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ABSTRACT 

Background: The value of the electrocardiogram (ECG) for predicting long-term cardiovascular 

outcomes is not well defined. Machine learning methods are well suited for analysis of highly 

correlated data such as that from the ECG. 

Methods: Using demographic, clinical, and 12-lead ECG data from the Third National Health 

and Nutrition Examination Survey (NHANES III), machine learning models were trained to 

predict 10-year cardiovascular mortality in ambulatory U.S. adults. Predictive performance of 

each model was assessed using area under receiver operating characteristic curve (AUROC), 

area under precision-recall curve (AUPRC), sensitivity, and specificity. These were compared to 

the 2013 American College of Cardiology/American Heart Association Pooled Cohort Equations 

(PCE). 

Results: 7,067 study participants (mean age: 59.2 ± 13.4 years, female: 52.5%, white: 73.9%, 

black: 23.3%) were included. At 10 years of follow up, 338 (4.8%) had died from cardiac causes. 

Compared to the PCE (AUROC: 0.668, AUPRC: 0.125, sensitivity: 0.492, specificity: 0.859), 

machine learning models only required demographic and ECG data to achieve comparable 

performance: logistic regression (AUROC: 0.754, AUPRC: 0.141, sensitivity: 0.747, specificity: 

0.759), neural network (AUROC: 0.764, AUPRC: 0.149, sensitivity: 0.722, specificity: 0.787), 

and ensemble model (AUROC: 0.695, AUPRC: 0.166, sensitivity: 0.468, specificity: 0.912). 

Additional clinical data did not improve the predictive performance of machine learning models. 

In variable importance analysis, important ECG features clustered in inferior and lateral leads. 

Conclusions: Machine learning can be applied to demographic and ECG data to predict 10-

year cardiovascular mortality in ambulatory adults, with potentially important implications for 

primary prevention. 

 

 

 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 14, 2021. ; https://doi.org/10.1101/2021.09.09.21263327doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.09.21263327


ABBREVIATIONS 

ASCVD: Atherosclerotic cardiovascular disease 

AUPRC: Area under precision-recall curve 

AUROC: Area under receiver operating characteristics curve 

ECG: Electrocardiogram 

NHANES: National Health and Nutrition Examination Survey 

PCE: Pooled Cohort Equations 

 

INTRODUCTION 

Atherosclerotic cardiovascular disease (ASCVD) is a major cause of morbidity and 

mortality in the United States, with an incidence of 580,000 myocardial infarctions and 610,000 

strokes occurring each year1. The current standard risk calculator in the U.S., the 2013 

American College of Cardiology and American Heart Association Pooled Cohort Equations 

(PCE)2, utilizes demographic and clinical variables (age, sex, race (white or African American), 

total cholesterol, high-density lipoprotein cholesterol, systolic blood pressure, treatment for 

hypertension, diabetes mellitus, and smoking status) to estimate 10-year risk of incident ASCVD 

events, defined as fatal and nonfatal myocardial infarction or stroke. While the PCE is in routine 

clinical use in the U.S., it has been criticized for its suboptimal calibration and risk prediction in 

various patient populations3, and the requirement for blood draws represents a hindrance in its 

utility as a primary screening tool. 

The electrocardiogram (ECG) is widely used in clinical practice to diagnose various 

cardiac conditions, such as myocardial infarctions, arrhythmia, and others. While prior studies 

have identified individual ECG components as predictors of adverse cardiovascular events4-7, 

the value of aggregate screening ECG data for prediction of long-term cardiovascular outcomes 

is less well understood. Given their highly correlated nature, ECG data are well suited for 

analysis by machine learning methods, and recent studies have found machine learning on 
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ECG data to be useful in identifying specific cardiac disease states8-12. Considering such 

background, we sought to examine whether machine learning methods could predict 10-year 

cardiovascular mortality from aggregate ECG data in an ambulatory population. 

