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Abbreviations used in this text 

ASIR   approximate SIR 

CSIR  complete SIR 

RCO  rate of change operator 

RMM  residential mobility measure 

SIR  susceptible–Infectious–Recovered  
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Abstract 

We derived a closed-form solution to the original epidemic equations formulated by Kermack 

and McKendrick in 1927 (1). The complete solution is validated using independently measured 

mobility data and accurate predictions of COVID-19 case dynamics in multiple countries. It 

replicates the observed phenomenology, quantitates pandemic dynamics, and provides simple 

analytical tools for policy makers. Of particular note, it projects that increased social 

containment measures shorten an epidemic and reduce the ultimate number of cases and deaths. 

In contrast, the widely used Susceptible–Infectious–Recovered (SIR) models, based on an 

approximation to Kermack and McKendrick’s original equations, project that strong containment 

measures delay the peak in daily infections, causing a longer epidemic. These projections 

contradict both the complete solution and the observed phenomenology in COVID-19 pandemic 

data. The closed-form solution elucidates that the two parameters classically used as constants in 

approximate SIR models cannot, in fact, be reasonably assumed to be constant in real epidemics. 

This prima facie failure forces the conclusion that the approximate SIR models should not be 

used to characterize or manage epidemics. As a replacement to the SIR models, the closed-form 

solution and the expressions derived from the solution form a complete set of analytical tools 

that can accurately diagnose the state of an epidemic and provide proper guidance for public 

health decision makers. 
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1. Introduction 

In their seminal paper published in 1927 (1), Kermack and McKendrick developed a system of 

integro-differential equations for modeling epidemics. The authors made several attempts to find 

a closed-form solution, but ultimately were unsuccessful. At the end of their publication, in an 

attempt to extract a useable model from their analysis, they proposed an approximation, now 

known as the Susceptible–Infectious–Recovered (SIR) model (1). The equations of the SIR 

model were derived using the assumption that two key parameters in the original integro-

differential equations could be approximated as constants. 

The now widely known SIR approximation (referenced herein as the ASIR equations) used in 

projections of epidemic spread are said to predict that social distancing will “flatten the curve” 

(i.e., reduce and delay the peak of new daily cases). With cartoons of this notion highlighted in 

the popular media, concerns about the economic devastation associated with containment 

measures applied in response to COVID-19 caused many individuals and governments to 

advocate that social distancing measures be lifted as soon as possible (2) to shift the peak 

forward and truncate economic, educational, and social disruption. 

As the COVID-19 pandemic swept across the world in the winter and spring of 2020, different 

countries applied diverse mitigation measures (3–5) in their attempts to control the spread of the 

virus. In so doing, these countries unintentionally conducted natural experiments on the 

effectiveness of differing levels of containment. Their case data provides an historically unique 

opportunity to compare the projections from different models using real-world data. 
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In this manuscript, we first derive a closed-form solution to the original equations proposed by 

Kermack and McKendrick (1). We verify this solution mathematically, by correlating different 

aspects of the model to independent data, and we accurately predict time series of case data for a 

sample of countries that used differing combinations and degrees of social containment 

measures. We call the model underlying the closed-form solution, the complete SIR, or CSIR 

model. 

Following the derivation of the solution, we then compare epidemic dynamics predicted by the 

CSIR model solution and the ASIR model to the dynamics seen in countries during the COVID-

19 pandemic. These comparisons show immediately that ASIR models project trends opposite to 

those seen in COVID-19 case data from countries, while those projected by the CSIR model 

solution are consonant with the real-world trends. 

Inspection of the ASIR and CSIR model equations reveals that both models have two terms that 

represent critical elements in an epidemic and are assumed to be constant. One of these terms 

putatively represents the transmissibility of the epidemic entity; the other represents the behavior 

of the population affected. These terms differ in the two models, and the consequences of 

assuming one set to be constant can be determined in the other model.  

Assuming the ASIR “constants” to be invariable and imposing this constraint on the CSIR model 

subsequently leads to implausible and unrealistic implicit assumptions regarding the dynamic 

behavior of the disease and the affected population. While the thus-modified CSIR model 

matches the ASIR projections precisely; these projections fail to match the real-world data from 

various countries. The contrapuntal proposition in which the CSIR model “constants” are 
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assumed to be invariant leads to a simple variation in the ASIR model constants, which can be 

calculated directly from the CSIR model. The then-modified ASIR model correctly projects 

trends and accurately matches real-world data. 

Finally, the availability of a closed-form enables the derivation of quantitative tools that can be 

used to manage epidemics. The details are found in the supplements to this manuscript. 

2. Models 

2.1 Complete susceptible infected recovered model (CSIR) 

In 1927, Kermack and McKendrick (1) developed the following set of integro-differential 

equations for modeling epidemics (Note: We use the following equation notation, (X, SY-Z), 

where X is the equation number in the body, Y is the supplement (S) number and Z is the 

number of the equation in the supplement): 

�����
�� � ������� ��θ�
�� � θ��θ � ����
�0���

� , (1, S1-1) 


��� � � ��θ�
�� � ���θ � ����
�0���
� ,  (2, S1-2) 

�����
�� � � ����
�� � ���� � ������0��

� ,  (3, S1-3) 


��� � � ��
�� , and (4, S1-4) 

��� � ���� � 
��� � ����,  (5, S1-5) 
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where ���� � 	���

�

, 
��� � ����

�

, ���� � ����

�

, ���� � �
 � �������
� , ���� � ��������, and 

���� � ��������. Kermack and McKendrick (1) defined ���� as “the rate of infectivity at age 

�” (page 703), and ���� as “the rate of removal” (page 703) of the infected population. We 

define ��� as the population density; �� as the area that contains the population; S(t) as the 

number of people susceptible to infection at time t, I(t as the number of people infected at time t, 

R(t) as the number of people recovered at time t, Np as the total number of people in the 

population; and therefore, ����� � ��. The variables, θ and a, are dummy variables for time 

with � defined as the stage of the infection (i.e., � � the time interval since the infection). We 

call this set of equations, developed by Kermack and McKendrick, the Complete SIR (CSIR) 

model. 

In Supplements 1.1 and 1.2, we develop a solution to Equations 1 to 5 by first recasting them 

into an equivalent set of differential equations, and then solving these new differential equations 

starting with a first principles argument. Subsequently, in Supplement 1.3, we develop the 

functional forms of ����, ����, ����, and ����. These are: 

���� � ��
	���,           (6, S1-49) 

���� � ��
����
���� � ��, and        (7, S1-50) 

���� � ��� ��
	��� � ���� �����
��

	���� �,       (8, S1-64) 

where ���� � �� � �
��
��

��	��

��
, ���� � �
��

��
��	��

��
���

, and 
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���� � ��          (9, S1-52) 

In equations 6-9,  �� is a constant representing the disease transmissibility with the units of 

people infected/(infected people x time) = 1/time, �� is a constant with the units of number of 

infectious contacts/person representing the number of specific people an individual contacts in an 

infectious manner during the time from �� �� � ��� describes the social interaction of the 

population), and �� � ��
��

 with the units of people/(infectious contacts x time) = 1/time. 

Also in Supplement 1.3, using ����, ����, ����, and ����, we then show that the following are 

the functional forms of ����, ����, and ���� that satisfy Equations 1 to 5: 

���� � ������
��
��

��	���
�	��
��
����
���
, (10, S1-40) 

���� � ������
��
��

��	���
�	��
���1 � �
����
����, (11, S141) 

���� � �� � ���� � �� � ������
��
��

��	���
�	��
��
, and (12, S1-42) 

 ���� � I�t� � R�t� � ������
��
��

��	���
�	��
��
, (13, S1-39) 

By definition, ���� in Equation 13 is the total number of people infected since the start of the 

epidemic. Since �� � ��
��

,  only two independent parameters, �� and ��, which represent, 

respectively, the disease and the population behavior, are required to characterize the solution.  
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Equations 10 to 13 are a closed-form solution to the CSIR model (Equations 1 to 5) proposed by 

Kermack and McKendrick (1); and as we show in the next section, they accurately describe the 

evolution of an epidemic during stages when the disease and population behavior, represented by 

�� and ��, can reasonably be assumed to be constants. A more general solution to the Kermack 

and McKendrick CSIR equations with �� and �� as functions of time is derived in Supplement 3. 

2.1.1 Veracity of the CSIR Solution 

To demonstrate the predictive capability of the CSIR solution (Equations 10 to 13), we applied it 

to real-world data from several countries. The first step in the process was to estimate two 

country-specific constants, �� and � . The path to these constants was found by first 

differentiating Equation 13 to arrive at an expression for 
�����

�� , the rate at which new cases arise: 

�����
�� � ������

�����
����� �
����
��� � �������
���.     (14, S1-38) 

The form of Equation 14 is mathematically suggestive. A purposefully chosen combination and 

rearrangement of Equations 13 and 14 leads to the linear expression 

��#��� �  ln � & �
!�"�' �����

�� � � � � ���,  (15, S2-1) 

where � � ln � �����
����� ��� and ��#��� means Rate of Change Operator (RCO).  
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We call this expression the rate of change operator because it is the rate of change of new cases 

scaled by the current total of cases. As we will demonstrate, Equation 15 enables the 

determination of the parameters �� and � , and consequently �� and ��, for each country.  

Using published data from the COVID-19 epidemic (6), we calculated and plotted the RCO time 

series for six different countries (Figure 1). In Figure 1 each time series has a distinctive segment 

where the curve appears to become a straight line. This phenomenon appears shortly after each 

country imposed intervention measures (indicated by arrows in the plots; the dates are listed in 

the caption of Figure 1). The appearance of these linear sections in every case supports the model 

validity and justifies the assumption that �� and �  may be assumed to be constant. Additionally, 

since � � ln � �����
����� ��� and �� � ��

��
, both �� and �� can also be modelled as constants for the 

periods of time during which the RCO series remains linear. 

Using Equation 15, the parameters �� and �  for each country were determined by finding the 

slopes and intercepts of lines fitted to short, early portions of the straight segments of the RCO 

time series. These early portions comprised nine data points each (see Table 1 for their date 

ranges); and Table 1 displays the �� and �  values derived for each country.  

Using the values of  �� and �  in Table 1 in Equation 13 we then predicted the course of daily 

total cases (Figure 2) for the six countries.  These predictions matched the actual time series of 

the daily total cases with an R2 > 0.97 in each of the six countries for the 45 days following the 

date containment measures were introduced. The CSIR solution also predicted daily new cases 

using Equation 14 (Figure 3) for the six countries for the same 45 days with an R2 range of 0.29 
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to 0.90. As seen in the figure, the predicted peak of new cases was close to the observed peak for 

all countries.  

  

Figure 1. Rate of change operator (RCO) curves for COVID-19 cases in various countries.  

An epidemic can be described by a piecewise linear model using the RCO (Equation 15). A short segment of orange 

dots in each graph is a linear fit to the corresponding points (blue/white circles) in the observed data. The slopes and 

initial points of these dotted-line segments are the values of �� and �� respectively which are tabulated in Table1.  
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In some countries, RCO curves changed markedly soon after the date containment measures were implemented 

(arrows): A) South Korea, February 21; (the oval highlights a departure of the observed data from the RCO slope, 

indicating failures in, or relaxations of, social distancing); B) USA, March 16; C) Sweden did not implement any 

specific containment measures, so the model calibration was begun on April 1, the date when the slope of the RCO 

curve first became steady. D) Italy, March 8; E) Spain, March 14; F) New Zealand, March 25. All dates are in 2020. 

