminished post-treatment (Figures 5A and 5B).  Similar results were found in the 

threshold-based analysis (data not shown).  In sum, the data suggests that after 

treatment, cHL patients have increased polarization of cells toward Th2 and Th17 

functions, rather than Th1 function, and cells expressing cytokines in post-treatment 
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patients may be more prone to exhaustion than healthy donors. Our model achieved a 

cross-validated AUC of 0.91 (p<0.0001), rivaling CellCNN (AUC=0.92) and outperforming 

FlowSOM (AUC=0.83).  

 

Recursive feature analysis (Figure 5C) of the non-gating data shows that CD95, TNF, 

and IL17 are the minimal set of markers needed to identify differences between post-

treatment patients and healthy donors (cross-validated AUC=0.80; p<0.001; Figure 5D). 

In particular, IL17+ cells are elevated post-treatment compared to healthy donors 

(p<0.0001, Figure 5D).  These findings are complementary to, and consistent with, the 

output of earlier steps in the algorithm: post-treatment patients have reduced Th1 (i.e., 

IFNγ or TNF) responses, and more exhausted cells primed for apoptosis (CD95+) than 

healthy donors. 

 

Selected phenotypes validate to new data 

 

To further demonstrate the concordance between our novel non-gating approach and 

traditional threshold-based analysis, we selected the 12 phenotypes most significantly 

over or under-expressed in newly-diagnosed cHL patients compared to healthy donors. 

We then manually gated cells with the same phenotype in an independent cohort of 20 

individuals. Of the 12 phenotypes generated by our non-gating TerraFlow algorithm, 11 

validated to new data when measured with traditional, threshold-based gating (p<0.05). 

Individual populations from the Checkpoint panel (Figure 6A) differed strongly between 

newly-diagnosed cHL patients and healthy donors with a median fold-change of 5.4 and 

p-value of 0.0044 in the validation set (Figure 6A). We then trained a logistic regression 

model on non-gating expression in the original dataset and applied it to the traditional 

frequencies in the validation dataset. The model achieved perfect separation between 

healthy and cHL patients using the 12 selected cell types (p<0.0001), outperforming 

FlowSOM- and CellCNN-based analyses (Figure 6A). Similar results were observed with 

populations identified from the Cytokine panel analyses, with all three algorithms 

achieving perfect separation (Figure 6B). 
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Discussion 
 

TerraFlow provides several advantages over current data analysis approaches. First, 

TerraFlow performs an exhaustive search for disease-associated cell types. In the 

checkpoint panel, FlowSOM identified one cluster that was weakly associated with cHL 

in a follow-up experiment. CellCNN identified populations that were stronger correlates of 

cHL but only reported two phenotypes. By contrast, TerraFlow consistently found ten or 

more unique cell types that were each strongly correlated to cHL and validated to new 

data.  

 

Second, TerraFlow defines each population with an explicit phenotype. FlowSOM and 

CellCNN represent populations with complex transformations of the entire panel. By 

contrast, TerraFlow selects phenotypes that can be described with just one or two 

markers, only adding three or more if necessary to define the target population. Gating 

strategies can be directly implemented in traditional flow cytometry software. They can 

be validated using smaller panels typically used in large typical trials. For deeper 

characterization, gating strategies can be used to sort populations for downstream 

experiments such as functional assays or whole-transcriptome sequencing. Whereas 

traditional methods require extensive downstream interpretation, TerraFlow populations 

can be directly isolated and developed as putative biomarkers.  

 

Finally, TerraFlow provides superior ease of use. Existing methods require users to 

anticipate the number of clusters or tune arcane machine learning parameters. By 

contrast, TerraFlow doesn’t require any input beyond clean FCS data and patient labels. 

Our non-gating approach even obviates the need for manual thresholds, approximating 

Boolean gates without using fluorescent cutoffs at all. We show that that the non-gating 

approach captures expression changes within the target population, increasing overall 

predictive power. Selected phenotypes easily translate to classical hand-drawn gates. 

 

Our study of patients with cHL provides a rich and finely detailed analysis of the 

immunophenotypes and functional features of T-cells before and after treatment.  Many 
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cell types expressing markers of T-cell exhaustion and activation are elevated in newly-

diagnosed (untreated) patients, revealing extensive, systemic alterations in T-cell subset 

representation in patients. These alterations include changes in the polarization of 

function in T-cell subsets, as cells are more likely to be TH17 and TC17 cells than TH1 

cells in untreated patients (compared to healthy donors). The loss of IFNγ+ cells in cHL 

patients may release the brakes on IL17-responses. Our results offer potential 

mechanistic explanations for immune dysfunction in cHL patients. Our results also 

suggest that other immune checkpoint targets beyond PD1 may be valuable in cHL 

treatment, such as CD152 (CTLA), CD366 (TIM3), CD278 (ICOS), CD272 (BTLA), TIGIT, 