 

METHODS 

Data source 

This study utilized the third iteration of the National Health and Nutrition Examination 

Survey (NHANES III)13, which consists of healthcare survey data compiled from a nationally 

representative sample of 39,695 persons from 1988 to 1994. In addition to demographic, 

historical, and physical items from the questionnaire and examination, biochemical laboratory 

studies and ECG data are available for a subset of the surveyed population. Mortality outcomes, 

including the cause of death, are available via linked National Death Index files14. Since 

NHANES III is a publicly available, de-identified data set, a separate Institutional Review Board 

review was not required for this study. 

This study included NHANES III participants who were 18 and older whose demographic 

and mortality data were available, and who did not have pre-existing cardiovascular disease, 

defined as lack of self-reported history of myocardial infarction, congestive heart failure, or 

stroke. Among this group, 7,067 participants had additional data from a standard 12-lead ECG 

and cardiovascular risk factors required to compute the PCE, who formed the main study cohort 

for this analysis. The study flow diagram is shown in Figure 1. 

 

Data preparation 

All data were imported and analyzed using R 3.5.1 statistical software15. Publicly 

available R packages were utilized for data preparation (tidyverse16, mice17, ROSE18), general 

machine learning (caret19), deep learning (Keras20), ensemble learning (SuperLearner21), 

classification performance evaluation (precrec22), and survival analysis and plotting (survival23, 
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survminer24). Details of data preparation, model training, and performance evaluation are 

described below. 

Demographic and clinical data were recorded from relevant sections of NHANES III. 

Baseline age and sex were recorded as reported at time of survey. Race categories were 

simplified to White, Black, or Other to avoid data sparsity. For vital signs, the median value of 

multiple measurements was recorded. For clinical data, an affirmative answer on the 

questionnaire or relevant medication and laboratory measurements were utilized (e.g. for history 

of diabetes, qualifying criteria included answering ‘yes’ to questionnaire or having laboratory 

values of any fasting glucose ≥126 mg/dL or hemoglobin A1c ≥ 6.5%). For participants taking 

medications for high cholesterol, laboratory values were adjusted to reflect average statin effect 

(total cholesterol: 21% reduction, high-density lipoprotein cholesterol: 3.5% increase)25. 

For outcomes, death status and cause of death were determined using International 

Statistical Classification of Diseases and Related Health Problems - Tenth Revision (ICD-10) 

codes. Cardiovascular death was identified by codes: I00-I09, I11, I13, I20-I51. Other outcomes 

related to ASCVD, including nonfatal myocardial infarction and stroke, were not available in the 

NHANES III dataset. Death events were right-censored at 10 years. The full list of clinical 

variable names and their corresponding NHANES III codes are listed in Supplemental Table 1. 

For ECG data, 133 features based on direct ECG measurements were used. Due to the 

high proportion of missing values, preprocessing steps for ECG data included removing rows 

(participants) and columns (ECG features) which had >50% missing data. Remaining missing 

values were imputed using the Multivariate Imputation by Chained Equations (mice) package17, 

based on demographic variables and other ECG features. A full list of selected ECG features is 

highlighted in Supplemental Table 2. Further preprocessing steps included converting the 

rhythm code to a binary variable (sinus vs. non-sinus rhythm) to avoid data sparsity and 

replacing QT interval with corrected QT interval based on Bazett’s formula. All ECG data were 

standardized to have a mean of 0 and standard deviation of 1. 
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Prior to model training, data were split into 80:20 train:test partitions by random 

sampling. Given the low frequency of outcome events, the training set was augmented by two 

procedures to improve class imbalance: 1) oversampling of positive events and 2) synthetic 

data generation using the Random Over-Sampling Examples (ROSE) package18, which creates 

a synthetic data sample of balanced class and parameter distribution by drawing new examples 

from a conditional kernel density estimate of the majority and minority classes. 