Table 1. Social containment parameters used to model total cases and new daily cases of 

infection for different countries (6). 

 K1 K2 N(to) Date range for RCO fit 

South Korea 0.24 −1.58 3,736 March 1–March 9 

USA 0.076 −1.39 46,136 March 23–March 31 

Sweden 0.036 −2.47 5,320 April 1–April 9 

Italy 0.080 −1.93 31,506 March 17–March 25 

Spain 0.09 −2.11 65,719 March 27–April 4 

New Zealand 0.17 −2.06 708 April 1–April 9 

Parameters from linear fit of rate of change operator (RCO) data in Figure 1. K1, slope; K2, intercept; N(t0), number 

of cases at time (t0), first day of time range used. All dates are in 2020. 
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Figure 2. Complete SIR (CSIR) model predictions for daily total case counts. A) South Korea; 

B) USA; C) Sweden; D) Italy; E) Spain; and F) New Zealand.  Dots are daily data points observed from (white-

center and all blue) or calculated (orange) for each country. The CSIR model was calibrated using data from the date 

ranges listed in Table 1 (white-center blue dots).  R2 > 0.97 for the model fit for all countries for the 45 days after the 

containment measures were implemented: South Korea, February 21-April 4; USA, March 16-April 30; Italy, March 

8–April 22; Spain, March 14-April 28; New Zealand, March 25-May 9. Sweden did not implement any specific 

containment measures, so the dates used were March 23-May7. The deviation of the model from the data in the 

USA, panel (B), after April is elucidated in Supplement 5. All dates are in 2020. 
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Figure 3. Complete SIR (CSIR) model predictions for number of new daily cases. A) South 

Korea, R2 = 0.86; B) USA, R2 = 0.83; C) Sweden, R2 = 0.29; D) Italy, R2 = 0.69; E) Spain, R2 = 0.65; and F) New 

Zealand, R2 = 0.90. The orange dotted line is the model in all panels. The all-blue and white-center blue dots are data 

points, daily observations from each country. The white-center blue points are used to determine model parameters. 

R2 values are between the model and the data, across countries for the 45 days after containment measures were 

imposed. All dates are in 2020. 
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It is important to emphasize that the CSIR predictions in Figures 2 and 3 are not fits to the full-

length of the data shown. Rather, the two constants, �� and �  were estimated using only a short, 

linear, nine-point portion of the epidemic data starting between 7 to 14 days after the imposition 

of containment measures. These constants were then used to project the data following these nine 

points. 

In an additional demonstration of the veracity of the CSIR solution, we tested the assumption 

that �� is a property of the disease, and therefore, should be the same for each country. Equation 

S2-5 shows that the model parameters, expressed in a purposefully constructed function, F(N(t)), 

should be linearly proportional to time with a constant of proportionality or slope equal to −KT. 

As illustrated in Figure 4 and explained in more detail in Supplement 2, the fit of Equation S2-5 

using the population density data from Table 2 has an R2 = 0.956 and a slope of −0.26 (the slope 

is equal to −KT). This excellent correlation confirms that �� can confidently be assumed to be the 

same for all countries (=0.26), a constant, and plausibly, a property of the disease. 
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Table 2. Initial COVID-19 pandemic data and social interaction parameters for various 

countries ((6), case and date data; (7), population density data) 

  

Date of 
first case 
reported  

Date of 
cases in 
calculation 

Days 
Cases on 
calculation 
date  

Population 
density 
(people/km2) 

KT K2b K1b 

South Korea 22 Jan 21 Feb 30 204 527 0.26 −1.3 2.39E-04 

USA 22 Jan 19 Mar 57 13,663 36 0.26 −1.3 3.50E-03 

Sweden 1 Feb 7 Mar 35 179 25 0.26 −1.3 5.04E-03 

Italy 31 Jan 24 Feb 24 229 206 0.26 −1.3 6.11E-04 

Spain 1 Feb 13 Mar 41 5,232 94 0.26 −1.3 1.34E-03 

New Zealand 28 Feb 19 Mar 20 28 18 0.26 −1.3 6.86E-03 

K1b = baseline value of the social interaction parameter �� � ���
����

; 
��
�  = population density (A1 = 0.53 km2, found 

using Equation S2-5). The fit of the data in the table is displayed in Figure 4; ��� �  � ln � �����
����� ��� � � ln	��
 

since �	��
 � 
	��
 � 1 when �� � 0; KT, is a constant representing transmissibility of the disease. All dates are in 

2020. 
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Figure 4. Verification that (# is the same for all countries. The data from Table 2 is plotted using 

Equation S2-5 and �� � 0.48 ���. Each data point corresponds to a different country. The value of �� is the 

negative of the slope of the line, and �� is closely approximated everywhere by �� � 0.256. 

A third illustration of veracity arises from the ability to correlate independently sourced mobility 

data to the RCO from the CSIR model. Based on Equations S2-1 and S3-8 derived in 

Supplements 2 and 3, if the CSIR model solution is correct, then the integral of this mobility data 

should correlate linearly with the measured RCO.  Mobility data, available from Google (8), are 

a measure of the difference between the amount of time people stayed at home (the Residential 

Mobility Measure or RMM) during the period modelled and a baseline measured for 5 weeks 

starting January 3, 2020. Figure 5 shows that, as the CSIR model solution predicts, for each 
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country considered, the integral of the RMM and the RCO are linearly correlated to a high 

degree. 

 

Figure 5. Correlations between the daily value of the rate of change operator (RCO) and 

the integral of the Google Residential Mobility Measure (RMM) (8). A) South Korea (date range, 

February 23 to April 23); B) USA (March 25 to May 31); C) Sweden (March 5 to May 5); D) Italy (March 25 to 

May 31); E) Spain (March 25 to May 31); and F) New Zealand (March 21 to April 22). All dates are in 2020. 
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As orthogonal correlative support for the veracity of the CSIR solution, we note that other 

authors (9) have observed that the daily COVID-19 case data from many countries can be fit 

with a Gompertz model. Since Equation 13 is also a Gompertz equation, those observations 

support the assertion that Equations 10 to 13 properly model epidemics. 

Taken together, these results demonstrate that the solution to the CSIR model correctly 

characterizes epidemic dynamics from multiple countries in a unified way. They also 

demonstrate that the CSIR model developed by Kermack and McKendrick (1) nearly 100 years 

ago, described by Equations 1 to 5, was correct and accurately captures the dynamics of 

epidemics. 

2.2 The Approximate SIR (ASIR) model  

Kermack and McKendrick attempted to find an analytical solution for the CSIR equations, but 

they were not successful. As an alternative, they proposed the following approximation to the 

CSIR equations:  

�	���
�� � � $����	���

��
, (16, S3-1) 

�����
�� � $����	���

��
� )����,  (17, S3-2) 

�����
�� � )����, and (18, S3-3) 

�� � ���� � ���� � ����,  (19, S3-4) 
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where β = rate of contact and transmission, γ = rate of recoveries = 1/tr, and tr = time of 

infectiousness. 

These equations are the well-known “SIR” model equations, which we have previously 

designated as the approximate SIR (ASIR) model equations. They can be derived from Equations 

1 to 5 by assuming that the parameters ���� � ���� � $
��

 and ���� � ���� � ) are constants. 

The equations of the ASIR model and variants (SEIR, MSEIR, etc.) have been used for decades 

in attempts to quantitatively and qualitatively model epidemics.  

Since * � ��� and � was defined by Kermack and McKendrick (1) as “the rate of infectivity at 

age �” (page 703),  * has generally been interpreted as a measure of social containment in the at-

risk population. Modelers have assumed that a lower * indicates higher social containment. 

Likewise, since ) � � and Kermack and McKendrick defined � as “the rate of removal” (page 

703) of infected persons to a recovered state or death, ) is generally interpreted as a measure of 

persistence of infectiousness, a parameter associated with the agent of the disease; a lower ) has 

been assumed to represent longer lasting disease.  

A simulation of the ASIR model, depicted in Figures 6A and B, shows that the model projects 

that an increase in social containment (decreasing β) causes a later end to the epidemic and a 

lower and progressively later peak in cases per day. In contrast, a plot of the CSIR model 

solution in Figures 6C and D exhibits the opposite phenomenology: an increase in social 

containment (higher ��) causes an earlier end to the epidemic and a lower and progressively 

earlier peak in cases per day. As social containment measures increase, the positions of the peak 

in new cases per day move in opposite directions for the two models.  
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Figure 6. Comparisons of predictions of the approximate SIR (ASIR) and complete SIR 

(CSIR) models with observed data from four countries 

Note: Containment measures increase in all panels from blue to grey to orange dot curves. The arrow on each 

graph indicates the direction of more social distancing. 
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ASIR model trend predictions: (A) Total cases; (B) Daily new cases. Rate of contact and transmission (β) 

decreases with increasing social distancing (from blue to grey to orange curves). Rate of recoveries (γ) = 0.2 for both 

sets of plots. As β decreases, the daily total of cases increases more slowly and plateaus later (A). Daily new 

infections project to later, but only slightly lower peaks (B).  

CSIR model trend projections: (C) Total cases; (D) Daily new cases.  

As containment measures increase (higher ��, blue to grey to orange curves), Equation 13 projects that total cases 

will rise to lower levels; and reach these levels earlier (C). Similarly, Equation 14 projects that new daily cases will 

peak earlier to lower values with increasing containment (D). �� � 0.2 for plots (C) and (D). 

Data reported from different countries during the COVID-19 pandemic.  

The remaining graphs contain data from pairs of countries with differing containment measures referenced to a day 

when each member of the pair had nearly equal numbers of new cases. 

(E) Total cases in Sweden (no containment measures, blue) and New Zealand (strict containment, orange).(F) Daily 

new cases in Sweden (blue) and New Zealand (orange).(G) Total cases in Italy (loose containment measures, blue) 

and South Korea (strict containment, orange). 

(H) Daily new cases in Italy (blue) and South Korea (orange). 

The trends in the observed data, panels (E – H), are the opposite of those exhibited by the ASIR model for 

increasing containment (decreasing β) in panels (A, B).  

The ASIR model trends in (A) and (B) have completely different shapes; and vary with increasing containment in an 

opposite sense to those in the country data. 

The CSIR model trends in (C) and (D) are highly similar to those in the country data (E – H). 

 

We can also mathematically compare the trends projected by the ASIR model with trends 

predicted by the CSIR model using the following expression derived from the solution to the 

CSIR model (see Supplement 4 for detail): 

�%�� � &'(��
��

�	��
�)
��

� &'(��
��

��
��
��
��)

��
      (20, S4-10) 
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As can be deduced from Equation 20, in contrast to the ASIR solution plot in Figure 6B, the 

CSIR model solution mathematically predicts that the time of the peak in daily cases will occur 

earlier with increased social containment (i.e., higher ��).  

2.2.1 Testing the ASIR Model 

Although we have already shown graphically and mathematically that the ASIR projections 

contradict the CSIR solution, the true test of a model is whether it predicts the trends present in 

actual data. It is fortuitous, then, that the progression of the COVID-19 pandemic has been well 

documented in multiple countries which took different paths while attempting to contain the 

spread of the virus. This dataset affords the opportunity to test the veracity of the trends 

predicted by both models against actual data.  

