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 2 

ABSTRACT 1 

Background: Cerebrovascular events (CVE) are one of the most feared complications of 2 

transcatheter aortic valve replacement (TAVR). CVE appear difficult to predict due to their 3 

multifactorial origin incompletely explained by clinical predictors. We aimed to build a deep 4 

learning-based predictive tool for TAVR-related CVE. 5 

Methods: Integrated clinical and imaging characteristics from consecutive patients enrolled 6 

into a prospective TAVR registry were analysed. CVE comprised any strokes and transient 7 

ischemic attacks. Predictive variables were selected by recursive feature reduction to train an 8 

autoencoder predictive model. Area under the curve (AUC) represented the model’s 9 

performance to predict 30-day CVE. 10 

Results: Among 2,279 patients included between 2007 and 2019, both clinical and imaging 11 

data were available in 1,492 patients. Median age was 83 years and STS score was 4.6%. 12 

Acute (<24 hours) and subacute (day 2-30) CVE occurred in 19 (1.3%) and 36 (2.4%) 13 

patients, respectively. The occurrence of CVE was associated with an increased risk of death 14 

(HR [95%CI]: 2.62 [1.82-3.78]). The constructed predictive model uses less than 107 clinical 15 

and imaging variables and has an AUC of 0.79 (0.65-0.93). 16 

Conclusions: TAVR-related CVE can be estimated using a deep learning-based predictive 17 

algorithm. The model was implemented online for broad usage. 18 

(https://www.welcome.alviss.ai/#/cvecalculator). 19 

 20 

Keywords: cerebrovascular events, transcatheter aortic valve replacement, machine learning, 21 
deep learning, artificial neural network  22 
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 3 

INTRODUCTION 1 

 Deep learning is a subset of machine learning where artificial neural networks, 2 

algorithms inspired by the structure and function of the human brain, learn complex 3 

relationships from large amounts of data to make accurate predictions1,2. In certain fields, 4 

artificial neural networks have been shown to exceed human abilities1,2. The ability of deep 5 

learning to recognize patterns and learn valuable features from raw input data without requiring 6 

human intervention has a potential to help in acquiring, interpreting, and synthesizing growing 7 

medical data to improve clinical care3. Thus, deep learning is now increasingly investigated and 8 

utilized in the medical filed, of which cardiovascular medicine is no exception4,5. As a wide 9 

variety of data such as clinical data, laboratory data, imaging data, and procedural data needs 10 

to be integrated and considered for preprocedural planning, performing, and post-procedural 11 

care of transcatheter aortic valve replacement (TAVR), the field may particularly benefit from 12 

the implementation of deep learning6-8. 13 

 Cerebrovascular events (CVE) are rare but yet the most feared complications in patients 14 

undergoing TAVR9. Despite continuous improvements in technique and devices, the risk of 15 

CVE remains fairly stable across randomized as well as observational studies10,11. Hence, the 16 

challenge of CVE prevention is an unmet clinical need and will gain particular topicality with 17 

the extension of TAVR to lower risk and younger patients at hand. Histological analysis of 18 

debris captured by cerebral protection devices during TAVR has shown that not only thrombus, 19 

but also aortic valve and wall tissue, calcium and connective tissue embolize in the 20 

cerebrovascular circulation during the procedure, suggesting multiple and complex 21 

mechanisms of CVE in patients undergoing TAVR12. Although several independent risk 22 

factors, such as atherosclerosis, atrial fibrillation, use of balloon dilatation, and device 23 

dislocation or embolization have been suggested9,13-18, no predictive tool regrouping all possible 24 

contributing factors has been proposed so far. This might be because conventional statistical 25 
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 4 

approaches such as logistic regression fail to integrate the multifactorial interactive relationship 1 

of numerous possible predictors of CVE which statistically remain “rare” events. 2 

We therefore aimed to apply a deep learning method to develop a predictive model for 3 

CVE after TAVR.  4 

 5 

METHODS 6 

Study population 7 

 Between August 2007 and February 2019, clinical, procedural and follow-up data of 8 

2,279 consecutive patients undergoing TAVR for aortic stenosis were prospectively enrolled 9 

into an institutional registry that forms part of the Swiss TAVR registry (NCT01368250)11. For 10 

the purpose of the present study, we selected patients with adequate preprocedural multi-11 

detector computed tomography (MDCT) data from the registry as we hypothesized that imaging 12 

data is important for CVE predicting modelling. 13 

The indication for TAVR was decided based on the evaluation of the local Heart Team. 14 