 

Model training 

All machine learning models were trained via 10-fold cross validation on six different 

training data combinations based on the following schema: Three training data sets (base, 

oversample, synthetic) in two different parameter combinations (PCE + ECG variables or 

Demographic (age, sex, race) + ECG variables). Model performance was assessed in a single 

hold out test set, which was not used for any part of the model training process. As a 

comparison, the PCE was implemented as a Cox proportional hazards model based on 

published parameters2,26. For machine learning, various classification models were trained with 

10-year cardiovascular mortality as a binary outcome. Logistic regression, random forest, 

gradient boosting machine, and support vector machine models were trained using the caret19 

package with automated hyperparameter tuning, while for neural networks, the R 

implementation for Keras20 package was used for deep learning based on multilayer perceptron 

architecture with three hidden layers and regularization via dropout. Finally, ensemble models 

were trained using the SuperLearner21 package. Briefly, ensemble models compute multiple 

models (“base learners”) and aggregate their predictions, which improves overall accuracy but 

increases computational costs. For this study, ensemble models were built using logistic 

regression, random forest, gradient boosting machine, support vector machine, and neural 

network models as base learners, and optimal model weighting was determined by maximizing 
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area under receiver operating characteristics curve (AUROC) based on the Nelder-Mead 

method and 5-fold cross validation. 

 

Model assessment and comparison 

  Discriminative performance of classification models and their ensembles were compared 

using AUROC, area under the precision-recall curve (AUPRC), sensitivity, and specificity 

metrics. To allow for comparison with the PCE, classification performance metrics were 

computed for the PCE by assessing the probability of cardiovascular death at or before 10 

years, with threshold value set to maximize AUPRC. Machine learning models with superior 

prediction performance characteristics were further assessed using standard calibration plots. 

 To assess the prognostic value of individual ECG features, the variable importance rank 

metric from the caret19 package was compared, except for neural network and ensemble 

models where such variable importance rank metrics were not available. For aggregate 

assessment of classification models, the cumulative count of top ten important predictors for 

each model was counted and plotted on a standard 12-lead ECG for visual assessment and 

clinical interpretation. 

 

RESULTS 

Study population 

Baseline characteristics of the study population are summarized in Table 1. The study 

cohort (N=7,067) had baseline age range of 40 to 90 years, with mean 59.2 and standard 

deviation of 13.4 years. Notably, while the initial inclusion criteria included all adults age 18 

years and above, ECG data were only available for age 40 and above. For sex, there was a 

slight female majority (52.5%), while for race there was a significant majority in white (73.9%), 

followed by black (23.3%), and under-representation of other races. There was a wide range in 

body mass index (mean: 27.6, range: 13.3-64.5) and a significant comorbidity burden, including 
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hypertension (33.8%), hyperlipidemia (23.3%), diabetes mellitus (46.7%), and tobacco use 

(24.5%). Follow-up period was 18.1±7.6 years, with 10-year all-cause mortality rate of 19.8% 

and cardiovascular mortality rate of 4.8%. 

 

Prediction performance of machine learning models 

Best performing machine learning models and their classification metrics are shown in 

Table 2. Compared to the PCE (AUROC: 0.668 [95% confidence interval: 0.625-0.712], 

AUPRC: 0.125 [0.081-0.170], sensitivity: 0.492, specificity: 0.859), several machine learning 

models trained on the PCE + ECG variable combination showed improved performance: logistic 

regression (AUROC: 0.762 [0.723-0.800], AUPRC: 0.143 [0.100-0.185], sensitivity: 0.759, 

specificity: 0.756), neural network (AUROC: 0.729 [0.646-0.813], AUPRC: 0.153 [0.089-0.216], 

sensitivity: 0.658, specificity: 0.822), and ensemble model (AUROC: 0.683 [0.648-0.718], 

AUPRC: 0.146 [0.092-0.199], sensitivity: 0.494, specificity: 0.884). Limiting training data to only 

demographic and ECG variables did not adversely affect predictive performance of machine 

learning models: logistic regression (AUROC: 0.754 [95% CI: 0.702-0.806], AUPRC: 0.141 

[0.093-0.189], sensitivity: 0.747, specificity: 0.759), neural network (AUROC: 0.764 [0.712-

0.815], AUPRC: 0.149 [0.110-0.188], sensitivity: 0.722, specificity: 0.787), ensemble model 

(AUROC: 0.695 [0.668-0.722], AUPRC: 0.166 [0.116-0.215], sensitivity: 0.468, specificity: 

0.912). Comparison plots of AUROC and AUPRC are shown in Figure 2. When predicted 

results were plotted as survival curves, there was clear separation between those predicted to 

be with and without cardiovascular death occurring at or before 10 years, with the best curve 

separation achieved by ensemble models (Figure 3). 

