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Abstract (292 words) 45 

Background: Cardiovascular event rates increase with age in all populations. This is thought to be 46 

the result of multiple underlying molecular and cellular processes that lead to cumulative vascular 47 

damage. Apart from arterial stiffness based on pulse wave velocity there are few other non-48 

invasive measures of this process of vascular aging. We have developed a potential biomarker of 49 

vascular aging using deep-learning to predict age from a standard 12-lead electrocardiogram 50 

(ECG). The difference between ECG predicted and chronological age (δ-age) can be interpreted 51 

as a measure of vascular aging. 52 

Methods: We use data collected in two cross-sectional studies of adults aged 40-69 years in 53 

Norway and Russia to test the hypothesis that mean levels of δ-age, derived from a deep-54 

learning model trained on a US population, correspond to the known large differences in 55 

cardiovascular mortality between the two countries. 56 

Findings: Substantial differences were found in mean δ-age between populations: Russia-USA 57 

(+5·2 years; 0·7,  10 IQR) and Norway-USA (-2·6 years; -7, 2 IQR). These differences were only 58 

marginally explained when accounting for differences in established cardiovascular disease risk 59 

factors. 60 

Interpretation: δ-age may be an important biomarker of fundamental differences in cardiovascular 61 

disease risk between populations as well as between individuals. 62 

Keywords: Cardiovascular disease, Biomarkers, Aging, Machine Learning, Electrocardiogram 63 
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Background 66 

 67 

Fatal and non-fatal cardiovascular disease (CVD) event rates, such as stroke and myocardial 68 

infarction, increase steeply with age. This relationship is observed in all populations, independent 69 

of mean level of risk, and is the basis for regarding CVD as intimately connected with biological 70 

aging. Over the past decade much has been written about the concept of vascular aging 71 

associated with increases in factors such as arterial stiffness
1
 and the progressive build-up of 72 

atherosclerotic lesions;
2
 both of which have well-established associations with cardiovascular 73 

event rates.
3,4

 It has been postulated that there are shared molecular mechanisms of aging that 74 

promote macrovascular and microvascular pathologies
5
 including oxidative stress, mitochondrial 75 

dysfunction and chronic low-grade inflammation.
6
 However, there are few population level 76 

summary measures that attempt to quantify the cumulative overall effect of these various 77 

underlying processes on vascular aging.  78 

We have developed a novel potential biomarker of vascular aging. This arose from work to 79 

predict age from a deep learning analysis of 12-lead ECGs.
7
 It was noted that while predicted 80 

ECG-age was highly  correlated with chronological age there were deviations between the two.
7
  81 

This led to the proposal that the direction and magnitude of the difference between ECG-age and 82 

chronological age (delta-age (δ-age)) may be a measure of relative vascular aging: if δ-age is 83 

positive, it would suggest a higher cumulative vascular damage and therefore, higher rate of 84 

vascular aging relative to the reference population from which the age algorithm was derived. 85 

This has been supported by our subsequent work that has shown δ-age to be prospectively 86 

associated with mortality,
8
 cardiovascular events

9
 and cross-sectionally with a range of 87 

established CVD risk factors including smoking and blood pressure.
10

 There is also a strong 88 

positive association between δ-age and pulse-wave velocity,
10

 an established marker of vascular 89 

stiffness, which has been regarded as one of the few direct markers of vascular aging.   90 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 14, 2021. ; https://doi.org/10.1101/2021.09.09.21263337doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.09.21263337
http://creativecommons.org/licenses/by/4.0/


 

 

 

 

5 

In contrast to the substantial clinical and experimental work around the underlying concept of 91 

vascular aging in individuals, little attention has been given to exploring the idea that populations 92 

with different rates of CVD might be regarded as having different rates of vascular aging. It is 93 

theoretically plausible that populations with high compared to low CVD event rates may have 94 

different rates of vascular aging. To address this hypothesis we compare mean δ-age from 95 

several populations that have contrasting rates of CVD mortality and life expectancy. 96 

 97 

Results 98 

 99 

We compared δ-age in two recent population-based studies of adults aged 40-69 years: the 100 

Know Your Heart (KYH; 2015-18) study in Russia and the 7 study (T7; 2015-16) in Norway. To 101 

predict ECG-age we employed a convolutional neural network (CNN) model trained on 700,000 102 

ECGs from the Mayo Clinic (USA) (see Figure 1a). By definition the predicted age for the Russian 103 

and Norwegian populations was relative to the reference clinical population in the USA. Rates of 104 