GITR, or cell surface CCR4 and CCR6 (to target TH17 cells). Interestingly, around three 

months post-treatment, patients still exhibit an altered T-cell immune checkpoint and 

functional landscape, even though the levels of PD1-expressing cells have normalized; 

future studies will test whether particular alterations in immune checkpoints are 

associated with cHL relapse.   
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Figure 1. A) TerraFlow introduces a new method for constructing populations by 
transforming fluorescence signal by a sigmoid function. The non-gating approach weights 
bright, multi-positive cells heavily. TerraFlow also constructs populations from 
combinations of gates defined by manual thresholds. B) Populations constructed with 
either the non-gating or traditional Boolean approaches are tested for their association 
with study groups, and arranged into a network by adding edges where nodes differ by 
the addition or removal of one marker. Each node is then queried to determine if its 
correlation is stronger than any adjacent node. Nodes with the highest correlation to 
outcome are selected as an optimum representative of a family of cell populations. C) 
Recursive Feature Elimination (RFE) iteratively tests machine learning models, beginning 
with a model containing all markers, followed by models that remove one marker at a 
time. The markers whose removal adversely impacts AUC are those deemed necessary 
to discriminate the patient groups. D) TerraFlow filters the dataset from ~200,000 cell 
populations to identify unique, disease-associated cell types and the minimal set of 
markers that define the difference between patient groups. E) Comparison between non-
gating and threshold-based gating shows that non-gating captures more variation in 
expression levels from within traditional positive and negative gates. 
 
Figure 2. A) Distributions for most statistically significant immunophenotypes across 
patient groups (healthy vs. newly-diagnosed cHL; Checkpoint Panel). B) Heat map 
depicting marker frequency (columns) within each phenotype. Adjacent bar graph shows 
correlation between population frequency and patient group. C) Classification of healthy 
and newly-diagnosed patients using phenotypes identified by TerraFlow in a ridge logistic 
regression model; results are compared to CellCNN and FlowSOM. D) Validation of 
model with training-test set approach. 
 
Figure 3. A) RFE identifies PD1, CD103, CCR7, and GITR as a minimal set of markers 
needed to distinguish healthy donors from newly-diagnosed patients. B) Select 
phenotypes that contain RFE-selected markers, and their correlation with patient group. 
C) Machine learning model including only RFE-selected markers distinguishes healthy 
from newly-diagnosed patients in an independent validation cohort of 20 patients. D) 
Results from training and validation sets. E) Difference in abundance of GITR+PD1+ cells 
across patient groups.  
 
Figure 4. A) Distributions for most statistically significant immune function phenotypes 
across patient groups (healthy vs. newly-diagnosed cHL; Cytokine Panel). B) Heat map 
depicting marker frequency (columns) within each phenotype. Adjacent bar graph shows 
correlation between population frequency and patient group. C) RFE identifies IL4 and 
CD278 as a minimal set of markers needed to distinguish healthy donors from newly-
diagnosed patients. D) Machine learning model including only RFE-selected markers 
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distinguishes healthy from newly-diagnosed patients in an independent validation cohort 
of 20 patients. E) Results from 10-fold cross validation with training and test datasets. F) 
Results from training and independent validation cohort of 20 patients. G) Difference in 
abundance of IL4+ cells across patient groups. 
 
Figure 5. A) Distributions for most statistically significant immune function phenotypes 
across patient groups (newly-diagnosed vs. post-treatment cHL; Cytokine Panel). B) Heat 
map depicting marker frequency (columns) within each phenotype. Adjacent bar graph 
shows correlation between population frequency and patient group. C) RFE identifies 
CD95, TNF, and IL17 as a minimal set of markers needed to distinguish pre- and post-
treatment patients. D) Machine learning model including only RFE-selected markers 
distinguishes healthy from newly-diagnosed patients in an independent validation cohort 
of 20 patients. E) Results from 10-fold cross validation with training and test datasets. F) 
Difference in abundance of IL17+ cells across patient groups. 
 
Figure 6. A) Immune checkpoint phenotypes identified in the training dataset with the non-
gating approach can be identified by manual gating in the independent validation cohort, 
and then frequencies can be compared across patient groups to show that results from 
the non-gating approach are faithfully replicated. B) Immune function profiles, identified 
with the Cytokine Panel, can also be replicated across non-gating and traditional 
approaches. 
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Supplemental Figure 1
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Supplemental Table 1 
Immune Checkpoint 
Panel 