Training data augmentation generally had beneficial effects on model classification 

performance, though the degree varied by model family (Supplemental Table 3). For logistic 

regression, both oversampled and synthetic training data markedly improved classification 

performance. For neural networks, there was sequential improvement in performance from base 
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to oversampled to synthetic training data. For ensemble models, base training data worked well, 

with only comparable performance seen with synthetic data. Training data augmentation also 

generally improved model calibration (Supplemental Figure 1). In general, models tended to 

overestimate risk when predicting higher event probability. Calibration curves were haphazard 

for base logistic regression and ensemble models, compared to smoother calibration curves for 

models based on oversampled and synthetic data, suggesting improved calibration when using 

augmented training data. However, training data augmentation did not improve classification 

performance or calibration of random forest, gradient boosting machine, and support vector 

machine models, which all had poor predictive value overall. 

 

Variable importance comparison 

Among traditional cardiovascular risk factors, age was the most important predictor of 

10-year cardiovascular mortality, occurring as the top variable in all models, followed by systolic 

blood pressure and treatment for hypertension. Among ECG features, the most important were 

R amplitude in lead II, J amplitude in lead V5, J amplitude in lead V6, R amplitude in lead aVL, 

S amplitude in lead III, S amplitude in lead aVF, and S duration in lead V6. Interestingly, the 

most important ECG features appeared to cluster in inferior (II, III, aVF) and lateral (aVL, V5, 

V6) leads, as easily seen when plotted on a standard 12-lead ECG (Figure 4). Ranking of 

important predictor variables for individual models and the aggregate counts for the top ten 

predictors for each model are shown in Supplemental Table 4. 

 

DISCUSSION 

In this study, we showed that machine learning methods could be pragmatically applied 

to aggregate ECG data to predict 10-year cardiovascular mortality. Machine learning models, 

particularly the logistic regression, neural network, and ensemble models, performed favorably 

in terms of classification metrics compared to the current clinical standard, the PCE. Only 
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demographic and ECG features were required to achieve comparable performance, without 

requiring traditional cardiovascular risk factors represented in the PCE. Interestingly, individual 

ECG features with the most prognostic information were seen to cluster in inferior and lateral 

segments of the ECG.  

Prior studies have examined individual ECG components (e.g. P wave duration4, deep 

terminal negativity of P wave in V15,27, QRS duration6, QT interval28, JT interval29, and isolated 

ST-segment and T-wave abnormalities30) or groups of ECG components31 for their moderate 

additive predictive value with respect to standardized cardiovascular risk calculators such as the 

Framingham Risk Score or the PCE. Beyond individual components, groups of ECG 

components have been evaluated in the framework of global electrical heterogeneity32, though 

this is not typically computed or utilized in clinical practice. Despite the potential, the United 

States Preventive Services Task Force in 2018 recommended against using the ECG to screen 

adults with low risk of cardiovascular events (grade D), and remained undecided for adults with 

presumed intermediate or high risk of cardiovascular events (grade I), citing the imbalance 

between the potential benefits of early disease detection versus harms related to unnecessary 

invasive testing and overtreatment33. 

Subsequent studies employing modern machine learning techniques, however, have 

shown that aggregate ECG data contain significant predictive information for detection of 

various cardiac abnormalities such as systolic dysfunction10,34, diastolic dysfunction9, atrial 

fibrillation12, pulmonary arterial hypertension8, hypertrophic cardiomyopathy8, cardiac amyloid8, 

mitral valve prolapse8, as well as prognostic information for short term mortality35. Expanding on 

this trend, this study has demonstrated that machine learning models based on aggregate ECG 

data can also predict long-term outcomes such as 10-year cardiovascular mortality. In fact, 

demographic and ECG features appear to contain as much prognostic information as rest of 

traditional cardiovascular risk factors represented in the PCE, with potentially important 
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implications for primary prevention such as obviating the need to obtain blood draws for long-

term cardiovascular risk prediction. 

