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ABSTRACT 25 
Background 26 
Late-stage cancer immunotherapy trials strive to demonstrate the clinical efficacy of novel 27 
immunotherapies, which is leading to exceptional responses and long-term survival in subsets of 28 
patients. To establish the clinical efficacy of an immunotherapy, it is critical to adjust the trial’s design 29 
to the expected immunotherapy-specific response patterns.  30 
Methods 31 
In silico cancer immunotherapy trials are virtual clinical trials that simulate the kinetics and outcome 32 
of immunotherapy depending on the type and treatment schedule. We used an ordinary differential 33 
equation model to simulate (1) cellular interactions within the tumor microenvironment, (2) translates 34 
these into disease courses in patients, and (3) assemble populations of virtual patients to simulate in 35 
silico late-stage immunotherapy, chemotherapy, or combination trials. We predict trial outcomes and 36 
investigate how therapy-specific response patterns affect the probability of their success.  37 
Results 38 
In silico cancer immunotherapy trials reveal that immunotherapy-derived survival kinetics – such as 39 
delayed curve separation and plateauing curve of the treatment arm – arise naturally due to biological 40 
interactions in the tumor microenvironment. In silico clinical trials are capable of translating these 41 
biological interactions into survival kinetics. Considering four aspects of clinical trial design – sample 42 
size calculations, endpoint and randomization rate selection, and interim analysis planning – we 43 
illustrate that failing to consider such distinctive response patterns can significantly reduce the power 44 
of novel immunotherapy trials. 45 
Conclusion 46 
In silico trials have three significant implications for immuno-oncology. First, they provide an 47 
economical approach to verify the robustness of biological assumptions underlying an immunotherapy 48 
trial and help to scrutinize its design. Second, the biological basis of these trials facilitates and 49 
encourages communication between biomedical researchers, doctors, and trialists. Third, its 50 
application as an educational tool can illustrate design principles to scientists in training, contributing 51 
to improved designs and higher success rates of future immunotherapy trials.  52 
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INTRODUCTION 53 

Immunotherapy is revolutionizing the treatment landscape for patients with advanced 54 

cancers. While the number of immuno-oncology drugs under investigation is rising rapidly – around 55 

4700 agents are currently in the development pipeline - the need to further improve patient outcomes 56 

remains high1. Well-designed immunotherapy trials are crucial to establish advances in clinical 57 

outcomes robustly. Unfortunately, the odds for cancer treatments to successfully pass the 58 

development pipeline are unfavorable, and only a minority of the treatments (5-10%) will ultimately 59 

obtain market approval2, 3, 4. Even for cancer therapies that reach late-stage development, approval 60 

rates remain modest at around 27%5. The primary reason in most of these trials (i.e., 63.7%) is failure 61 

to demonstrate efficacy5, which can be partly attributed to suboptimal trial design choices based on 62 

overly optimistic assumptions of the treatment effect. Such assumptions may be used to erroneously 63 

justify low numbers of patients or inappropriate endpoints and lower the power of these trials5, 6. 64 

Undoubtedly, design choices in immunotherapy trials are complex, and conventional design 65 

methods are not naturally well attuned to the unique characteristics of immunotherapies7. Their broad 66 

spectrum – ranging from immunomodulators to cell therapies, cancer vaccines, oncolytic viruses, and 67 

CD3-targeted bispecific antibodies – illustrates the variety in molecular mechanisms, leading to novel 68 

toxicity profiles, response patterns, and survival kinetics8, 9, 10. These observations render a ‘one-69 

design-fits-all’ approach futile and stress the need for immunotherapy- or even combination-therapy-70 

tailored designs.  71 

Immunotherapies are known to induce a delayed clinical effect and long-term overall survival 72 

(OS) in only a subset of patients11. The survival curve reflects these phenomena by a delayed curve 73 

separation and a plateau of the treatment arm at later stages of the trial, respectively12. Many 74 

immunotherapies, thereby, violate a fundamental premise that underlies the design of many trials: the 75 

proportional hazard assumption (PHA) – essentially stating that the treatment effect should remain 76 

constant over time13. As a result, immunotherapy trials based on this principle can have an 77 

overestimated power12, 13 and require a longer follow-up to demonstrate efficacy than initially 78 

planned12, increasing the likelihood of a negative trial.  79 

These issues led to the development of innovative methods such as novel radiological criteria 80 

to quantify tumor responses9, 14, 15, (surrogate) endpoints to capture unique survival kinetics10, 16, 17, 18, 81 
19, biomarkers to enrich for potentially responding patients for treatment20, 21, 22, 23, and statistical 82 

methods to retain a trial’s power in the presence of non-conventional survival kinetics24, 25, 26. Despite 83 

the plethora of available methods, it still remains complicated to predict trial outcomes in advance and 84 

adjust the methodology accordingly. The stakes are high: accurate predictions could augment the 85 