The procedure was performed according to standardized protocols regarding the access site, 15 

type and size of the device, based on a comprehensive evaluation of clinical, biological and 16 

anatomical characteristics as per echocardiography and MDCT for each patient at baseline. 17 

Procedural anticoagulation was achieved with administration of intravenous heparin at an initial 18 

dose of 5000 IU or 70 IU/kg, aiming at an activated clotting time (ACT) of 250 to 300 seconds. 19 

The preferred antithrombotic treatment after TAVR comprised dual antiplatelet therapy (aspirin 20 

and clopidogrel) for 6 months followed by lifelong aspirin in patients without indication for 21 

oral anticoagulation, but ticagrelor or prasugrel were accepted in presence of concomitant 22 

indication such as recent percutaneous coronary revascularisation. In patients with atrial 23 

fibrillation or other indication for oral anticoagulation, the anti-thrombotic regimen comprised 24 
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an anticoagulant agent alone or a combination with single or dual antiplatelet therapy as tailored 1 

according to patient comorbidities. The registry is approved by the Bern cantonal ethics 2 

committee and all participants provided written informed consent prior to inclusion. The study 3 

was conducted in compliance with the Declaration of Helsinki. 4 

Computed tomography evaluation 5 

 Contrast-enhanced ECG-gated MDCT examinations were performed on either a 6 

Siemens Somatom Sensation Cardiac 64 scanner with a slice collimation of 1.5 mm or a 7 

Siemens Somatom Definition Flash Dual-Source scanner with a slice collimation of 0.6 m, tube 8 

voltage of 100 or 120 kV, and tube current according to patient size (Siemens Medical 9 

Solutions, Inc., Forchheim, Germany) as previously described19. Acquired CT images were 10 

independently re-evaluated on a dedicated workstation (3mensio Structural Heart, 3mensio 11 

Medical Imaging BV, Bilthoven, The Netherlands). Basic measurements were made in 12 

accordance with a current expert consensus document20. Calcium volume in the aortic valve 13 

complex and mitral valve complex were measured as previously described19,21. Ascending aorta 14 

length is defined in the presented study as the distance at which the line drawn perpendicular to 15 

the aortic valve annulus plane hits the ascending aortic wall (Figure 1). 16 

Study objectives  17 

 The primary objective of this study was to build a predictive model for TAVR-related 18 

cerebrovascular events. We also aimed to investigate the relative importance of clinical and CT 19 

imaging variables for CVE risk prediction, and to evaluate the impact of CVE on mortality. 20 

The primary endpoint was the area under the receiver operating curve (AUC), the most 21 

widely used measure of global performance of predictive models. 22 

Clinical endpoints/outcomes 23 

 All data were entered into a dedicated web-based database held at the Clinical Trials 24 

Unit of the University of Bern. A clinical event committee adjudicated all adverse events based 25 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted September 14, 2021. ; https://doi.org/10.1101/2021.09.10.21263380doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.10.21263380


 6 

on the Valve Academic Research Consortium (VARC) criteria22. Vital status and date of 1 

censoring or death were recorded in the registry. 2 

All CVE, including any stroke and transient ischemic attack (TIA), were recorded. 3 

Whenever stroke and transient ischemic attack was suspected, patients underwent examination 4 

by a board-certified neurologist and underwent diagnostic neuroimaging at his discretion. 5 

Stroke and transient ischaemic attack were defined in accordance with the definition of a central 6 

nervous system (CNS) type 1 and type 3a event, respectively (ARC)23. Stroke events were 7 

further subdivided into disabling and non-disabling as per VARC-222. We hypothesized that 8 

TAVR related CVE occurred within 30 days after the procedures and considered all acute and 9 

subacute CVE as the primary outcome for predictive modelling.  10 

Deep learning predictive modelling 11 

 Machine learning modeling refers to the development of a mathematical representation 12 

of data by a training process. Given the highly unbalanced character of the predicted class (only 13 