The important individual ECG features that contributed to model performance were not 

the traditional markers of ischemia or infarction (e.g. abnormalities in Q wave, ST segment, or R 

wave progression) that would be expected on a clinical basis. These are supportive of the 

findings of a recent study by Raghunath et al.35, where subclinical ECG markers were most 

predictive of short-term mortality. While it is conceivable that a significant portion of the study 

population had clinically silent coronary artery disease that manifested in the inferior and lateral 

leads of the ECG, these findings could also represent an entirely different mechanism that 

contributes to long-term cardiovascular mortality risk, or simply highly correlated data. Further 

studies are needed to validate these findings. 

 

Limitations 

 There are several important limitations to this study. First, this was a retrospective study 

based on a single data source, with the usual limitations associated with this study design. Not 

all data components, specifically ECG data, were available for all participants of NHANES III. 

Therefore only a subset of the survey participants formed the study cohort, who may not be 

representative of the target population of undifferentiated ambulatory adults. There was a 

significant proportion of missing values in ECG data, requiring substantial preprocessing steps 

and data imputation. It is possible that the ECG data were not missing at random, and possibly 

impacted by variable lead placement techniques, which may have led to biased results. 

Machine learning models were trained as classification and not survival models, which can lead 

biased parameter estimates. However, parameter estimation was not a focus of this study and 

survival curves based on model prediction showed clear curve separation. Finally, some 

machine learning models were not at all effective for event prediction in test data, revealing the 

potential for overfitting in any machine learning algorithm. Despite these limitations, the 
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comparative analysis framework adopted in this study with less focus on individual model 

parameters but greater emphasis on aggregate findings demonstrated the feasibility and utility 

of applying machine learning to aggregate ECG data for prediction of long-term cardiovascular 

mortality. 

 

CONCLUSIONS 

 Machine learning can be applied to demographic and ECG data to predict 10-year 

cardiovascular mortality in ambulatory adults, with potentially important implications for primary 

prevention of cardiovascular disease. Further studies are needed to validate these findings. 
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FIGURES 

Figure 1. Study flow diagram 

CHF: congestive heart failure, CV: cardiovascular, ECG: electrocardiogram, MI: myocardial 

infarction, ML: machine learning, NHANES: National Health and Nutrition Examination Survey 
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Figure 2. Receiver operator characteristic (ROC) and Prediction-recall curves of machine 

learning models 

glm2: Logistic regression (PCE+ECG data), glm3: Logistic regression (Demographic+ECG 

data), nn2: Neural network (PCE+ECG data), nn3: Neural network (Demographic+ECG data), 

pce: Pooled Cohort Equations, sl2: Ensemble model (PCE+ECG data), sl3: Ensemble model 

(Demographic+ECG data) 
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Figure 3. Survival curves based on model prediction 

(Left-side): Models based on PCE+ECG data. pce: Pooled Cohort Equations, glm2: Logistic 

regression, nn2: Neural network, sl2: Ensemble model 

(Right-side): Models based on Demographic+ECG data. pce: Pooled Cohort Equations, glm3: 

Logistic regression, nn3: Neural network, sl3: Ensemble model 
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Figure 4. Variable importance plot on the 12-lead electrocardiogram 

Color schema is based on decreasing frequency of occurrence in machine learning models: 

Dark green (HSAGEIR: Age), Light green (medianSBP: Systolic blood pressure), Yellow 