Dye Vendor 

CCR7 BB515 BD Biosciences 
CD244 PerCP-Cy55 BioLegend 
CD57 BB790 BD Biosciences 
CD45RO APC BioLegend 
HLADR R700APC BD Biosciences 
GITR APC-Fire750 BioLegend 
CD278 BV421 BD Biosciences 
CD95 BV480 BD Biosciences 
CD103 BV605 BD Biosciences 
CD183 BV650 BioLegend 
CD134 BV711 BD Biosciences 
CD69 BV750 BD Biosciences 
CD4 BV786 BD Biosciences 
CD137 BUV395 BD Biosciences 
LIVE/DEAD FIXABLE 
BLUE 

 Thermo-Fisher 

CD3 BUV496 BD Biosciences 
CD25 BUV563 BD Biosciences 
CD366 BUV661 BD Biosciences 
CD279 BUV737 BD Biosciences 
CD8 BUV805 BD Biosciences 
TIGIT PE Thermo-Fisher 
CD272 CF594PE BD Biosciences 
CD127 PE-CY5 BioLegend 
CD152 PE-CY7 Thermo-Fisher 
Cytokine Panel Dye Vendor 
IL4 BB515 BD Biosciences 
CD57 BB790 BD Biosciences 
CD45RO APC BD Biosciences 
CD3 H750APC BD Biosciences 
IL13 BV421 BD Biosciences 
IL17 BV510 BD Biosciences 
CD152 BV605 BD Biosciences 
CD134 BV711 BD Biosciences 
IFNG BV750 BD Biosciences 
CD4 BV786 BD Biosciences 
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CCR7 BUV395 BD Biosciences 
LIVE/DEAD FIXABLE 
BLUE 

 Thermo-Fisher 

CD366 BUV661 BD Biosciences 
CD279 BUV737 BD Biosciences 
CD8 BUV805 BD Biosciences 
CD95 PE BD Biosciences 
CD278 CF594PE BD Biosciences 
TNF PECY7 BD Biosciences 
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Supplemental Table 2 

Comparison Panel Group 1 Group 2 

Newly-diagnosed 
vs. healthy 

Checkpoint 30 cHL 25 healthy 

Cytokine 28 cHL 25 healthy 

Post-treatment vs. 
healthy 

Checkpoint 25 cHL 25 healthy 

Cytokine 21 cHL 25 healthy 

Pre- vs. post-
treatment 

Checkpoint 34 pre 34 post 

Cytokine 33 pre 33 post 
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Figure 1. A) TerraFlow introduces a new method for constructing populations by 
transforming fluorescence signal by a sigmoid function. The non-gating approach weights 
bright, multi-positive cells heavily. TerraFlow also constructs populations from 
combinations of gates defined by manual thresholds. B) Populations constructed with 
either the non-gating or traditional Boolean approaches are tested for their association 
with study groups, and arranged into a network by adding edges where nodes differ by 
the addition or removal of one marker. Each node is then queried to determine if its 
correlation is stronger than any adjacent node. Nodes with the highest correlation to 
outcome are selected as an optimum representative of a family of cell populations. C) 
Recursive Feature Elimination (RFE) iteratively tests machine learning models, beginning 
with a model containing all markers, followed by models that remove one marker at a 
time. The markers whose removal adversely impacts AUC are those deemed necessary 
to discriminate the patient groups. D) TerraFlow filters the dataset from ~200,000 cell 
populations to identify unique, disease-associated cell types and the minimal set of 
markers that define the difference between patient groups. E) Comparison between non-
gating and threshold-based gating shows that non-gating captures more variation in 
expression levels from within traditional positive and negative gates. 
 
Figure 2. A) Distributions for most statistically significant immunophenotypes across 
patient groups (healthy vs. newly-diagnosed cHL; Checkpoint Panel). B) Heat map 
depicting marker frequency (columns) within each phenotype. Adjacent bar graph shows 
correlation between population frequency and patient group. C) Classification of healthy 
and newly-diagnosed patients using phenotypes identified by TerraFlow in a ridge logistic 
regression model; results are compared to CellCNN and FlowSOM. D) Validation of 
model with training-test set approach. 
 
Figure 3. A) RFE identifies PD1, CD103, CCR7, and GITR as a minimal set of markers 
needed to distinguish healthy donors from newly-diagnosed patients. B) Select 
phenotypes that contain RFE-selected markers, and their correlation with patient group. 
C) Machine learning model including only RFE-selected markers distinguishes healthy 
from newly-diagnosed patients in an independent validation cohort of 20 patients. D) 
Results from training and validation sets. E) Difference in abundance of GITR+PD1+ cells 
across patient groups.  
 
Figure 4. A) Distributions for most statistically significant immune function phenotypes 
across patient groups (healthy vs. newly-diagnosed cHL; Cytokine Panel). B) Heat map 
depicting marker frequency (columns) within each phenotype. Adjacent bar graph shows 
correlation between population frequency and patient group. C) RFE identifies IL4 and 
CD278 as a minimal set of markers needed to distinguish healthy donors from newly-
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diagnosed patients. D) Machine learning model including only RFE-selected markers 
distinguishes healthy from newly-diagnosed patients in an independent validation cohort 
of 20 patients. E) Results from 10-fold cross validation with training and test datasets. F) 
Results from training and independent validation cohort of 20 patients. G) Difference in 
abundance of IL4+ cells across patient groups. 
 