3.7% of patients presented a 30-day CVE versus 96.3% did not) we chose a rare-event 14 

autoencoder to be the prediction model24. 15 

 The rare event autoencoder is made of 2 modules of neural networks: encoder and 16 

decoder. The former learns the underlying features representing the input data while the latter 17 

tries to recreate the original data from the features learned. The model is trained using the data 18 

of patients who did not present an event. When confronted with new data a reconstruction mean 19 

squared error (MSE) between the predicted data and the ground truth was used to estimate the 20 

risk of CVE. When the MSE is above a specified threshold we consider that the patient is at 21 

risk of CVE. Clinically it corresponds to an estimation of how a given patient differs from the 22 

population that usually does not develop a 30-day CVE regarding a range of clinical, biological 23 

and imaging characteristics. The threshold is chosen from the analysis of the precision-recall 24 

curve of the validation data (Supplementary Figure 1). 25 
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 Categorical variables were entered in the model after one-hot-encoding pre-processing. 1 

Variable importance was used for variable selection and estimated based on the impact of its 2 

neutralization (median value for continuous variables and 0 for categorical variables) on model 3 

performance. The selected variables are displayed ranked by importance in Supplementary 4 

Table 2 and Figure 2. 5 

Statistical analysis 6 

 Continuous and categorical variables are presented as medians (interquartile range) and 7 

as counts (percentage). Those were assessed with Mann–Whitney U test for continuous 8 

variables, and Chi square or Fisher exact test as appropriate for categorical variables. 9 

Collinearity was assessed prior to model building by analysis of the correlation matrix. Missing 10 

values ranged from 3.2 to 17.5% (overall 7.6%) and were treated with multiple imputations by 11 

a Monte Carlo dropout autoencoder25.  12 

Model performance was evaluated on the test set calculating the AUC The overall 13 

database was randomly split into a train dataset (2/3 of total) used for model training and an 14 

independent test dataset (1/3) used for performance evaluation. The validation set represented 15 

20% of the training set. The model was trained using python 3.7.9 and keras 2.4.3 software on 16 

MacBook Pro 2.4 GHz 8-Core Intel Core i9. 17 

Python 3.7.9 (Python Software Foundation), R 3.6.1 (R Core Team, R A language and 18 

environment for statistical computing, R Foundation for Statistical Computing (Vienna, 19 

Austria. URL https://www.R-project.org/) and SPSS 23 (IBM SPSS Statistics for Windows, 20 

Version 23.0 Armonk, NY: IBM Corp) software were used to perform the statistical and 21 

machine learning analysis. P-value <0.05 was considered significant unless otherwise specified. 22 

 23 

RESULTS 24 
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 Out of a total of 2279 patients included in the Bern TAVR database, 1492 patients had 1 

complete clinical and MDCT data (65%) (Figure 2). Baseline characteristics are summarized 2 

in Tables 1 and 2. The median age of the population was 83.2 years (interquartile range [IQR] 3 

79.4-86) and 48% were female. Twelve percent of patients had a history of prior stroke or TIA, 4 

and one third of patients had a history of atrial fibrillation. After a median duration of follow-5 

up of 3 (1-4.3) years, 105 patients had experienced at least one CVE (7.8%) during the follow-6 

up period. CVE occurred within the first 24 hours in 19 patients (acute CVE), and between day 7 

1 and day 30 in 36 patients (subacute CVE), accounting for a total of 55 events (3.7%) between 8 

the procedure and 30 days. Event-free survival rates for CVE were 96.3% (95%CI: 95.3-97.3) 9 

at 30 days, 94.6% (95%CI: 93.3-95.7) at 1 year, and 92.9% (91.5-94.3) at 2 years. Acute CVE 10 

were disabling strokes in 79% of cases (Table 3). The risk of stroke peaked within the first 24 11 

hours and levelled off within the first month, after which the risk of CVE remained stable over 12 

time (Figure 3). All-cause mortality during the observation period amounted to 32.6% (95%CI: 13 

30-35.2%), and the occurrence of CVE within 30 days was associated with an increased risk of 14 

death (univariate HR [95%CI]: 2.62 [1.82-3.78], p<0.001) (Figure 4). 15 

TAVR-related CVE predictive model 16 

 An extensive set (>100 variables) of clinical, biological, imaging, and procedural 17 

characteristics as well as complications were considered for the deep learning predictive 18 

modelling (Tables 1, 2). Recursive feature elimination by variable importance suggested a drop 19 

in predictive performance when less than the 63 variables were included in the model 20 