CVD mortality in Russia are over seven times greater than in Norway in the 40-69 year age 105 

group. Given these differences in CVD mortality we hypothesised that the mean difference 106 

between ECG predicted and chronological age (δ-age) for Russia would be positive, while the 107 

equivalent mean value of δ-aged for Norway would be negative. We also investigated how far any 108 

differences in mean delta-age between the Russian and Norwegian study populations could be 109 

explained by differences in known CVD risk factors.  110 

Digitised ECGs were available for 5,459 T7 participants and 3,973 KYH participants aged 111 

between 40 and 69 years. After exclusion of records with missing data (NT7=74, NKYH=486) a final 112 

set of 5,385 T7 and 3,487 KYH participants were retained for analysis. The average age of the 113 

participants was 59  8·3 years (54·7% female) for T7 and 56  8·6 years (58·4% female) for 114 

KYH (Table S1). Mean δ-age was +5·2 years (0·7,  10 IQR) for the KYH (Russia) study 115 

population, (Figure 1b) and -2·6 (-7, 2 IQR) for T7 (Norway) study population (Figure 1c). The 116 
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mean difference in δ-age between KYH and T7 studies (δ-age gapKYH-T7) was +7·8 years (95% 117 

CI: 7·5, 8·1) showing that the Russian KYH participants had an average ECG-age that was nearly 118 

8 years older than Norwegian T7 participants (Table 1). Having adjusted for both chronological 119 

age and sex, the gap in δ-age between the two study populations (KYH-T7) was 7·0 years (95% 120 

CI: 6·7, 7·2; p<0·0001). 121 

The loess smoothed fitted line for KYH (Figure 1b) was above the line of identity at all ages. For 122 

T7 (Figure 1c) the fitted line was below the line of identity from age 50 years. However, the δ-age 123 

gapKYH-T7 was positive across the entire population, as shown by the fitted line for KYH being 124 

above that of T7 for the entire range of chronological age shown, the gap being slightly larger at 125 

older ages. There were small differences in δ-age between men and women in KYH (women 126 

were predicted 0.3 years younger on average, p=0·28) and T7 (0·3 years, p=0·15). 127 

The distribution of δ-age in the two studies (Figure 1d) showed a marked displacement of the T7 128 

population to the left of the KYH population. In contrast there is far less separation of the 129 

distribution of established CVD predictors in the two study populations (Figures 1e-g), although 130 

differences in the mean values are slightly higher in KYH than in T7. The degree of separation of 131 

these various distributions may be quantified in terms of a dissimilarity index that does not 132 

depend upon the shape of the distribution.
11

 This distribution has a range from zero (identical) to 133 

1 (no overlap). The dissimilarity index for δ-age was 0·61 (95% CI: 0·59 – 0·62), compared with 134 

0·13 (95% CI: 0·11 – 0·16) for SBP, 0·21 (95% CI: 0·19 – 0·23) for BMI, and 0·20 (95% CI: 0·18 135 

– 0·22) for LDL/HDL ratio, reinforcing the notion of δ-age having increased power to cross-136 

sectionally differentiate between populations presenting higher CVD risk than established CVD 137 

risk factors. 138 

The established CVD risk factors SBP, BMI, ratio LDL/HDL and smoking were associated with δ-139 

age in both studies (Table S2). Adjustment for these cross-sectionally measured risk factors 140 

along with sex and age reduced the gap in δ-age between studies to 6·5 years (95% CI: 6·2, 6·8; 141 

p<0·0001) (Table 1). 142 
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Finally, we adjusted for a larger set of established CVD-related risk factors which also showed 143 

significant differences between KYH and T7 (Table S1). These were diastolic blood pressure, 144 

pulse rate, haemoglobin A1c (HbA1c) and education level. This further adjustment reduced the 145 

gap in δ-age between studies to six years difference (95% CI: 5·7, 6·3; p<0·0001), with a slight 146 

reduction in the gap when further adjusting for history of hypertension and diabetes and the final 147 

model accounted for 25·8% of the gap in δ-age between studies (Table 1). 148 

 149 

Discussion 150 

 151 

These results confirm our hypothesis that mean difference between predicted age and 152 

chronological age (δ-age) in the study populations in Russia was substantially different to  the 153 

difference in the Norwegian study, consistent with the much higher CVD mortality rates in Russia 154 

compared to Norway. Moreover, relative to the US clinical reference population mean δ-age was 155 

higher in KYH (Russia) but lower in T7 (Norway), in line with the intermediate position of CVD 156 

mortality in the US between Russia and Norway. However, while the reference population in the 157 

US was from a clinical series, the Russian and Norwegian studies were population-based studies. 158 

As discussed elsewhere, CVD mortality rates in the Norwegian and Russian cities from which the 159 

study participants were drawn were very close to their respective national averages.
12