In plots E to H in Figure 6, we compare the ASIR and CSIR projected trends to COVID-19 

pandemic case data (6) in Sweden and New Zealand for total cases and for daily new cases 

(Figure 6E and F), and in South Korea and Italy (Figure 6G and H). These pairs of countries 

have comparable population densities but implemented mitigation measures with different 

intensities (3–5, 9). New Zealand and South Korea introduced stronger containment measures 

much earlier than Italy and Sweden.  

In support of the CSIR solution and in contradistinction to the ASIR model, the country data in 

Figures 6E–H show that stronger containment measures are associated with an earlier levelling 

off at a lower total number of cases and an earlier and lower peak in new infections. Other 

authors (11), too, have noted that the peak of cases in countries with stronger containment 

measures occurred earlier than in countries with weaker measures.  
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Trends in both peak position and height demonstrate that the ASIR model is not merely 

inaccurate, a tolerable trait in an approximation, but projects epidemic data to trend in the 

opposite direction to the reported data. The ASIR model both contradicts the solution to the 

Kermack and McKendrick (1) original equations (ie. the CSIR model solution) and fails the 

simplest test of model veracity: the projection of qualitative trends.  

A related observation is that the projected reduction in peak height of daily cases is greater in the 

CSIR model than in the ASIR model. This implies that the true impact of increased containment 

measures, and the concomitant decreased social interaction, is understated by ASIR models.  

2.3 Reinterpreting the ASIR Approximation 

As seen in the preceding section, though both * (in the ASIR model) and �� (in the CSIR model) 

are posited to represent social interaction, the trend in the movement of the daily cases peak with 

decreasing * (less social interaction) in the ASIR model is opposite to that with decreasing 

�� �also less social interaction� in the CSIR solution (As a reminder: an increase in �� is the 

same as a decrease in �� ). Since only the CSIR solution reproduces the trends and the values of 

reported epidemic data, it seems likely that the nature and implications of the ASIR assumptions 

may not be sufficiently understood.  

Using several derived relationships from and simulations of both the ASIR model and the CSIR 

solution, we will now illustrate that, indeed, previously unknown implausible implications arise 

from the assumption that ���� and ���� are constants in the ASIR derivation. To begin, we note 

that when ���� and ���� are assumed to be the constants � and �, then, by their definitions, * 

and ) are also constants.  
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As explained in Supplement 3, when ���� and ���� are assumed to be the constants � and �, 

����� and ����� are forced to vary in the following manner:  

����� � ����� � $	���
��

, and        (21, S3-5) 

����� � �
�

���
�
��
*��
� �

 ��
!��
�
��
*��

.       (22, S3-6) 

From Equation 21 we see that ���� can only remain constant if ����� decreases in direct 

proportion to the decreasing size of the susceptible population, ����.  This is implausible on its 

face because, as discussed in the derivation of the CSIR solution, ����� is solely a function of 

the disease agent and thus, is likely a constant for a substantial time at the beginning of the 

epidemic; at least until the disease agent itself is modified by mutation or selection.  

Kermack and McKendrick themselves, in their introduction, ((1), pp. 702), also note that it is 

implausible to assume that disease transmissibility will decrease as the disease spreads. 

Furthermore, even if transmission were to decrease over time within the infected population, it is 

improbable that this decrease will occur in a fixed linear proportion to the remaining number of 

susceptible people as required by Equation 21. Thus, the assumption within the ASIR model that 

� can be modelled as a constant requires an implausible additional assumption. 

It is not possible to state how ����� must vary to maintain � as a constant by merely inspecting 

Equation 22. We can, however, elucidate the behavior of ����� required by Equation 22 by 

plotting the time series of Equation 22 and then deriving our conclusions from inspection of this 

plot. This requires a CSIR model solution with time varying ��, therefore, we rederived the CSIR 
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solution (see Supplement 3) with time varying ����� and ����� to find relationships for ���� and 

�����
��  as functions of ����� and ����� (Equations S3-7 and S3-8). The time series of both ���� 

and 
�����

��  were then simulated using an Euler approximation of Equations S3-7 and S3-8 with a 

time step of 0.1 day. Using the same values of * and ) used in Figure 6A and B, Equations 21 

and 22 were then used to determine the values of ����� and ����� employed in the simulation.  

The purpose of this simulation was first to demonstrate that imposing the conditions of Equations 

21 and 22 on ����� and ����� in the CSIR solution causes the CSIR model to produce the same 

results as the ASIR approximation. The second purpose was to determine and demonstrate the 

actual temporal behavior the ASIR approximation imposes on both ����� and �����.  

The time series plots of the simulation of both ���� (cases) and 
�����

��  (cases per day) appear in 

Figure 7. The close approximation of the CSIR and the ASIR curves in Figure 7 demonstrates 

that the ASIR model is, indeed, a subset of the CSIR solution when the constraints of Equations 

21 and 22 are applied to ����� and �����.  
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Figure 7. Demonstration that the CSIR model can be modified to produce the ASIR model 

results. Both plots contain 6 lines.  For the same β and γ, both the ASIR and the CSIR simulations overlay each 

other.  The CSIR simulations were produced by imposing the criteria in Equations S3-5 and S3-6, connecting the 

ASIR and CSIR constants.  This plot demonstrates that the ASIR approximation provides the same result as the 

CSIR solution provided the constraints of these equations are imposed.  γ is 0.2 for all plots. These plots are the 

same as the ASIR plots in figure 6A and 6B on a log scale.  X axis is days.  
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Figure 8. Time series for creating CSIR curves.  These graphs show how Pc and KT are forced to vary 

within the CSIR simulation shown in Figure 7 when the constraints of Equations S3-5 and S3-6 (constant φ and ψ) 

are imposed.  γ is 0.2 for all plots. X-axis is days. 

In Figure 8 we plotted the time-associated variation of �����and ����� that are necessary to 

create the CSIR curve in Figure 7. The figure shows that the constraints imposed by the ASIR 

model compel the acceptance of unlikely consequences; namely, ����� decreases with time and 

����� must behave in an unrealistic manner.  
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While the unlikely behavior of ����� required by the assumptions in the ASIR model is easily 

deduced from Equation 21, the plot in Figure 8B explicates the complex behavior of ����� 

required by these same assumptions. When the ASIR approximation is applied, the consequent, 

implicit assumption is that, early in the epidemic, the population increases its contacts (rising 

�����), and then suddenly and symmetrically (in time), reverses course and reduces the number 

of contacts. At each value of β, this up and down spike in contacts (Figure 8B) precedes a plunge 

in the value of ����� (Figure 8A), and the steep decline is immediately followed by the peak in 

daily cases (Figure 7B), tailing to the eventual end of the epidemic.  

These implied consequences of a constant * in the ASIR model make the clear points that a 

constant * does not represent constant social interaction; and a higher * does not represent a 

consistently higher level of social interaction. Also, a symmetric spike in social interaction 

(�����), higher and earlier, proportional to the value of *, followed by an immediate collapse in 

transmissibility (�����), is simply unfathomable in reality. 

Of note in Figure 8 is that when * is higher, ����� becomes lower earlier in the simulation and 

therefore the peak in Figure 7B occurs earlier. The interpretation of this observation is critical to 

understanding the ASIR model: Higher values of * in the ASIR model do represent a larger 

initial increase in social interaction. However, they also represent a subsequently earlier 

imposition of high containment measures because the spike in ����� ends earlier when * is 

higher. This earlier containment, not the initial increase in social interaction, induces the early 

peak in new daily cases in the ASIR model and ends the simulated epidemic earlier. In contrast 

to the conventional interpretation, the ASIR model does not project that higher social interaction 

will end the epidemic sooner. 
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The consequences of the approximations in the ASIR model become even more clear when we 

make manifest the time varying nature of ���� and ���� (and therefore of * and )) required 

when the quantities �� and �� are held constant. Similar to the preceding analysis, we explored 

these consequences using simulations of the CSIR solution and the ASIR model. Since the CSIR 

solution predicts the country data well, we also compared the simulation results to two of the 

country results (Italy and New Zealand).  

As a first step, we used the values of �� and �  in Table 1 to derive values of �� and �� for Italy 

and New Zealand and used the CSIR solution to project the results. We then simulated the ASIR 

model with the assumption that the values of � and � (and therefore of * and )) were constant 

and equal to the values of �� and �� used in the CSIR solution. The results of both the CSIR and 

ASIR simulations are plotted in Figure 9, along with the country data. As can be easily seen, the 

CSIR model accurately models the country data and the ASIR model does not. 
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Figure 9. ASIR and CSIR simulations of the Italy (9A & B) and New Zealand (9C & D) 

data. � � ��� where �� is from Table 1 and γ is equal to the K1 constant from Table 1.  

In a second step, we recast Equations S1-49 and S1-50 in terms of *��� and )���: 

*��� � ������ � ����
	���  and        (23, S3-11) 

)��� � ���� � ��
����
���� � ��.        (24, S3-12) 
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Using Equations 23 and 24, we then calculated the time series of * and ) necessary to generate 

the CSIR curves in Figure 9. Those time series, plotted in Figure 10, show that * is nearly a 

constant, while ) clearly is not.  

 

Figure 10. Time series for γ and β. A) Italy.  B) New Zealand. These are the values of γ and β necessary for 

the ASIR approximation to accurately model the country data.  
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As a last step in the analysis, we used the values of * and ) plotted from Figure 10 in the ASIR 

model to generate the curves in Figure 11. This figure shows that when * and ) are forced to 

vary according to Equations 23 and 24, the ASIR model fits the country data quite well. 

 

Figure 11. Total cases and new cases per day for Italy and New Zealand.  The country data and 

the CSIR model plots are the same as in Figure 9.  The ASIR Variable β and γ plot uses the β and γ values from 

Figure 10 in the ASIR equations. 
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Equations 23 and 24 themselves elucidate why the ASIR model, with constant * and ), is not an 

accurate or appropriate approximation. Equation 23 makes it clear that when ���� decreases by a 

significant percentage, neither * nor � can be appropriately modelled as constants. Also, as can 

be seen in Equation 24, the assumption that ), and therefore �, is a constant ignores the effect of 

the growing recovered (and therefore resistant) fraction, 
����
����, of the subpopulation, ����, on the 

epidemic dynamics.  

Figures 7 and 11 provide ultimate validation of the veracity of the CSIR solution. In Figure 7, we 

show that the CSIR solution can be configured to replicate ASIR simulations by embedding the 

ASIR approximations within the CSIR framework. In that setting, the two piecewise and 

logically invariant CSIR parameters, KT and Pc, are forced to take implausible and unrealistic 

time courses. Figure 11 demonstrates, in counterpoint, that an ASIR model can produce results 

identical to a CSIR model if the analogs of the CSIR parameters (β and γ) are permitted to vary 

in time according to Equations 23 and 24. Equations 23 and 24 together serve as a correction to 

the ASIR model. 

Only the CSIR model produces results consonant with real-world data. The ASIR model fits 

reality only when “coached” to a time variation for its two parameters, which requires insight 

derived from the CSIR solution. 

2.4 Using the CSIR solution to control epidemics 

As the preceding analysis demonstrates, early and strong containment actions will end the 

epidemic correspondingly early, reducing the number of cases exponentially. The peak in daily 

cases will never be delayed by strong actions, but will, in fact, always come earlier. The curve 
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does not flatten with strong intervention. It has an earlier peak and an asymmetric tail that falls to 

an earlier end, as shown in Figure 6D. 