(Supplementary Figure 2). The trained model included 2 hidden layers in the encoder and 21 

decoder and used MDCT data (variables represented aortic calcium volume, aortic annulus and 22 

left ventricle outflow tract dimensions, ascending aorta dimensions and angulation), along with 23 

other clinical data (Figure 1, Supplementary Figure 2, Supplementary Tables 1 and 2). The 24 

constructed predictive model had an AUC of 0.79 (0.65-0.93) (Figure 5).  25 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted September 14, 2021. ; https://doi.org/10.1101/2021.09.10.21263380doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.10.21263380


 9 

 1 

DISCUSSION 2 

 Herein we propose a novel predictive model for TAVR-related CVE. The proposed 3 

model implements the deep neural network-type of algorithm and yields a satisfactory 4 

predictive performance with an AUC of 0.79 (0.65 to 0.93). Our study also suggests that 5 

imaging data could be as important as clinical characteristics for the construction of predictive 6 

models for cardiovascular procedures, although both types of variables are used in synergy by 7 

the constructed model developed for CVE. 8 

CVE remains one of the most feared adverse events complicating TAVR. Despite 9 

fifteen years of improvement of the technique and refinement of TAVR devices, the occurrence 10 

of CVE during the peri-operative period remains notable10,11.  Preventive strategies for TAVR-11 

related CVE are yet to provide evidence for their effectiveness. Cerebral protection devices 12 

have so far not been proven to reduce the risk of clinical CVE and none of the investigated 13 

antithrombotic strategies has shown protective effects in clinical investigations26-29. The need 14 

for further investigation has been underscored by the Academic Research Consortium Initiative 15 

consensus proposing a standardized neurological endpoint evaluation for clinical research 16 

(NeuroARC)23. 17 

Previous studies have identified various risk factors for CVE in patients undergoing 18 

TAVR, which included clinical data such as atrial fibrillation and history of CVE, imaging data 19 

such as calcification of the aortic valve complex and reduced native and prosthetic aortic valve 20 

area, and procedural data such as balloon dilatation and device dislocation or embolization9,13-21 

18, however, a prediction model for stroke integrating all these factors have not been developed 22 

to date. Our data suggest an intricate relationship between clinical characteristics, anatomical 23 

features, peri-interventional antithrombotic management, and procedural complications to yield 24 

an overall risk estimation for CVE30,31. Albeit severe, CVE after TAVR is an infrequent event 25 
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which renders the classical predictive approach based on univariate then multivariable 1 

regression techniques difficult to implement. The multifactorial nature of peri-TAVR CVE 2 

makes this approach further difficult. As suggested in our study, a justified deep learning 3 

approach has the potential to overcome such difficulties. Although, imaging parameters have 4 

not been identified as associated with CVE on conventional univariate analysis (Table 2), the 5 

autoencoder model exploited them to yield a satisfactory predictive performance. More 6 

interestingly, we observed a synergic exploitation of imaging data along clinical characteristics 7 

which suggests that predictive modelling could benefit from the inclusion of diverse types of 8 

data for their complementarity. This is, to the best of our knowledge, the first study proposing 9 

a predictive tool for TAVR-related CVE. The constructed model has been implemented by 10 

means of an open source online calculator (https://www.welcome.alviss.ai/#/cvecalculator). This 11 

online calculator may help improve risk stratification of patients undergoing TAVR and tailor 12 

subsequent follow-up and management strategies by recognizing high risk of CVE. 13 

Precision medicine aims at adapting decision to a patient given his/her characteristics 14 

intended for a deep phenotyping. Machine learning models allow a holistic approach by 15 

analysing complex interactions between an extensive number of patient characteristics. In the 16 

present investigation, medical history, symptoms, treatment, imaging and procedural 17 

characteristics were entered and analysed using an autoencoder algorithm. Our results suggest 18 

an existing ground for the interaction between imaging features such as valve tissue 19 

calcification and dimensions of the aortic valve complex, and clinical features to yield CVE. 20 

Additional imaging data such as MRI, extensive biological (including per-operative coagulation 21 

function estimation or genetics) and environmental profiling may further improve risk 22 

assessment. However, the predictive model would require to be adapted for routine clinical 23 

practice. The present study is another example of an increasing implementation of machine 24 

learning tools to analyse large healthcare databases32.  25 
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Limitations 1 