 160 

Showing that mean δ-age is so much higher in the Russian compared to Norwegian study 161 

population strongly suggests that δ-age may be a robust biomarker of relative vascular aging 162 

between populations as well as being a predictor of mortality and associated with CVD risk 163 

factors within populations. While CVD mortality is not the only determinant of differences in life 164 

expectancy between countries, it is notable that the difference in δ-age between Russia and 165 

Norway (7·8 years) is similar to the difference in life expectancy at birth between the two 166 

countries (8·8 years in 2016). 167 
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Adjustment for a wide range of CVD risk factors attenuated the difference between KYH and T7 168 

by just under 20% (from 6·95 to 5·64 years). This is consistent with recent work that suggests 169 

that a core set of established CVD risk factors were able to explain only a quarter of the observed 170 

differences in CVD mortality between Russia and Norway at ages 40-69 years.
13

 There are a 171 

number of explanations for the inability of cross-sectional risk factor profiles to explain differences 172 

in CVD mortality per se that may also apply to the moderate attenuation of differences in δ-age. 173 

These explanations include within person variability in the risk factor levels from single cross-174 

sectional measures such that they provide inadequate assessments of long-term risk factor levels 175 

integrated over the life course.
13

 176 

As we have demonstrated for a selected set of established CVD risk factors, there is far greater 177 

overlap in their distributions between the Russian and Norwegian studies compared with that for 178 

δ-age. It is therefore not that surprising that they have limited scope to explain differences in δ-179 

age between the populations.  180 

The appreciable difference between T7 and KYH in mean δ-age is reflected in the shift to the left 181 

of the whole T7 distribution of δ-age relative to KYH. How can we interpret this? In contrast to 182 

established predictive risk factors, the information from the ECG captured by the CNN generated 183 

algorithm for predicted age could be regarded as a direct expression of the accumulation of age-184 

related damage or impairment to the vascular tree and its effects on cardiac structure and 185 

function. From this perspective, δ-age may reflect a net integrated effect on vascular aging that is 186 

the result of many different processes and cumulative exposures to both known and unknown risk 187 

factors. In this sense this integrated measure of age-related changes in cardiac structure and 188 

function may be far more proximal to the ultimate causes of CVD events and mortality than are 189 

single or even multiple measures of predictive risk factors.        190 

The specific ECG features used by the δ-age algorithm remain unclear. Recent advances have 191 

been able to highlight the segments of an ECG that a CNN algorithm uses to make predictions
14

. 192 

However, the unresolved functioning of the algorithm does not prevent the objective evaluation of 193 
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its potential utility, especially when studying CVD risk at a population level, where the benefit 194 

obtained from the ability to measure CVD risk trends is likely to outweigh any biases at the 195 

individual level which could have a more direct effect if this measure was used in a clinical 196 

setting. Through the use of epidemiological approaches, we have identified the ability of δ-age to 197 

replicate between population patterns of CVD risk and mortality suggesting that it captures 198 

fundamental average differences in cardiac structure/function within populations. 199 

We believe this biomarker may enable us to close some of the knowledge gap between 200 

established risk factors and predictors and proximal measures of CVD risk at a population level 201 

(Figure 1h). Further studies would require population level data from more diverse populations, in 202 

order to ascertain the ability of δ-age to reproduce country-level CVD event trends as well as 203 

using cohorts with both raw ECG and CVD events follow-up data. Additionally, ECG signals could 204 

be used outcomes in GWAS studies to determine potential genetic contributions to δ-age and 205 

provide insights into new biological pathways relevant to vascular aging. Finally, the use of this 206 

marker if further validated may enable novel studies of CVD risk in low- and middle-income 207 

countries where resources for more complex phenotyping are scarce. 208 

Materials and Methods 209 

 210 

We used data obtained in two population studies, the Tromsø 7 (T7), the 7th survey of the 211 

Tromsø Study in Tromsø, Norway
15

 and the Know Your Heart (KYH) study, a cross-sectional 212 

survey of a random sample of the population of two Russian cities: Arkhangelsk and 213 

Novosibirsk.
12

 A total of 21,083 men and women aged 40-99 years were recruited from the 214 

general population, as described in detail elsewhere.
16

 The KYH study participants were 215 

comprised of 4,542 men and women aged 35-69 years recruited from the general population 216 

between 2015 and 2018 as described in detail elsewhere.
12

 217 

 218 
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For T7 65% of those contacted and invited to take part attended the health check. A randomly 219 

selected set of 13,028 participants (9,925 randomly selected and 3,103 selected based on 220 

participation in previous rounds) were invited for a second visit where a resting 10 seconds digital 221 