Fortunately, the utility of the CSIR model solution goes beyond merely predicting that the 

epidemic will end earlier with the imposition of strong social measures. With an exact solution to 

the CSIR model in hand, we can also derive important, heretofore unknown relationships and 

identities. These are numerous and are described in detail in Supplements 4, 5, and 6. They are 

supported using real life and hypothetical examples. In these supplements we develop identities 

that illustrate the importance of early intervention strategies and we derive mathematical tools 

that public health officials can use to characterize, control, and end an epidemic. 

If, however, an epidemic is not controlled in its early stages, using easily obtainable data (total 

cases and new daily cases), the tools explicated in Supplement 6 can be used to determine the 

state of the epidemic and to quantitate actions that might be taken to control and end the 

epidemic within a desired and predetermined period of time. Strong intervention actions are 

likely necessary and, using the RCO metric, the effectiveness of these actions can be quickly 

determined from the resultant case trends. Public health officials can closely monitor the 

epidemic state and adjust control measures accordingly. 

As an epidemic progresses, outbreaks and surges should be expected. These will occur if 

containment flags, more infectious variants emerge, or new cases are introduced from outside the 

region of focus. Each of these contingencies needs to be controlled. As explained in Supplement 

6, the start of an outbreak causes obvious changes in the behavior of the RCO metric. Diligently 
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monitored, these RCO changes can be detected early enough for public health officials to react in 

a timely manner to bring outbreaks under control and to re-establish the planned course.  

3. Discussion 

Data on the current COVID-19 pandemic are widely accessible from a variety of sources, 

updated daily. The unfolding panorama provides a test bed for models that predict outcomes and 

the effects of various interventions. Because different countries employed different containment 

strategies (3-5, 9), the world is conducting a de facto epidemiological experiment on a grand 

scale. 

The CSIR solution to the original Kermack and McKendrick (1) integro-differential equations 

accurately projects the epidemic trends. It makes clear that short and sharp containment measures 

produce a rapid truncation of upward case trends, thereby shortening—not lengthening—the time 

needed to bring epidemics under control. An indicator of the rate of change in epidemic 

dynamics (e.g., the RCO) allows direct observation of the effectiveness of intervention measures 

and provides policy makers with an opportunity to react before new outbreaks gain momentum.  

Current epidemiological models use the ASIR approximation, which has long been assumed to 

be a reasonably accurate representation of the complete equations developed in 1927. ASIR 

models exist in many variants, both deterministic and stochastic, and their behavior is widely 

known. It is startling, then, that when the ASIR model is tested using the currently available data 

from the COVID-19 pandemic, it fails the most basic test for any model by projecting trends that 

are opposite of those easily visible in the data from multiple countries. The reason for this failure 
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is quite simple: the ASIR equations embody inherently implausible assumptions about the 

disease and population dynamic behavior.  

Unfortunately, despite its failure to accurately model real-world trends, the ASIR model and its 

variants have been used to fashion guidelines for epidemic management. Tragically, the false 

notion that stronger containment measures lengthen the pandemic may well have caused leaders, 

especially those most concerned with economic performance, to see containment measures as 

producing only a modest reduction in the horror of an epidemic peak while significantly 

prolonging economic disruption. Not only do ASIR models project incorrectly that epidemics are 

prolonged by containment; but they significantly underestimate the reduction in the peak of cases 

that containment provides. 

Every country and economy can use the CSIR solution presented here to plan and implement the 

highest level of containment measures deemed sustainable to quickly reduce case numbers to 

levels at which case identification, contact tracing, testing, and isolation can be maintained, 

allowing a more rapid return to nearly normal social activity and minimizing economic 

consequences. The ultimate insight from the CSIR solution is one of hope: the path of an 

epidemic is not an uncontrollable force of nature, nor is epidemic control inevitably the road to 

economic ruin. Rather, the afflicted population can, through their behavior, choose to control 

their destiny. 
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Supplementary Material 

Supplement 1. The complete SIR model and its closed-form solution 

Equations are numbered sequentially within each supplement. Equation numbers from the main 

text appear in bold. 

S1.1 The complete SIR (CSIR) model 

The original equations from Kermack and McKendrick (1) can be written in the following form: 

�����
�� � �x�t��� ����
�� � ���� � ����
�0���

� , (S1-1, 1) 


��� � � ����
�� � ���� � ����
�0���
� ,  (S1-2, 2) 

�����
�� � � ����
�� � ���� � ����
�0��

� ,  (S1-3, 3) 


��� � � ��
�� , and (S1-4, 4) 

��� � ���� � 
��� � ����,  (S1-5, 5) 

where ���� � 	���

�

, 
��� � ����

�

, ���� � ����

�

, ���� � �
 � �������
� , ���� � ��������, and 

���� � ��������. Kermack and McKendrick (1, p. 703) defined ���� as “the rate of infectivity 

at age �” (page 703), and ���� as “the rate of removal” (page 703) of the infected population. 

We define ��� as the population density; �� as the area that contains the population; S(t) as the 

number of people susceptible to infection at time t, I(t as the number of people infected at time t, 
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R(t) as the number of people recovered at time t, Np as the total number of people in the 

population; and, therefore, ����� � Np. The variables, θ and a, are dummy variables for time 

with � defined as the stage of the infection (i.e., � � the time interval since the infection). 

The terms ���� and ���� were not explicitly defined by the authors, however, they are the forms 

that ���� and ���� take in the time domain. Excluding when � � � � 0, the form of � and � 

are expected to differ in the time (t) and theta ��� domains.  

Although Kermack and McKendrick labelled ���� as “the rate of infectivity at age �” (page 

703) close inspection of the relationship wherein they first used this term reveals that ���� 

cannot merely be a rate with the units of inverse theta. Rather, dimensional analysis requires that 

���� have the unit infectivity per contact density (contacts per unit area). Kermack and 

McKendrick also chose the number of susceptibles per unit area (�� in their notation, ���� in 

ours) as the contact density for the infected population. As a consequence, if the transmissibility 

of the disease does not change during the analysis, this choice for the contact density, and the 

definition of ���� as a rate per contact density, compel ���� and ���� to increase as time and 

theta grow larger because the susceptible population density perforce must decrease as the 

epidemic progresses. These consequences were not addressed by Kermack and McKendrick, and 

possibly were not recognized.  

A solution to Equations S1-1 to S1-5, which correctly represents the epidemic dynamics of 

COVID-19 in various countries, is attainable; however, the forms of ���� and ���� that appear 

in these solutions, under the constraints imposed by holding the disease transmissibility and 
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population contact density constant, are quite extraordinary. Therefore, during the analyses in the 

supplements, we explicate these forms and why they arise.  

S1.2 The solution to the CSIR model 

Equations S1-1 to S1-3 can be reformulated to make a solution easier to find. The first step is to 

define two functions, µ��� and ρ���, as 

µ��� � "��
�
"


���� � 
+�"��� 
���,��
����-
��������

�


#�� .���,��
����-.��������

�

 and  (S1-6, 15) 

ρ��� � "$�
�
"


���� � 
#�� /���,��
����-/��������

�


#�� .���,��
����-.��������

�

,  (S1-7, 16) 

and then rewrite Equations S1-1 to S1-3 after multiplying each by ��:  

�	���
�� � �µ��� ����, (S1-8, 10)  

�����
�� � µ��� ���� � ρ��� ����, (S1-9, 11) 

�����
�� � ρ��� ���� and (S1-10, 12) 

���� � �� � ����,  (S1-11, 13) 

where ���� � �� � ����
�� � ���� � ������0���
� , ���� � ���� � ���� � the number of people 

that have been infected up until time, t, and 
����� � � �	���
�� � �����

�� . 
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This set of equations is mathematically equivalent to the Kermack and McKendrick (1) system of 

Equations, S1-1 to S1-5.  

To solve Equations S1-8 to S1-11, we first find an expression for 
�����

��  in terms of N(t), the 

number infected to date, the transmissibility of the disease, and the behavior of the population. 

We then solve this equation for ����. Once we have determined ����, we find expressions for 

I(t), R(t), S(t), µ���, and ρ��� and show that these expressions solve Equations S1-1 to S1-5.  

At the beginning of the epidemic, we can write the following difference equation to describe the 

change in the number of infections during the time ∆�: 

��∆�� � ��0� � ��0����0� ��
����� ;0�0�∆�, (S1-12) 

where �� is the transmissibility of the disease and ;0��� � ����
����. ����� is the instantaneous 

number of contacts made by each member of the population ���� and is defined by the 

expression ����� � lim∆�2� � ��������∆�
� , where ������ is the contact rate for the subpopulation 

����. 

����� can be interpreted as the average number of specific infectious contacts each person within 

the subpopulation ���� has with the entire population. Therefore, the number of interactions 

with infectious potential between the population ���� and the entire population is ���������, at 

time t. By “specific infectious” we mean that each person is assumed to interact only with the 

same people (quantity = �����) in a way that might transmit the disease during the time under 
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consideration. ����� is the parameter that captures the behavior of the population in the analysis 

going forward. 

The structure of Equation S1-12 captures the dynamics of the epidemic as it begins. The quantity 

��0����0� is the number of potentially infectious contacts between people, ;0�0� is the fraction 

of those contacts that involve already infected persons, and 
��

����� is the number of successful 

transmissions of the disease per infectious contact.  

We also note that, using Kermack and McKendrick’s (1) formulation of the problem of epidemic 

origination, Equation S1-12 could have been written as 

��∆�� � ��0� � ��0���0� ��
+��� ∆�, since if ��0� � ��0�, then ;0�0� � 1.  (S1-12a) 

Since S1-12 and S1-12a are obviously mathematically equivalent, we ostensibly begin, 

mathematically, from the same place as Kermack and McKendrick. However, rather than forcing 

the transmissibility per contact density, �, to be a relationship describing disease transmissibility 

per each susceptible person, we have instead defined the function describing transmission, 
��

�����, 

as the transmissibility per the actual number of contacts by the population N(t). This subtle 

reformulation allows us to develop both a solution and many useful relationships. 

It is reasonable to assume that the transmissibility of the disease, ��, will remain constant for an 

interval of time because it depends only on properties of the agent causing the disease. Adopting 

this assumption, Equation S1-12 can then be rearranged as 
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��∆�� � ��0� � ��0����0��;0�0� � ;0�0��1 � ��
����� ∆���. (S1-13) 

In Equation S1-13, since ��0� is a given and ���0� is only a function of people’s behavior, the 

quantity ;0�0� � ;0�0��1 � ��
����� ∆�� must be the change in ;0�0� during the time period ∆�. That 

is, the difference between ;0�0� and ;0�∆�� and can be written as 

;0�0� � ;0�∆�� � ;0�0� � ;0�0��1 � ��
����� ∆��. (S1-14) 

This can then be rewritten as 

;0�∆�� � ;0�0��1 � ��
����� ∆�� (S1-15) 

and for any time �n � 1�∆�, S1-15 can be written as 

;0��> � 1�∆�� � ;0�>∆���1 � ��
���3∆�� ∆��. (S1-16) 

Using S1-16, we can write the following for ��2∆t�:  

��2∆�� � ��∆�� � ��∆�����∆���;0�∆�� � ;0�∆���1 � ��
���∆�� ∆���. (S1-17) 

This can be rewritten as: 

��2∆�� � ��∆�� � ��∆����∆�;0�0��1 � ��
����� ∆���1 � ��

���∆�� ∆��. (S1-18) 

This process of substitution can be repeated to develop the following relationship: 
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���> � 1�∆�� � ��>∆�� � ��>∆����∆�;0�0��1 � ��
����� ∆���1 � ��

���∆�� ∆��…( 1 � ��
���3∆�� ∆��.