First, the Bern TAVR registry is a manually built database prone to transcription error 2 

although our results are consistent with previous reports33,34. Second, frailty indexes are lacking 3 

in the present registry and could improve the predictive performance. Third, given constraints 4 

relative to our model we could provide only relative variable weighting to explain its 5 

functioning4. Forth, CT imaging characteristics were obtained using the 3mensio software, 6 

however any other software using 3D reconstruction would allow operators to obtain the 7 

measurements. Fifth, the cohort studied in the present study is representative of a Western 8 

population in a single-center. As the predictors of CVE might differ in a different population 9 

because of ethnic, environmental, and genetic factors, that were not recorded in the registry, 10 

further external validation in an independent cohort is warranted. Lastly, this is an observational 11 

study based on a large prospective TAVR registry including nearly 1,500 patients. The 12 

occurrence of TAVR-related CVE was however observed in 55 patients only. We used the rare 13 

event autoencoder for prediction to address this limitation, however, the small number of events 14 

did not allow separate analyses of acute (procedural) and subacute CVE, respectively. Future 15 

machine learning research with a larger population is warranted to develop a refined model for 16 

predicting TAVR-related CVE. 17 

 18 

CONCLUSIONS 19 

 Despite their complex pathophysiology and rarity, TAVR-related CVE can be predicted 20 

by using artificial neural networks. The model was implemented online for broad usage 21 

(https://www.welcome.alviss.ai/#/cvecalculator). The proposed approach illustrates the potential of 22 

artificial intelligence in developing prediction models for multifactorial adverse events such as 23 

CVE. 24 

 25 

  26 
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Tables 

Table 1. Patient clinical characteristics by occurrence of cerebrovascular event within 30 days after TAVR. 

 
Total 

(n = 1492) 

No CVE 

(n=1437) 

CVE 

(n=55) 

P value 

Female, n (%) 711 (47.7) 685 (47.7) 26 (47.3) 0.99 

Age, years 83.2 (79.4-86) 83.1 (79.4-86.1) 83.4 (79.3-87.4) 0.27 

Height, cm 165 (159-172) 165 (159-172) 165 (160-17) 0.67 

Weight, kg 71 (62-82) 71 (62-82) 67 (59-84.5) 0.28 

STS-PROM (%) 4.6 (3.2-7.0) 4.6 (3.1-7.0) 4.6 (3.1-7.0) 0.45 

Concomitant diseases/history     

    Hypertension, n (%) 1268 (85.0) 1219 (84.8) 49 (89.1) 0.49 

    Dyslipidemia, n (%) 975 (65.3) 941 (65.5) 34 (61.8) 0.67 

    Diabetes mellitus, n (%) 370 (24.8) 363 (25.3) 7 (12.7) 0.051 

    Dialysis, n (%) 30 (2.0) 29 (2.0) 1 (1.8) 0.99 

    Chronic obstructive pulmonary disease, n (%) 195 (13.1) 187 (13) 8 (14.5) 0.89 

    Coronary artery disease, n (%) 945 (63.3) 910 (63.3) 35 (63.6) 0.99 
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         History of cardiac surgery, n (%) 224 (15.0) 216 (15.0) 8 (14.5) 0.99 

        Angina pectoris CCS 3 or 4, n (%) 118 (7.9) 113 (7.8) 5 (9.1) 0.54 

    Prior syncope, n (%) 183 (12.3) 175 (12.2) 8 (14.5) 0.75 

    Prior stroke/TIA, n (%) 174 (11.7) 162 (11.3) 12 (21.8) 0.029 

    Prior carotid artery disease, n (%) 168 (11.3) 155 (10.8) 13 (23.6) 0.006 

    Peripheral artery disease, n (%) 220 (14.7) 209 (14.5) 11 (20) 0.35 

    Atrial fibrillation, n (%) 492 (33) 471 (32.8) 21 (38.2) 0.49 

    Previous pacemaker implantation, n (%) 139 (9.3) 134 (9.3) 5 (9.1) 0.99 

Medication at baseline     

    Aspirin, n (%) 929 (62.3) 894 (62.2) 35 (63.6) 0.94 

    Clopidogrel, n (%) 273 (18.3) 265 (18.4) 8 (14.5) 0.57 

    Prasugrel, n (%) 7 (0.5) 7 (0.5) 0 0.99 

    Ticagrelor, n (%) 30 (2) 29 (2.0) 1 (1.8) 0.99 

    Oral anticoagulation, n (%) 431 (28.9) 410 (28.5) 21 (38.2) 0.16 

    Statin, n (%) 784 (52.5) 758 (52.7) 26 (47.3) 0.50 

Laboratory values     
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    Creatinine, µmol/L 90 (74-112) 90 (74-111) 95 (79-120.5) 0.128 