(ECPRA2: R amplitude, lead II), Light orange (ECPJ11: J amplitude, lead V5; ECPJ12: J 

amplitude, lead V6), Orange (HTN_tx1: Treatment for hypertension; ECPRA5: R amplitude, lead

aVL; ECPSA3: S amplitude, lead III; ECPSA6: S amplitude, lead aVF; ECPSD12: S duration, 

lead V6). Red and blue circles indicate inferior and lateral lead groupings of the 12-lead ECG, 

respectively. 
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TABLES 

Table 1. Characteristics of the study population 

Category Variable (units) Mean ± SD [Range] or N (%) 

Demographics 

Age (years) 59.2 ± 13.4 [40.0-90.0] 

Sex     Male 3,355 (47.5%) 

            Female 3,712 (52.5%) 

Race   White 5,223 (73.9%) 

             Black 1,645 (23.3%) 

             Other 199 (2.8%) 

Vital signs 

Heart rate (beats/min) 74 ± 10 [43-164] 

Systolic BP (mmHg) 132 ± 20 [78-248] 

Diastolic BP (mmHg) 77 ± 10 [16-136] 

Body measurements 

Weight (kg) 76.2 ± 17.1 [33.4-182.3] 

Height (cm) 165.9 ± 9.9 [126.9-200.0] 

Body mass index (kg/m2) 27.6 ± 5.5 [13.3-64.5] 

Medical history 

Hypertension 2,385 (33.8%) 

Hyperlipidemia 1,645 (23.3%) 

Diabetes mellitus 3,297 (46.7%) 

Tobacco use (current) 1,732 (24.5%) 

Medications 
Medication for blood pressure 2,238 (31.7%) 

Medication for cholesterol 203 (2.9%) 

Laboratory 

Total cholesterol (mg/dL) 217 ± 43 [59-501] 

HDL cholesterol (mg/dL) 51 ± 16 [12-196] 

LDL cholesterol (mg/dL)
a
 136 ± 38 [20-361] 

Triglycerides (mg/dL) 157 ± 116 [27-3616] 

HgbA1c (%) 5.8 ± 1.2 [2.7-16.1] 

C-reactive protein (mg/dL) 0.5 ± 0.8 [0.2-18.3] 

Follow-up Follow-up (years) 18.1 ± 7.6 [0.0-27.2] 

Outcomes 

10-year all-cause mortality 1,399 (19.8%) 

10-year cardiac mortality 338 (4.8%) 

10-year cerebrovascular mortality 111 (1.6%) 

 

SD: Standard deviation; asignificant missing proportion (55.7%) 
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Table 2. Model performance comparison 

Model based on PCE + 

ECG data AUROC [95% CI] AUPRC [95% CI] Sensitivity Specificity 

Pooled Cohort Equations
a
 0.668 [0.625-0.712] 0.125 [0.081-0.170] 0.492 0.859 

Logistic regression
b
 0.762 [0.723-0.800] 0.143 [0.100-0.185] 0.759 0.756 

Neural network
c
 0.729 [0.646-0.813] 0.153 [0.089-0.216] 0.658 0.822 

Ensemble model
c
 0.683 [0.648-0.718] 0.146 [0.092-0.199] 0.494 0.884 

    

Model based on 

demographic + ECG data AUROC [95% CI] AUPRC [95% CI] Sensitivity Specificity 

Pooled Cohort Equations
a
 0.668 [0.625-0.712] 0.125 [0.081-0.170] 0.492 0.859 

Logistic regression
b
 0.754 [0.702-0.806] 0.141 [0.093-0.189] 0.747 0.759 

Neural network
c
 0.764 [0.712-0.815] 0.149 [0.110-0.188] 0.722 0.787 

Ensemble model
c
 0.695 [0.668-0.722] 0.166 [0.116-0.215] 0.468 0.912 

 

AUPRC: Area under precision-recall curve, AUROC: Area under receiver operating 

characteristic curve, CI: Confidence interval (based on 5-fold cross validation), ECG: 

Electrocardiogram, PCE: Pooled Cohort Equations 

aClassification performance assessed at 10 years, with threshold value set to maximize AUPRC 

bmodel trained on oversampled training set 

cmodel trained on synthetic training set 
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