 (S1-19) 

Defining >∆� � � and allowing ∆� A 0, Equation S1-19 becomes 

�����
�� � ������;0�0��
�� � �

#��%�



� ��
. (S1-20) 

Equation S1-20 is easily solved for ����: 

���� � ��0���	�� & �
#��%�



� "%

. (S1-21) 

This provides us with a solution to Equation S1-8: 

���� � �� � ���� � �� � ��0���	�� & �
#��%�



� "%

. (S1-22) 

To completely solve the system of equations in Equations S1-8 to S1-11 we now need to find 

expressions for I(t), R(t), µ���, and ρ���. We begin by first noting that 

����  �  ���� � ����, (S1-23) 

����
����  � ����

���� � 1, (S1-24) 

�� ��
�
��
��
��  � ��$�
�

��
��
�� � 0, and (S1-25) 
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� �( ��
�
��
�)
�� � �($�
�

��
�)
�� � B���, (S1-26) 

where B��� is a yet unknown function of time. 

Since all the recovered people must have been infected, 
����
���� can only change if ���� changes, and 

only to exactly the extent that the quantity 
����
���� changes. Thus, we can rewrite S1-26 in the 

following form: 

� �( ��
�
��
�)
�� � �($�
�

��
�)
�� � B��� � ����� ����

����, (S1-27) 

where ����� is a function that modifies the fraction 
����
���� in association with recoveries at time t. It 

is initially assumed to be a function of time. 

Equation S1-27 is a simple differential equation in the variable 
����
����, whose solution is 

���� � ���� �����
����� �
 � ��




�

�����.  (S1-28) 

Or, if K1(t) is a constant, 

���� � ���� �����
����� �
����
���. (S1-29) 

Likewise, the solutions for R(t) are 
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���� � ���� �����
����� C1 � �
 � ��




�

�����D, and (S1-30) 

���� � ���� �����
����� E1 � �
����
���F. (S1-31) 

When time �� � 0, then ����� � ����� � 1 and Equations S1-28 to S1-31 become 

���� � �����
 � ��



� �����, (S1-32) 

���� � �����
���, (S1-33) 

���� � �����1 � �
 � ��



� ������, and (S1-34) 

���� � �����1 � �
����.        (S1-35) 

We must now define ����� in terms of the epidemic parameters ����� and ��. By forcing ∆� to 

go to zero in Equation S1-15 we arrive at the following differential equation: 

�*����
�� � �( ��
�

��
�)
�� � �;0��� ��

�����. (S1-36) 

Comparing Equations S1-27 and S1-36, we can see that: 

��
����� � �����. (S1-37) 

Since the population’s behavior is likely to remain constant for many days running, for the initial 

model development, we assume that ������ is constant and, therefore, that ����� and ����� are 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 14, 2021. ; https://doi.org/10.1101/2021.09.09.21263355doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.09.21263355


 50

also constants. Of course, we only expect this to be true on a piecewise basis because eventually, 

in response to the epidemic, populations adopt measures such as mask wearing, online meetings, 

quarantines, and reopening. These measures significantly change the contact rate, and therefore 

�����. The consequences of piecewise variation of ����� are explored and explained in 

Supplement 6. 

Having defined ����� as a piecewise constant, for simplicity, we refer to it as ��, and to ����� as 

�� for the remainder of this portion of the analysis. We can now find the solution to Equations 

S1-8 to S1-10 and S1-1 to S1-3.  

Using the assumption that ����� and ����� are constants, the expression for 
�����

��  from Equation 

S1-20, and Equation S1-37, we arrive at the following: 

�����
�� � ������

�����
����� �
����
��� � �������
���.  (S1-38, 14) 

Integrating S1-38 produces the expression for the total number of infections, ����: 

���� � ������
��
��

��	���
�	��
��
. (S1-39, 13) 

We can now write expressions for I(t), R(t), and S(t) as 

���� � ������
��
��

��	���
�	��
��
����
���
, (S1-40, 10) 

���� � ������
��
��

��	���
�	��
���1 � �
����
���� and (S1-41, 11) 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 14, 2021. ; https://doi.org/10.1101/2021.09.09.21263355doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.09.21263355


 51

���� � �� � ���� �  ��������
��

�	��
� � ������
��
��

��	���
�	��
��
. (S1-42), 12) 

Equations S1-40 to S1-42 can each be differentiated and rearranged to produce these differential 

equations: 

�����
�� � ����

����
�����

�� � ������, (S1-43) 

�����
�� � ����

����
�����

�� � ������, and (S1-44) 

�	���
�� � � �����

�� � �������. (S1-45) 

Comparing Equation S1-45 to Equation S1-8, we conclude that �� � µ���. If we also equate 

Equations S1-44 and S1-10, we can find an expression for G���:  

G��� � ��
����
���� � ��.         (S1-46) 

Using these definitions for µ��� and ρ���, we can see that Equations S1-43 to S1-45 are 

equivalent to Equations S1-8 to S1-10 and, by extension, to Equations S1-1 to S1-3. Therefore, 

since S1-40 to S1-42 solve Equations S1-43 to S1-45, they are also solutions to Equations S1-8 

to S1-10 and, again by extension, solutions to Kermack and McKendrick’s (1) original 

Equations, S1-1 to S1-3.  
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S1.3 Proof that the proposed solution solves the original Kermack and 
McKendrick integro-differential equations 

As an affirmative demonstration that the expressions in Equations S1-40 to S1-42 solve the 

original Kermack and McKendrick equations (1), we now insert these expressions into the 

original equations and show that they are satisfied. To accomplish this demonstration, we must 

first determine the form of the expressions for ����, ����, ����, and ����. 

Using Kermack and McKendrick’s formulation, ���� and ���� can be defined as 

���� � �� 
���,��
����-
��������

�


# � .���,��
����-.��������

�

 and      (S1-47) 

���� � � /���,��
����-/�������

�

� .���,��
����-.��������

�

.       (S1-48) 

From these definitions and the prior analysis, we can clearly see that 

���� � ��
	��� and         (S1-49, 6) 

���� � ��
����
���� � ��.         (S1-50, 7)  

We now relate 
�� � �� to the epidemic parameters and our adopted naming conventions. In 

Kermack and McKendrick’s formulation, ��
�� � ��, is the number of infections new at time t. 

In our formulation, this is 
�����

�� . Therefore, 
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��
�� � �� � �����
�� � ������ � �� ������
��

��
��	���
��
��"

,   (S1-51) 

which adopts Kermack and McKendrick’s convention that t(0) = 0.  

Since infections enter the infected population at the rate �� (see Equation S1-45), it is reasonable 

to choose �� as the rate at which infections exit the infected population in theta space. Therefore, 

we choose the following expression for ����: 

���� � ��.          (S1-52, 9) 

From S1-52, we can calculate ����: 

���� � �
 � �������
� � �
 �  �����

� � �
���,      (S1-53) 

where I is a dummy variable. 

Equation S1-50 can be rewritten in terms of the epidemic parameters as 

 ���� � ���1 � �
���� � ��.       (S1-54) 

This allows us to calculate ����: 

���� � �
 � ������
	
�
� � �
 �  � ����
�	��
�-�����
	
�

� � �
���
��
��

��	���
��
��"
. (S1-55) 

We can now solve for I(t) using Equations S1-2, S1-51, S1-53, and S1-55 after multiplying both 

sides of S1-2 by ��: 
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���� � �� � �
��� ������� �	��
�� '(	���	�)	���


#
�� � �
���
��

��
��	���
��
��"��0��

� .  (S1-56) 

Since the term  
��  ������	��

��'(	��
	�)	��



#
  is not a function of �, it can be brought outside the 

integral and Equation S1-56 becomes 

���� � ������� �
��
��

��	���
��
��� � �
����� � �
���
��
��

��	���
��
��"��0��
� . (S1-57) 

Since ��0� � �����, Equation S1-57 is easily solved to find the following expression: 

���� � ������
��
��

��	���
�	��
��
����
���
. (S1-58) 

In a similar fashion, we can use Equations S1-3, S1-51, S1-53, and S1-55 to find the following: 

�����
�� �

�� � ����
�����
������	��

��'(	��
	�)	��



#
�� � ����1 � �
���� � ����
���
��

��
��	���
��
��"��0��

� . 

 (S1-59) 

Using the same approach as in the solution for ����, we can solve Equation S1-59 to find the 

expression for 
�����

�� : 

�����
�� � ���������1 � �
���� � ����
��

��
��	��

��
���

.    (S1-60) 

Equation S1-60 can be integrated to find the expression for ����: 
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���� � ������
��
��

��	���
���1 � �
��"�.      (S1-61) 

To solve Equation S1-1, we must find the form of ����. Although, finding the form of ���� is 

not as straightforward as was the route to the form of ����, we can make a few a priori 

statements regarding our expectations of its form. First, we expect ���� to increase with 

increasing theta, just as ���� increases with time. Second, we expect the increase with theta to be 

larger than the increase of ���� with time since the 
�,� (using Kermack and McKendrick’s 

notation of 
�,�) portion of the infected population, 
�,�, is a subpopulation that we expect to 

decrease at a rate faster than that of the overall population. This subpopulation will have been 

infected the longest and, therefore, recovers at a high, possibly maximal rate. 

With these expectations in mind, we write the following using Equations S1-1, S1-45, and S1-

51: 

�	���
�� � ���I�t� �

������� �������� ��  ������	��
��'(	��
	�)	��



#
�� � ��

	���
�

� �
���
��
��

��	���
��
��"��0��.  

     (S1-62) 

This can be simplified to 

� �����������
� �  �
��� �

	��� �� .       (S1-63) 

We can then easily show that the following expression for ���� satisfies S1-63: 

���� � ��� ��
	��� � ������ �����
��

	���� �,       (S1-64, 8)  
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where ���� � �6 � �
��
��

��	��

��
 and ���� � �
��

��
��	��

��
���

. 

As expected, ���� grows with increasing theta in Equation S1-64 and it grows at a faster rate as 

theta increases than ���� grows with time in Equation S1-49.  

Now we can use Equations S1-1, S1-51, S1-55, and S1-65 in the same fashion as before to find 

the expression for 
�	���

�� : 

�	���
�� �

������� ��� ��
	��� � ������ �����
��

	���� ��
���  ��������	��
�� '(	��
	�)	��



#  �� ��
�

�����−���−�T�1�−�1t−1−�1t�0), (S1-65) 

where ���� � �� � �
��
��

��	��

��
. (S1-66) 

Taking the functions dependent on t outside the integral, simplifying and solving the integral we 

obtain the following: 

�	���
�� � ���������
��

��
��	��

��
���

. (S1-67) 

Equation S1-67 can then be integrated to obtain the expression for S(t): 

���� � �� � ������
��
��

��	���
��
. (S1-68) 
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The expressions for I(t), R(t), and S(t) in Equations S1-58, S1-61, and S1-68 are the same as 

those in S1-40 to S1-42. Therefore, Equations S1-40 to S1-42 are a solution to the original 

Kermack and McKendrick (1) equations. 