    Haemoglobin, g/L 122.50 (111-133) 123 (111-133) 118 (110-130) 0.21 

    Thrombocytes, 103/mm3 212 (172-259) 212 (172-259) 203 (173.5-252.50) 0.72 

Echocardiographic characteristics     

    Mean aortic valve gradient, mmHg 40 (29, 5) 40 (29, 5) 41 (33.5, 54) 0.27 

    Left ventricle ejection fraction, % 60 (45, 65) 60 (45, 65) 60 (46.50, 65) 0.36 

    Mitral regurgitation grade III or IV, n (%) 284 (19.2) 270 (18.7) 15 (27.3) 0.46 

Procedural characteristics     

    Main Access     

        Transfemoral, n (%) 1294 (86.7) 1247 (86.8) 47 (85.5) 0.90 

        Transapical, n (%) 180 (12.1) 173 (12.0) 7 (12.7)  

        Other, n (%) 18 (1.2) 17 (1.2) 1 (1.8)  

    Concomitant procedure     

        PCI, n (%) 175 (11.7) 168 (11.7) 7 (12.7) 0.98 

        non-PCI interventions, n (%) 68 (4.6) 63 (4.4) 5 (9.1) 0.18 

    Type of valve     
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        Balloon-expandable, n (%) 683 (45.8) 657 (45.7) 26 (47.3) 0.96 

        Self-expanding, n (%) 688 (46.1) 663 (46.1) 25 (45.5)  

        Mechanically expandable, n (%) 121 (8.1) 117 (8.1) 4 (7.3) 
 

CCS = Canadian Cardiovascular Society grading; CVE = cerebrovascular event; PCI = percutaneous coronary intervention; STS-PROM = 

Society of Thoracic Surgeons Predicted Risk of Mortality; TIA = Transient ischemic attack. 

Balloon-expandable valves: SAPIEN, SAPIEN XT, or SAPIEN 3 (Edwards Lifesciences,  Irvine, CA, USA). 

Self-expanding valves: CoreValve, Evolut R/PRO (Medtronic, Minneaplis, MN, USA), Portico (Abbott, Chicago, IL, USA), or Symetis 

ACURATE.ACURATE neo (Boston Scientific, Marlborough, MA, USA). 

Mechanically-expanding valves: Lotus (Boston Scientific, Marlborough, MA, USA). 
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Table 2: Patient CT imaging characteristics. 

 
Total 

(n = 1492) 

No CVE  

(n=1437) 

CVE 

(n = 55) 

P value 

Bicuspid valve on MDCT, n (%) 398 (26.7) 386 (26.8) 12 (21.8) 0.41 

Maximal annular diameter, mm 26.8 (24.3-28.8) 26.8 (24.2-28.8) 27.3 (25.9-29.1) 0.20 

Minimal annular diameter, mm 21.3 (19.7-23.6) 21.4 (19.7-23.6) 21 (19.2-22.9) 0.28 

Mean annular diameter, mm 23.7 (21.9-25.4) 23.7 (21.9-25.4) 23.8 (22.6-25.3) 0.30 

Annulus area, cm2 431.4 (352.5-496.6) 431.4 (351.6-496.2) 441.2 (384-503.8) 0.28 

Annulus perimeter, mm 77.8 (73.3-85.2) 77.8 (73.3-85.2) 78.1 (74.2-84.6) 0.95 

Annulus eccentricity 0.78 (0.73-0.84) 0.78 (0.73-0.84) 0.76 (0.71-0.81) 0.052 

Left coronary artery height, mm 15.3 (12.9-18.8) 15.3 (12.9-18.5) 15.1 (12.9-17.9) 0.86 

Right coronary artery height, mm 16.9 (14.7-19.3) 16.9 (14.6-19.3) 17 (15.6-18.9) 0.75 

Ascending aorta diameter, mm 32.3 (29.4-34.9) 32.3 (29.9-34.9) 31.5 (29.8-34.5) 0.73 

Ascending aorta length, mm 63.8 (57.0-69.1) 63.8 (57.0-69.1) 62.6 (58.1-69.1) 0.91 