12-lead ECG was obtained using the Schiller device AT104 PC and the raw ECG signal was 222 

stored digitally. For KYH of those contacted and invited to take part 47% attended the health 223 

check. A resting 10-25 seconds digital 12-lead ECG was obtained using the Cardiax device 224 

(IMED Ltd, Hungary) and the raw ECG signal was stored digitally. 225 

 226 

A convolutional neural network (CNN) model using Keras with a Tensorflow (Google, Mountain 227 

View, CA) backend was previously developed and validated. A total of 774,783 unique subjects 228 

with ECGs were used to develop the neural network: 399,750 in the training set, 99,977 in the 229 

internal validation set and 275,056 ECGs in the holdout testing set. The network contained 230 

stacked blocks of convolutional, max pooling, and batch normalization.
17

 A detailed description of 231 

the network is described in our previously published paper.
7
 232 

 233 

We used linear regression models to assess association of the risk factors as exposures using 234 

age as the outcome. All models were adjusted for a priori confounders including chronologic age 235 

and sex. True chronologic age was included in every model to remove the effects of any potential 236 

correlation between δ-age and chronologic age. A test for trend for smoking was performed by 237 

converting the ordered categories of number of cigarettes smoked into integer values. Basic 238 

models including one risk factor at a time were further adjusted for potential confounders.  239 

Density plots were generated for δ-age, SBP, BMI and Ratio LDL/HDL. In order to assess the 240 

overlap of the density plots for each variable in the populations we used the R package 241 

overlapping with a 100 bootstraps per variable.
11,18

 242 

For further details see Supplementary Methods. 243 

 244 
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Figure 1. A novel digital ECG biomarker of vascular aging for population level assessment 334 

of CVD risk. a) Schematic followed to obtain ECG-age and form participants of both Tromsø 7 335 

(T7) and Know Your Heart (KYH) studies, chronological age was obtained via questionnaire data 336 

and ECG-age was obtained by performing an, at least, ten second resting 12-lead ECG and 337 

processing the ECG raw data through a CNN model trained on a USA clinical population to 338 

predict age. δ-age was obtained by subtracting the chronologic age to the ECG-age. b) 339 

Scatterplot of ECG-age versus chronological age for 3,487 participants form KYH (Russia) in blue 340 

and 4,704 T7 participants from Norway in grey. Locally weighted smooth line was presented in 341 

light blue for KYH and light red for Norway. c) Scatterplot of ECG-age versus chronological age, 342 

in this panel dark red dots represent T7 participants (Norway) and grey dots represent KYH 343 

participants (Russia). This panel presents the same data as panel b) with different colouring for 344 

clarity. d) Density plot of δ-age for Russia and Norway, δ-age-gap is not adjusted. e) Density plot 345 

of systolic blood pressure (SBP) for Russia and Norway, SBP-gap is not adjusted. f) Density plot 346 

of body mass index (BMI) for Russia and Norway, BMI-gap is not adjusted. g) Density plot of ratio 347 

of low-density lipoprotein (LDL) cholesterol over high density lipoprotein (HDL) cholesterol for 348 

Russia and Norway, Ratio LDL/HDL-gap is not adjusted. h) Proposed theoretical framework 349 

depicting δ-age in the causal pathway of cardiovascular disease (CVD) as a proximal biomarker 350 

of CVD risk which stores information about both behavioural and risk factors as an accumulated 351 

exposure over time. Note: The line of identity in panels b) and c) can be seen as a proxy for the 352 

American population, representing an average δ-age of +0·44 years.
7
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Tables 356 
 357 

Table 1. Table of explanatory linear models for the absolute difference in δ-age between 358 

the T7 and KYH studies (δ-age-gapKYH-T7). The second column (δ-age-gapKYH-T7 explained) is 359 

the difference between the unadjusted δ-age-gapKYH-T7 and the δ-age-gapKYH-T7 of each adjusted 360 

model, reported as a percentage of the unadjusted δ-age-gapKYH-T7. 361 

 362 

Model 
δ-age-gapKYH-T7 

(years) 95% CI p-value 
δ-age-gapKYH-T7 

explained (%) 

Model 1: Not adjusted 

 
7·8 [7·5, 8·1] <0·0001 - 

Model 2: Chronological age and sex 7 [6·7,7·2] <0·0001 7·8 

Model 3: Model 2, SBP, BMI, 
Smoking and Ratio LDL/HDL 
adjusted 

6·5 [6·2, 6·8] <0·0001 16·5 

Model 4: Model 3, DBP, Pulse rate, 
HbA1c, Education  

6 [5·7, 6·3] <0·0001 23·2 

Model 5: Model 4, history of 
hypertension and history of diabetes 
adjusted 

5·8 [5·5, 6·2] <0·0001 25·8 

 363 
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