Supplement 2. Verification of the CSIR model 

Equations S1-38 and S1-39 can be combined purposefully to define an important relationship: 

��#��� �  ln � & �
!�"�' �����

�� � � � � ���,  (S2-1, 15) 

where � �  ln � �����
����� ��� and �� is the time between the start of the epidemic and the time at 

which the first data point in the epidemic is measured.  

The RCO expression is convenient in that it transforms Equation S1-38 into an equation linear in 

��. We call the expression the rate of change operator because it is the rate of change of new 

cases scaled by the current total of cases. It is Equation S2-1 that we fit to the nine data points 

after the imposition of containment measures in the country data in Figure 1. We also used this 

equation to find the parameters in Table 1.  

We developed the solutions to Equations S1-1 through S1-5 assuming that �� is a constant 

dependent only on the disease and is the same for all countries. We also assumed that ����� is 

dependent on the population’s behavior. We used these assumptions when generating the 

correlations of the case data for various countries in Figures 2 and 3. Both of these assumptions 

can be tested independently of the country correlations. 
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To demonstrate that �� is indeed a constant, we need to first further define �����. As previously 

defined, ����� is the number of specific infectious contacts a member of subpopulation N(t) has 

across the entire population.  This is a function of the population’s behavior. Initially, we assume 

this is a function of population density and further, that people’s mobility extends over a constant 

average effective area per unit of time. We define this area as the effective area rate, ������. 

Using these definitions, we can write an expression for ������: 

����t� � 
�+�����

 � J�>�IJ� �I��,  (S2-2) 

where �� = the entire population of the region with the infection, � = the area of the region, and 

��

  = the population density. From Equation S2-2, we can see that ������ is proportional to both 

the population’s behavior, ������, and the population density, 
��

 .  

Similar to the way we defined ����� using ������, we now define a quantity, �����, in terms of 

������: 

 ����� � lim∆�2� � ��������∆�
� ,  (S2-3) 

where ����� is the effective specific area traversed by an individual. In this case, “specific” has 

the same meaning as it has for �����; that is, each person traverses only and exactly the same 

area for the duration of the time under consideration. We also call ����� the “effective area” 

because the population is typically only dispersed within ~1% of the land within a given region 

of a country (12). If we take this into account, then ����� � 
��� ���7�889 ���,��:�� ;9 � ���:<3
�.�� . 
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From the preceding discussion, we can now write an expression for �����: 

����� � �����


������

. (S2-4) 

The physical meanings of ����� and ����� may not be intuitive. As defined, neither are rates, but 

they can both vary in time and their values depend on the population’s behavior. They are, 

respectively, the number of specific infectious people who have been contacted and the specific 

area traversed by any index person within a given time interval. ����� and �����  are constant 

when the number of specific infectious people or the traversed area remain constant. However, if 

different people are contacted within a given time interval, the rates they depend on change, and 

therefore, ����� and ����� may change even if the total number of people contacted or area 

covered did not change during that time interval.  

We can now check the assumption that �� is a constant by substituting Equation S2-4 into 

Equation S1-39 and solving for ��t. Doing this, we find the following expression: 

 

���


 ln K1 � &'������

,���

,
L � ���t. (S2-5) 

If we define ME����F � 
���

 ln K1 � &'������


,���
,

L, then we can also write this expression as 

;E����F � ���t. (S2-6) 
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If �� is a constant, then Equation S2-6 predicts that ;E����F is a linear function of time. 

Excepting ��, all the quantities on the left-hand side of Equation S2-5 can be found for each 

country in the time before containment measures are enacted and are listed in Table 2. Therefore, 

we can estimate whether �� is a constant by first using Equation S2-5 (or S2-6) to find if there is 

a constant value of �� that creates a straight line. An implicit assumption in this process is that 

the behavior of the population, ��, is constant and therefore �� is constant, during the initial 

phase of the epidemic before containment measures were put in place.   

Applying these assumptions, through a process of iteration, a value was found for  ���� 0.48 

km2) which created a straight line with a correlation coefficient of 0.96 (Figure 4). Using 

Equation S2-5 (or S2-6) we can then determine that the slope of the line in Figure 4 indicates that 

the value of �� is 0.26.  This analysis strongly supports the assumption that  is a constant. 

Independent evidence that �� is a measure of the population behavior can be developed by first  

using Equations S2-1 and S3-8 (Supplement 3) to predict that the RCO measure will be 

proportional to �� � �
�����

�
��

��. We reasoned that if an independent measure of people’s mobility 

during the epidemic could be found and was linearly related to the RCO, we could have 

additional confidence in the veracity of the CSIR solution.  

Google has compiled different measures, derived from mobile phone data, of people’s mobility 

(11). One of these measures is termed the Residential Mobility Measure (RMM). The RMM is a 

measure of the percentage change in the degree to which people stayed in their residence during 

the pandemic relative to a baseline measured over 5 weeks starting on January 3, 2020. Since 
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�
����� and the RMM are both inversely proportional to the population’s mobility, we hypothesized 

that the RMM would be a good proxy for the value of 
�

��
. To test this, we plotted the integral over 

time of the daily RMM for the six countries whose data we analyzed, against the daily RCO. 

These plots appear in Figure 5, which clearly validates the hypothesized linear relationship.  

Supplement 3. An analysis of the ASIR model 

In this supplement, we address the questions: 1) What are the implied assumptions within the 

conventional approximation to Kermack and McKendrick’s original equations (1), known as the 

SIR model? and 2) How do * and ) need to vary with time for the ASIR model equations to 

mimic the CSIR model? 

The SIR model, with non-time-varying parameters *and ), is described by the following 

equations using the same definitions of S, I, and R as in Supplement 1: 

�	���
�� � � $����	���

��
, (S3-1, 16) 

�����
�� � $����	���

��
� )����,  (S3-2, 17) 

�����
�� � )����, and (S3-3, 18) 

�� � ���� � ���� � ����,  (S3-4, 19) 
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where Np = total number of people in the population, β = rate of contact and transmission, tr = 

time of infectiousness, and γ = rate of recoveries = 1/��.  

This formulation from Kermack and McKendrick (1) is widely promoted as illustrative of the 

qualitative behavior of the more complex model with time-varying parameters presented in the 

paper. Because the assumption that β and ) are constant strongly limits the capability to describe 

epidemics, we call this form of the model the Approximate SIR (ASIR) model. While not 

intended to model epidemic dynamics perfectly, Equations S3-1 to S3-4 have always been 

assumed to reflect the general trends of an epidemic (1).  

To understand the implications of the ASIR approximation, we must first understand the 

implications of the assumption that ���� and ���� are constant over time. The implications are 

easily illustrated using Equations S1-49 and S1-50. With these equations and the prior definitions 

that �� � ��
��

 and ;0��� � ����
����, we can find expressions for the time varying ����� and ����� 

when ���� and ���� are assumed to be the constants � and �:  

����� � ����� � $	���
��

, and        (S3-5, 21) 

����� � �
�

���
�
��
*��
� �

 ��
!��
�
��
*�����

.       (S3-6, 22) 

These two equations answer the first question posed at the beginning of this section. The implied 

assumption in the ASIR model formulation is that �� and �� vary with time in the manner 

described by Equations S3-5 and S3-6. 
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To apply the conditions in S3-5 and S3-6 to the CSIR solution, we must first rederive the CSIR 

solution under the assumption that both ����� and ����� do vary with time. We do this following 

the procedure used in Supplement 1, which results in the following set of relationships for 

����, �����
�� , ����, and ����: 

���� � ��	 & ���-�(
& ���%�

#��%�
-
� "%

"-

� , (S3-7) 

�����
�� � ����������
 � ���-�

#��-�



� �>
, (S3-8) 

���� � �����
 � ���-�
#��-�



� �>��>

, and (S3-9) 

���� � ���� C1 � �
 � ���-�
#��-�




�

�>��>D. (S3-10) 

The results of the simulation of both ���� and 
�����

��  are shown in Figure 7. We created these 

plots by imposing the functional relationships in Equations S3-5 and S3-6, as well as using 

Equations S3-7 and S3-8.  In Figure 8, we then used Equations S3-5 and S3-6 to plot the time 

variation of both �� and �� resulting from the assumption that � and � are the constants * and ), 

respectively.  

We now explore the opposite construct, the time varying nature of ���� and ���� (and therefore 

* and )) required when �� and �� are constants in Equations S1-49 and S1-50. Similar to the 

preceding analysis, we used simulations of the CSIR solution, Equations S1-49 and S1-50, and 

the ASIR model. Since the CSIR solution predicts the country data well, we also compared the 
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simulation results to the data from two countries (Italy and New Zealand) and demonstrate that 

only if ���� and ���� vary as prescribed in Equations S1-49 and S1-50 can the ASIR 

approximation model the country data with any degree of accuracy. 

We first used the values of �� and �  in Table 1 to derive values of �� and �� for Italy and New 

Zealand and used the CSIR solution to project the results. We then simulated the ASIR model 

with the assumption that the values of � and � (and therefore * and )) were constant and 

directly related to the values of �� and �� used in the CSIR solution. The results of the CSIR 

simulation and the ASIR simulation are plotted in Figure 9, along with the country data. The 

CSIR model accurately models the country data and the ASIR model does not. 

In a second step, we recast Equations S1-49 and S1-50 in terms of *��� and )���: 

* � ������ � ����
	��� , and        (S3-11, 23) 

) � ���� � ��
����
���� � ��.        (S3-12, 24) 

       

Using Equations S3-11 and S3-12, we then calculated the time series of * and ) necessary to 

generate the curves in Figure 9 and plotted them in Figure 10. Next, we used the values of * and 

) plotted in Figure 10 in the ASIR model to generate the curves in Figure 11.  Clearly, when * 

and ) are allowed vary in accord with the time variations of ���� and ����, exposited above, the 

ASIR equations model country data quite well. 
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Equations S3-11 and S3-12 answer the second question posed at the beginning of this 

supplement.  If * and ) are forced to vary according to these equations, then the ASIR model 

will model the epidemic. In a sense, Equations S3-11 and S3-12 are corrections to the ASIR 

model. 

Supplement 4. Important relationships derived from the CSIR 
solution 

Taking the limit of Equation S1-39 as � A ∞, we obtain the expression for the total number of 

individuals who will be infected throughout the entire epidemic: 

lim�2� ���� � �� � ��������
��

�	��
� � ���������	��
#� 
�

. (S4-1) 

Mathematically, Equation S4-1 demonstrates that the total number of infections expected, ��, 

and the behavior of the population, ��, are interrelated in the sense that changes in �� have an 

exponential effect on the final number of infections. The exponential nature of the relationship 

underscores that small changes in population behavior dramatically affect the epidemic’s 

outcome. However, the reciprocity also means that the eventual number of cases produced by the 

epidemic is not foreordained, but rather, a strong function of interventions introduced. 

We gain insight into the meaning of the CSIR model solution by looking at Equation S1-43 in 

more detail. Equations S1-38 and S1-40 can be used to rewrite Equation S1-43 as 

 
�

����
�����

�� � ��
����
���� � ��  � �� � ����

���� �� � ��. (S4-2) 
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The left-hand side of Equation S4-2 is the rate of change in the number of new infections per 

person currently infected. The first two terms on the furthest right-hand side of Equation S4-2, 

�� � ����
���� ��, describe the net rate of successful infection. Since �� is the rate at which an 

infected person causes infections per infectable contact, the terms � ����
���� �� � �� must represent 

the rate of recovery per infected person.  