Sino-tubular junction diameter, mm 28.6 (26.3-31.1) 28.6 (26.3-31.2) 28.3 (26.0-30.7) 0.55 
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Total aortic valve calcium volume, mm3 176.1 (42.5-415) 176.1 (40.4-410.7) 204.2 (99.4-453.5) 0.23 

Left cusp aortic valve calcium volume, mm3 61.8 (18.3-167.6) 61.6 (18.2-167.8) 67.1 (26.4-161)  

Right cusp aortic valve calcium volume, mm3 53.5 (15.3-134.5) 53 (14.9-131.5) 95.6 (26.7-174.5) 0.04 

Non-coronary cusp aortic valve calcium, mm3 86.5 (28.6-203.9) 86 (28-203.6) 118.2 (40.9-249.4) 0.20 

LVOT calcium, total, mm3 0.20 (0.0-33.4) 0.20 (0.0-33.9) 0.10 (0.0-26.8) 0.84 

Left cusp LVOT calcium, mm3 0.0 (0.0-3.3) 0.0 (0.0-3.2) 0.0 (0.0-5.6) 0.28 

Right cusp LVOT calcium, mm3 0.0 (0.0-0.0) 0.0 (0.0-0.0) 0.0 (0.0-0.1) 0.034 

Non-coronary cusp LVOT calcium, mm3 0.0 (0.0-0.0) 0.0 (0.0-0.0) 0.0 (0.0-0.3) 0.52 

Mitral valve total calcium volume, mm3 11.9 (0.0-321.9) 11.7 (0.0-308.3) 35.6 (0.0-662.4) 0.17 

Mitral anterior leaflet calcium volume, mm3 0.50 (0.0-56.6) 0.50 (0.0-56.4) 1.80 (0.0-80.3) 0.26 

Mitral posterior leaflet calcium volume, mm3 17.8 (0.0-278.3) 16.9 (0.0-274.3) 34.3 (0.0-649.1) 0.24 

LVOT = left ventricular outflow tract. 
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Table 3. Incidence of cerebrovascular event. 

 Day 0 Day 1 to 30 days > 30 days Total CVE 

CVE, n (%) 19 (1.3) 36 (2.4) 61 (4.1) 105 (7.8) 

Disabling stroke, n (%) 15 (1.0) 16 (1.1) 31 (2.1) 62 (4.2) 

Non-disabling stroke, n (%) 2 (0.1) 13 (0.9) 15 (1.0) 30 (2.0) 

TIA, n (%) 2 (0.1) 7 (0.5) 15 (1.0) 24 (1.6) 

CVE = Cerebrovascular event; TIA = Transient ischemic attack. 
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Figure 1: Graphic representation of the presented predictive model. CT imaging and other clinical data are entered in the autoencoder predictive 
model to yield an estimation of the risk of a cerebrovascular event (stroke or transient ischemic attack). 

 
 A: CT sagittal view of the ascending aorta and left ventricle outflow tract. In orange is presented the aortic annulus plane. In cyan are presented 
the ascending aorta length and the annulus angulation. B: transverse view of aortic valve cusps with calcium in the setting of a degenerative 
aortic stenosis. C: transverse view of a mitral valve with calcium. Ascending aorta length: distance at which the line drawn perpendicular to the 
aortic valve annulus plane hits the ascending aortic wall (important note: this is different from the usual measurement which corresponds to the 
distance between the brachio-cephalic trunc and the aortic annulus). Right coronary cusp height: perpendicular distance between the outflow of 
the right coronary and the aortic annulus. LVOT: left ventricle outflow tract. The autoencoder model is represented here by a simplified schema. 
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Figure 2: Study flow chart 

  

HR: hazard ratio. MSCT: multi-slice computed tomography. 
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Figure 3: Kaplan-Meier curve of cerebrovascular events after TAVR  

 
 

N° at 
risk  

1492 1101 863 639 387 207 
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Figure 4: Kaplan-Meier curve of all-cause mortality separated by occurrence of 
cerebrovascular event within 30 days of TAVR  

 
N° at risk 

No CVE 1437 1095 957 627 390 201 
CVE 55 30 22 14 6 2 
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Figure 5: Receiver operating curve of the predictive model 

 
The mean squared error between predicted and known values on the test set was 0.01. 
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