Figure 5. A) Distributions for most statistically significant immune function phenotypes 
across patient groups (newly-diagnosed vs. post-treatment cHL; Cytokine Panel). B) Heat 
map depicting marker frequency (columns) within each phenotype. Adjacent bar graph 
shows correlation between population frequency and patient group. C) RFE identifies 
CD95, TNF, and IL17 as a minimal set of markers needed to distinguish pre- and post-
treatment patients. D) Machine learning model including only RFE-selected markers 
distinguishes healthy from newly-diagnosed patients in an independent validation cohort 
of 20 patients. E) Results from 10-fold cross validation with training and test datasets. F) 
Difference in abundance of IL17+ cells across patient groups. 
 
Figure 6. A) Immune checkpoint phenotypes identified in the training dataset with the non-
gating approach can be identified by manual gating in the independent validation cohort, 
and then frequencies can be compared across patient groups to show that results from 
the non-gating approach are faithfully replicated. B) Immune function profiles, identified 
with the Cytokine Panel, can also be replicated across non-gating and traditional 
approaches. 
 
Supplemental Figure 1: A) Antibody staining from a representative patient. B) Left panel: 
As the number of parameters in a combinatorial phenotype increase, many of the putative 
cell populations are undetectable. Beyond five markers, >95% of the theoretical 
phenotypes produced by exhaustive combinatorics are not represented in the dataset. 
Right panel: Discrimination of cHL versus healthy patients does not improve as 
phenotypes contain more than five markers. 
 
Supplemental Figure 2: A) Correlation between frequencies of cells identified by non-
gating and Boolean approaches, for single, two, three, and four marker phenotypes.  B) 
The association with patient group is correlated for single marker phenotypes regardless 
of whether non-gating or Boolean gating is used. For more complex phenotypes, defined 
by 3-5 markers (3N-5N), results are less correlated for the approaches. TerraFlow favors 
the identification and reporting of simpler phenotypes. 
 
Supplemental Figure 3. A) Distributions of the most statistically significant phenotypes 
across patient groups (healthy vs. newly-diagnosed cHL; Checkpoint Panel; traditional 
Boolean Gating). B) Heat map depicting marker frequency (columns) within each 
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phenotype. Adjacent bar graph shows correlation between population frequency and 
patient group. C) Classification of healthy and newly-diagnosed patients using 
phenotypes identified by TerraFlow in a ridge logistic regression model; results are 
compared to CellCNN and FlowSOM. D) RFE analysis identifies a broad ensemble of 
markers necessary to identify differences between patient groups. E) Correlation with 
study group for select phenotypes that contain RFE-selected markers. F) Model, 
validation, and data for selected RFE-defined phenotypes. 
 
Supplemental Figure 4. A) Distributions of the most statistically significant phenotypes 
across patient groups (healthy vs. newly-diagnosed cHL; Cytokine Panel; traditional 
Boolean Gating). B) Heat map depicting marker frequency (columns) within each 
phenotype. Adjacent bar graph shows correlation between population frequency and 
patient group. C) Classification of healthy and newly-diagnosed patients using 
phenotypes identified by TerraFlow in a ridge logistic regression model; results are 
compared to CellCNN and FlowSOM. D) Results for 10-fold cross-validation. E) UMAP 
projections of healthy donor data, pre-treatment patient data, and overlay of FlowSOM-
generated clusters. F) Distributions of frequencies for FlowSOM-defined clusters (top) 
and CellCNN-define populations (bottom) across patient groups. G) Marker expression 
across clusters (FlowSOM) and Kernels (CellCNN), and correlation with outcome.  
 
Supplemental Figure 5. A) Distributions of the most statistically significant phenotypes 
across patient groups (pre- vs. post-treatment; Checkpoint Panel; non-gating approach). 
B) Heat map depicting marker frequency (columns) within each phenotype. Adjacent bar 
graph shows correlation between population frequency and patient group. C) 
Classification of pre- and post-treatment patients using phenotypes identified by 
TerraFlow; results are compared to CellCNN and FlowSOM. 
 
Supplemental Figure 6. A) Distributions of the most statistically significant phenotypes 
across patient groups (post-treatment cHL patients vs. healthy donors; Checkpoint Panel; 
non-gating approach). B) Heat map depicting marker frequency (columns) within each 
phenotype. Adjacent bar graph shows correlation between population frequency and 
patient group. C) RFE analysis identifies CD4, CCR7, CD152, and CD57 as markers 
necessary to identify differences between patient groups. D) Model, validation, and data 
for selected RFE-defined phenotypes. 
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