We gain an additional intuitive insight about the solution from the following relationship, 

derived from Equations S1-38, S1-39, and S4-1: 

��
�� � ����


�	������
���. (S4-3) 

In words, the form of Equation S4-3 is 

�I�� �M JRI>B� 
> JIS�S �
��TUVI�
�> �RI� W
VV X� 
>M�J��� Y  ���XIX
V
�Z �M 
>M�J�
�> Y �I�� �M ��I>S[
SS
�> Y
 ;�IJ�
�> �M JIS�S S�
VV 
>M�J���  

 (S4-4) 

or 

�I�� �M JRI>B� 
> JIS�S �
�U[X�� �M JIS�S Y �I�� �M ��I>S[
SS
�> Y  ;�IJ�
�> �M JIS�S S�
VV 
>M�J���  (S4-5) 

Equations S4-4 and S4-5 illustrate the logic of the CSIR solution in terms of probabilities. 
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Finally, using the prior definition, ;0��� � ?�"�
����, and if �� � 0, we can use Equation S4-1 to write 

this simple expression for the CSIR solution for total cases: 

���� � ��
��
*�����. (S4-6) 

S4.1 Additional properties of the CSIR solution 

Substituting the values for R(t) and N(t) from Equations S1-39 and S1-41 into Equation S1-46, 

we can arrive at an expression for ρ��� as a function of time: 

ρ��� � ���1 � �
��� �
���� � ��. (S4-7)  

From Equation S1-9, we can see that the number of infections, I(t), will begin to decrease when 

ρ��� \ µ��� or 
@���
µ��� \ 1. In this way, the ratio, 

@���
µ���, serves as the inverse of what is known in the 

conventional epidemiology literature as the Replication Number. We call the inverse of this 

ratio, the Effective Replication Number. 

Using the previously developed expressions for ρ��� and µ���, we can write the following 

criteria for when the epidemic will begin to decline: 

@���
µ��� \ 1 � �

BCC���0,� ���80���0<3 �7%;�� � E1 � �
�� � �
���F � ��
��

. (S4-8) 

Using Equation S4-8, we obtain the following expression for when the decline begins: 

����803� � &' ���
�� �

	��
��
�� � &' � ����
��

����
���
��

� ��&' �#���
��
��
�� �

��
.  (S4-9) 
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If we differentiate both sides of Equation S1-38, we obtain an expression identical to Equation 

S4-9:  

�%�� � &'(��
��

�	��
�)
��

� &'(��
��

��
��
��
��)

��
� ��&' �#���
��

��
�� �
��

,  (S4-10, 20) 

where �%�� � the time to the peak of new infections. The time of the peak in new cases 

coincides, as it should, with the start of the decline of infections.  

Equation S4-10 demonstrates the relationship between the strength of social intervention 

measures, ��, and the time to the peak of new infections. When social interventions are stronger 

(smaller ��), the time to the peak will always be shorter. 

Another important expression is the rate of acceleration of the epidemic: 

������
��� � ����
��� � ��� �����

�� � ��� ����
���� � �

��
� �����

�� �  &��/D��� � ��
��

' �����
�� � ��

�����
��  .  

(S4-11) 

Equation S4-11, with its four equivalent expressions, demonstrates the power that an authentic 

model provides. The leftmost expression allows us to compare the acceleration—the potential to 

change the rate of new infections—at any stage of the epidemic for any two countries, even those 

with different population densities, using only the defining constants, �� and ��, plus the daily 

case rate. Equation S4-11 is an immediate determinant of whether the control measures in place, 

represented by ��, are effective enough. If the value of the term 
����
���� � �

��
 is positive, then the 
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control measures are not strong enough. Conversely, when this term is negative, the epidemic is 

being brought under control.  

The furthest right-hand equality in Equation S4-11, ��
�����

�� , underscores that the goal of all 

containment measures should be to limit the creation of new infections as quickly as possible. 

When there are more daily new infections than daily recoveries, the epidemic is accelerating and 

expanding. Conversely, when there are fewer daily new infections than daily recoveries, the 

epidemic is slowing and will end, provided the containment measures are kept in place long 

enough to extinguish the outbreak. 

The maximum value of �� that will begin to bring down the new cases per day occurs when the 

acceleration is less than zero. If we set the left-hand side of Equation S4-11 to zero, use the third 

expression from the left and solve for ��, we arrive at the defining relationship for this critical 

parameter of epidemic management: 

�� ] ���
�/D���.  (S4-12) 

Since we can easily determine the value of ��#��� every day during the epidemic and the value 

of �� can be determined using the technique illustrated in Supplement 2, the maximum 

allowable value of �� needed to reduce the number of daily cases can always be determined. This 

value of �� is the maximum level of infectable social contact allowable if we want the number of 

new daily cases to continue decreasing. 
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Yet another important relationship can be derived from Equation S1-38. In that equation, the 

term 
�����

��  is the rate of new cases and, in Figures 3, 6B, D, F, H, 7, 9 and 11, this is the new 

cases per day. If we define a desired target for the number of new cases per day at a future time, 

� � ����E�� , then we can define a new quantity, the desired fraction of the current new cases, �̂C, 

as: 

�̂C � "��
�
"


"�'

%+.(
)
"


,  (S4-13) 

and using Equations S1-38 and S1-39, we arrive at the following expression: 

�̂C � �
��
��

��	���

%+.(
/��
�	��
��
����0123�.  (S4-14) 

If � _ ����E�� , then �
����
%+.(
-"� � �
��� ` 0 and we can derive the following equation from 

the remaining terms: 

����E�� � � &' �F
4�
��

� � ��&' �F
4�
��

.  (S4-15) 

Equation S4-15 quantitates the number of days, ����E��, that a level of social containment, ��, 

must be imposed to achieve a fraction of daily cases, �̂C, compared to the current level.  

As a final comment, Equation S2-4 shows that, under the initial assumptions of immunity, no 

cases from outside, and a contiguous epidemic, ����� \ 0 (See Supplement 7 for an explanation 

of contiguousness). Since ����� is inversely proportional to ����� and, as people reduce the area 
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they traverse per unit time by increasing social distancing or taking other measures, ����� 

increases due to the lowered contact rate. Therefore, as formulated and as long as ����� is 

constant, ����� is inversely proportional to the strength of social distancing interventions 

implemented during an epidemic. 

 

Supplement 5. Controlling epidemics early 

The quantitative mathematical relationships derived from the CSIR solution in Supplements 2 

and 4 characterize the dynamics of an epidemic and illustrate that strong and early intervention is 

critical. Equation S4-1 quantifies that the ultimate number of individuals infected in an epidemic, 

N∞, will be exponentially dependent on the number of people with whom each person interacts.  

The real-world country data provide vivid examples. Both South Korea and New Zealand 

enacted strong and early interventions compared to other countries (3, 4), as reflected by their K1 

values (Table 1). These strong interventions led to earlier peaks in new cases and to far fewer 

total cases than in other countries (Figures 2 and 3): the peak number of new cases in both South 

Korea and New Zealand was 90–99% lower than in other countries, a compelling validation of 

the explicit statement in the CSIR solution that strong intervention leads to exponentially more 

favorable outcomes. 

In the USA, interventions that began on March 16 started to have an effect around March 23, 

2020 (Figure 3B); the number of active cases on March 23, 2020 (6) was 46,136 (Table 1). Using 

the values of K1 and K2 from Table 1, Equation S4-1 predicts that the ultimate number of cases 
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would have been approximately 1.22 million. If the same intervention had been implemented and 

sustained starting on March 10, when there were 59 times fewer (782) cases (6), the model 

predicts that the ultimate number of cases would also have been 59 times lower, or 20,725. Thus, 

earlier action could have reduced the ultimate number of projected cases by more than 98%. Of 

course, the projected estimate of approximately 1.22 million total USA cases would only have 

occurred if the effectiveness of the interventions that were launched on March 16 had been 

sustained. Unfortunately, a marked reduction in effective interventions occurred in many parts of 

the USA in mid-April, well before the official reopening of the economy (13). This caused a 

second surge in new cases in late April and is why the observed data and the model prediction 

diverge in Figure 3B.  

As shown in Supplement 4, the CSIR solution provides an estimate of the time to the peak of 

new cases, tmax. Using Equation S3-10 and the values of K1 and K2 from Table 1, the predicted 

peak in new cases in the USA would have occurred near March 24 if the intervention had begun 

on March 10. Instead, a 6-day delay in effective intervention shifted the initial peak to April 11, 

16 days later, as projected, and that peak was much higher (Figure 3B). 

As shown, too, in Supplement 4, epidemic acceleration, the instantaneous potential to change the 

pace of the epidemic, can be determined at any point in the epidemic and depends on the social 

containment actions in effect at that time (Equation S4-11). What is perhaps less apparent, but 

predicted by the model, is that two countries with identical numbers of cases on a given day can, 

in fact, have different accelerations on the same day, and exhibit different dynamics immediately 

after that day.  
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South Korea and New Zealand (Figure 2A and F) had nearly identical case counts when each 

imposed strong containment measures (204 cases in South Korea on February 21, and 205 in 

New Zealand on March 25). Their models suggest that their interventions were about equally 

effective (K1 = 0.24 in South Korea and 0.17 in New Zealand; see Table 1). However, since 

South Korea has a much higher population density than New Zealand ((7), data in Table 2), it 

had a much higher number of interactions when the interventions were imposed and, therefore, a 

higher rate of acceleration, as evidenced by its higher RCO at the time of intervention. Indeed, 

the rate of change of new cases was higher in South Korea than in New Zealand, and the later 

number of cases in South Korea was higher than in New Zealand (Figure 2A and 2F).  

Equation S4-8 clearly illustrates these lessons. As social distancing is strengthened (lower �� and 

therefore, higher ��), the Effective Replication Number decreases, and the epidemic slows. Early 

and strong interventions, especially in countries with indigenously high levels of social 

interaction, are necessary to stop an epidemic in the initial stages. Re-openings, enacted too 

early, can reignite the epidemic, dramatically increasing the number of cases. The astonishing 

magnitude of the effects, driven by only a few days of delay, derives from the doubly 

exponential nature of the underlying relationships. 

Supplement 6. Ending an ongoing epidemic 

We can use the CSIR solution to design measures to end an epidemic in an advanced stage. The 

management plan is built by first using Equation S4-13 to predict the number of days a given 

level of intervention, ��, is needed to reduce the new daily cases by a target fraction: 
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����E�� � � &' �F
4�
��

,         (S4-13) 

where ����E�� is the time to the desired reduction and �̂C is the target as a fraction of the current 

level of new cases per day.  

For example, a country targeting a 90% reduction of new cases per day (e.g., from 50,000 to 

5,000 cases per day, �̂C � 0.1), can attain its target in about 12 days by imposing a containment 

level of �� � 0.2. The South Korea and New Zealand data demonstrate that Equation S4-15 is 

valid and that �� � 0.2 is achievable for this duration. Both countries achieved a value of �� 

close to 0.2 for the time necessary to produce a 90% reduction. It took 13 days in South Korea 

(March 3–16) and 15 days in New Zealand (April 2–15), New Zealand (6). 

Since 
��
��

� ��, K1 = 0.2 characterizes a lockdown in which people in a country can each have 

only one plausibly infectious contact with a little over one specific person for the containment 

duration. This does not mean they cannot contact anyone other than the one person; but they 

must use care, masks and proper distancing, to ensure there is no plausibly infectious contact 

with anyone other than the one person.  

Returning to the planning example, after achieving the initial 90% reduction, a reasonable next 

step might be to relax social containment to a level that allows the economy to remain viable, 

while preventing the epidemic from erupting again. We can again find the level of �� necessary 

to achieve a chosen target, using Equation S4-13. If an additional 90% reduction in new cases 

per day is desired, and a period of 90 days is tolerable for that reduction, then a new level of 

approximately �� = 0.025 is needed. This equates to a 90-day period during which each person 
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can be in contact with seven specific people, in an infectable way. Note that this is three times 

less stringent than the original USA shutdown level in April 2020 as shown by the level of �� 

calculated for the United States in that period (Table1). Thus, with a well-planned approach, a 

country can reduce its new daily cases by 99% in approximately 100 days, enabling the country 

to control, and essentially end the epidemic, while simultaneously maintaining economic 

viability.  

If even �� � 0.025 is too restrictive, we can choose a still lower ��, but it must be large enough 

to avoid a new outbreak. A bound for the new value of ��, low enough to prevent an outbreak 

and yet continue decreasing the new cases per day, can be found using Equation S4-12.  

We can easily monitor the progress of interventions using the RCO, as the curve for South Korea 

illustrates (Figure 1A). Had this country maintained the implemented level of distancing 

measures, the data would have followed the initial slope. However, the actual data departed from 

the slope, heralding failures in (or relaxation of) social distancing, which were later documented 

to have occurred during the indicated time frame (3) (circled data, Figure 1A). Because it 

summarizes epidemic dynamics, we can use the RCO to continuously determine the 

effectiveness of implemented measures and whether they need adjustment.  

S6.1 Outbreaks 

Thus far in the development of the CSIR solution, we have assumed �� to be constant over time. 

The solution is readily extended to allow �� to vary with time in a piecewise manner. Here, we 

develop equations describing the analogous model in which �� is constant in intervals of time, 

between which it changes. In addition, because this is a common happenstance, we develop an 
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expression for �  for use in Equation S1-39 when the model is fit to data that does not start at 

time t = 0.  

If �� and �  are functions of time, Equation S1-38 can be rewritten as 

�����
�� � �����
������
������ (S6-1) 

and Equation S1-39 as 

���� � ������� �	���
��	���
�



� ��.  (S6-2) 

Distancing measures tend to be constant for many days at a time, so for this analysis, we assume 

�� is piecewise linear. Therefore, we can calculate � ��� for any time, �3, when �� changes: 

� ��� � � ; � ��; �� � ��� when �� ] � ] ��.  (S6-3) 

If �� � 0, then ��; and � ; are the baseline levels of these parameters, and �� � ���5. These 

three K values represent epidemic dynamics during the initial stages, before any containment 

measures are implemented. 

As time passes, �  becomes 

� ��� � � ; � ��; ��� � ��� � �� �� � ��� when �� ] � ] � , and (S6-4) 

� ��� � � ; � ��; ��� � ��� � �� �� � ��� � ��  �� � � � when � ] � ] �G. (S6-5) 
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Noting the pattern as t increases, we can rewrite Equations S6-4 and S6-5 as 

� ��� � � ; � � ��������
��

.  (S6-6) 

For any interval, �3 ] � ] �3-�, where �� is a constant, � ��� can be expressed as 

� ��� � � ; � � ��������6
��

.  (S6-7) 

Equations S6-1 and S6-2 can also be rewritten as 

�����
�� � �����
��5
� �������
6


� �
������ and (S6-8) 

���� � �������	��5	& ���
�"

6
� � �	���
�



� ��. (S6-9) 

An expression for what happens in an epidemic before and after implementing social distancing 

measures is especially useful. A typical, or perhaps worst-case scenario might be a reopening of 

the economy, at which time social distancing measures are withdrawn and social contact returns 

to normal levels. In that instance, when distancing measures are lifted ����� becomes ��; at time 

tn. Using Equation S1-38, we arrive at the following expressions: 

���� � ���3��	��
��5

�& ���
�"

6
� ��	��5�
	
6�
�	��5
6�
 and (S6-10) 

�����
�� � �����
��5��
�6�(���
 � �������
6


� �.  (S6-11) 
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Equations S6-10 and S6-11 predict the progression of the epidemic before and after instituting 

interventions. They demonstrate that the dynamics of the epidemic depends on prior containment 

measures, as shown by the appearance of the expression � ��������6
��

 in both equations. This 

means that as long as the initial three assumptions of 1) immunity, 2) no new infections are 

introduced from outside the area, and 3) the epidemic remains contiguous (see Supplement 7) are 

still valid, then when interventions are relaxed, the epidemic can still grow nearly exponentially, 

but growth will be less rapid than the initial outbreak. This is a consequence of the fact that, 

under the three assumptions, �� \ 0. Since �� is proportional to the inverse of the effective area 

traversed by an individual, it is proportional to the number of social interactions, and social 

interactions can never be less than zero. We label an outbreak when the three assumptions 

remain valid, but �� decreases due to more social interaction, a Type 1 outbreak. A Type 1 

outbreak appears to have occurred in mid-April in the USA because the slope of the RCO curve 

became less negative (Figure 1B). 

If new infections are introduced into a portion of the population that has been thus far 

disconnected from the previously infected area, then the assumption of contiguity is violated. 

This is a common situation when infected people travel from an infected area to an area that was 

previously uninfected or had not yet seen significant numbers of infections. We label this a Type 

2 outbreak. 

Equation S1-39 must be modified to predict the number of cases in an epidemic affected by Type 

2 outbreaks. Assuming that �� � 0, ����� � 1, and introducing the notation ���, where � 

denotes the number of the outbreak, Equation S1-39 can be written as: 
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���� � �
 ��
���

��	����
��
.  (S6-12) 

If a new outbreak occurs in a previously unaffected area of a country, then Equation S1-39 can 

be modified as follows: 

���� � �
 ��
���

��	����
�� � � �
 ��
���

��	�����	
��
��
, (S6-13) 

where �  is the number of infectious people who initiated the new outbreak, ��  is the social 

interaction parameter in the new outbreak area, and �  is the time the new outbreak occurs.  

Equation S6-13 can be written in a general form as 

���� � �
 ��
���

��	����
�� � � �
 ��
���

��	�����	
��
�� … � �H�
 ��
��7

��	��7��	
8�
��
, (S6-14) 

where � denotes the outbreak number and t \ � \ �G \ c \ ��. For each outbreak ��, ���, and 

�� need to be determined independently. 

While an epidemic is underway, we can detect a Type 2 outbreak by monitoring the slope of the 

RCO curve. A positive slope (K1 > 0) detected in an RCO curve indicates that a Type 2 outbreak 

has occurred. This is an indication that immediate action, within days, is required from policy 

makers to strengthen intervention measures and prevent the outbreak from overwhelming prior 

progress in controlling the epidemic. 
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By monitoring the RCO curve, we can also detect if the disease changes its transmissibility 

through mutation. In this situation, a proper fit of the parameters in Equation S1-44 is not 

possible and a modification of �� is required to accommodate the change. 

Supplement 7: Understanding the assumption of contiguousness 

To enhance the understanding of the CSIR solution and explain what the assumption of a 

contiguous epidemic means, we applied a perspective derived from the expression for �� in 

Equation S4-1 to Equations S1-1 to S1-5. Rather than look at the epidemic as involving the total 

population, ��, this perspective focuses on only that portion of the population that will 

eventually become infected in the epidemic. This is the subpopulation ��. We also introduce a 

subpopulation of �� called �	���, which we define as the sub-population at time � that is in 

contact with the epidemic and under threat of infection. This change in perspective views the 

epidemic mathematically from inside the bounds of the already infected population, which is 

ever expanding, rather than mathematically describing what is happening within a fixed total 

population. 

The reinterpretation begins by first recognizing that, in Equations S1-1 to S1-3, the initial 

number of infections introduced to the population—which we designate �0—is merely the 

starting value of the epidemic and can be any value at all. The second step is to imagine that at 

every time, �, the epidemic starts again and the initial infections introduced into the population, 

�0���, are equal to the then-current infections. The third step is to recognize that the values of the 

integrals in Equations S1-3 to S1-5 are equal to zero and ���� � 1 whenever the epidemic starts. 
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With these perspectives in mind, if Equations S1-1 to S1-3 and S1-5 are first all multiplied by 

�� , they can be rewritten as 

�	7���
�� � �Su�t� I���

����� �0���, (S7-1)  

�����
�� � Su�t� I���

����� �0��� � d����0���, and (S7-2) 

�����
�� � d����0���. (S7-3) 

where e��� �  �����	��� and d��� �  ����,  

�U��� is the remaining portion of the population that will become infected, and since there are 

only susceptible people in �	��� when the new infections are introduced, 

�	�t� � �U���, (S7-4) 

Of course,  
�	7���

�� � �	���
�� . 

If we also now define a quantity, �0���, as the number of recovered persons introduced to the 

population at the same time as �0���, we can write an equation for �� and define a new quantity, 

����, as the number of people either currently infected or recovered:  

�� � �U��� � �0 � �0, (S7-5) 

����= �0�t� � �0���, and (S7-6) 
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�� � ���� � �	��� � �U��). (S7-7) 

We have not assumed that any of the quantities are constant; therefore, we can now explicate the 

time-varying nature of these quantities. We begin by considering what happens to Equations S7-

1 to S7-3 during the time interval ∆� from a time � to � � ∆�, and by rewriting these equations as 

difference equations: 

Su�t � ∆�� � Su�t� � σ�� � ∆���0�� � ∆��∆�, (S7-8) 

�0�� � ∆�� � �0��� � �σ�� � ∆���0�� � ∆�� � d�� � ∆���0�� � ∆���∆��, and (S7-9) 

�0�� � ∆�� � �0��� � d�� � ∆���0�� � ∆��∆�. (S7-10) 

Taking the limit as ∆� A 0, we obtain the following differential equations: 

�	7���
�� � �σ����0���, (S7-11) 

������
�� � σ����0��� � d����0���, (S7-12) 

������
�� � d����0��� and (S7-13) 

�U��� � �� � ����. (S7-14) 

From the preceding, it can be easily seen that �0��� � ���� and �0��� � ����. Note that �U�∞� �
0 unlike ��∞�. 
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The perspective in the immediately preceding part of the analysis is that the epidemic can be 

considered to start over again at each instant in time. In this perspective, the susceptible 

population �U��� is not fixed by initial conditions, but rather is the population that will 

eventually become infected. Embedded in this concept is the assumption that during each ∆�, the 

susceptible population is always in contact with those people who have been previously infected 

or who will become infected. That is, the epidemic remains contiguous. This is not restrictive 

when considering the initial stage of the epidemic; however, as explained in Supplement 6, it 

plays a critical role in recognizing an outbreak that starts outside the population ��.  

We have recast the equations by shifting the population and area under consideration to �� and 

��, respectively, rather than �� and ��. Further, we have defined the susceptible portion of the 

population during the epidemic as those who will eventually become infected under the 

conditions in place at each instance in time. This shift in perspective retains the mathematical 

equivalence to the equations derived by Kermack and McKendrick (1) because the portion of �� 

that is not a part of �� never becomes infected, and therefore never affects the values of ���� or 

���� in the solutions to Equations S1-1 to S1-5 or S1-8 to S1-11.  
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