likelihood of a positive trial, whereas a misjudgment could result in a negative trial, potentially 86 

compromising patient benefit, vast amounts of work, and (public) research funds.  87 
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In this study, we use late-stage in silico cancer immunotherapy trials to investigate how design 88 

decisions affect the trial outcome in the context of cancer immunotherapy, possibly combined with 89 

chemotherapy. The mechanism-based nature of these trials allows researchers to translate cellular 90 

processes in the tumor microenvironment and interventions thereon into immunotherapy-specific 91 

response patterns, survival kinetics, and outcomes of novel immunotherapy trials. An in silico 92 

immunotherapy trial is based on clear-cut biological assumptions and provides an intuitive means to 93 

predict risk profiles and treatment efficacy. Moreover, it equips researchers with a tool to verify trial 94 

designs and analysis strategies of upcoming trials before the trials’ execution. First, we show that our 95 

simulations replicate late-stage immunotherapy or combination trials realistically and capture their 96 

typical survival kinetics. Then, we demonstrate various applications of these trial simulations, including 97 

the ability to predict the trial outcomes and calculate sample sizes for specific treatment and control 98 

groups. Finally, we illustrate the consequences of (not) considering immunotherapy-specific response 99 

patterns in settings selected for educational purposes, such as selecting survival endpoints and 100 

randomization ratios of upcoming trials and planning interim analyses.  101 

 102 

METHODS 103 

Mechanism-based model of the tumor microenvironment 104 

We extended our previously published ordinary differential equation (ODE) model that describes 105 

cancer development in the tumor microenvironment and the subsequently induced anti-tumor 106 

response in patients27. Briefly, the model describes cancer onset and progression, starting with the 107 

malignant degeneration of a single cell into a tumor cell. This tumor cell divides, leading to a 108 

proliferating mass (r: growth rate) of tumor cells (T; equation 1; Figure 1A). An anti-tumor immune 109 

response is induced within the tumor microenvironment, leading to the killing of tumor cells (at killing 110 

rate x; equation 1). The killing of tumor cells is implemented using a quasi-steady state approximation 111 

proposed by Borghans et al.28, 29. For details on the implementation, we refer to our previous work27. 112 

The immune cells within the tumor microenvironment originate from tumor-draining lymph nodes, 113 

where naive cytotoxic T cells (N) turn into activated T cells (S) at priming rate a. Since a larger tumor 114 

mass is generally more immunogenic, the priming rate is scaled by the tumor size ( !
"#$!

 ; equations 3 115 

and 4). Primed T cells proliferate in the lymph nodes at rate ps and migrate into the tumor 116 

microenvironment at rate ms (equation 2). The natural life span of T cells in the tumor 117 

microenvironment is modeled by incorporating a natural death rate d of T cells. The system of ODEs is 118 

presented below:  119 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 13, 2021. ; https://doi.org/10.1101/2021.09.09.21263319doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.09.21263319
http://creativecommons.org/licenses/by/4.0/


 4 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧
𝑑𝑇
𝑑𝑡

= r	𝑇
.
/ −	

x	𝐼	𝑇

1 + 𝐼
ℎ5
+	 𝑇ℎ!

																		(𝐸𝑞. 1)				

𝑑𝐼
𝑑𝑡
= 𝑚<𝑆 − d	𝐼																																								(𝐸𝑞. 2)		

𝑑𝑆
𝑑𝑡

= 	𝛼	 @
𝑇

10B + 𝑇
	C𝑁 +	𝑝<𝑆 −	𝑚<𝑆	(𝐸𝑞. 3)	

𝑑𝑁
𝑑𝑡

= −	𝛼	 @
𝑇

10B + 𝑇
	C𝑁																							(𝐸𝑞. 4)			

 120 

 121 

Table 1: Overview of model parameters 122 
Interpatient 
variability 

Symbol Parameter Default value 
or range 

Description 

Va
ria

bl
e 

r Tumor growth rate (cells/day) 1.76 - 150 Growth rate of tumor cells 
Dr Growth rate decline -0.6 - 0 Rate at which tumor cell 

proliferation declines over 
time 

rd Growth rate decline decay -2 - 0  Rate at which the tumor 
growth rate decline 
decreases.  

Un
iv

er
sa

l 

x Relative T cell killing rate (cells/ 
day) 

0.001 Killing rate of cytotoxic T cells 

a T cell priming rate (cells/day) 0.0025 Rate at which antigen-
specific T cells are activated 

d T cell death rate (cells/day) 0.019 Death rate of T cells 
h Michaelis constant (cells) 571 Ratio between tumor-

immune cell complex 
formation and dissociation 

ps Production rate (cells/day) 1 Production rate of T cells 
from lymph nodes  

ms Migration rate (cells/day) 1 T cell migration rate from 
lymph node to tumor 
microenvironment  

 123 

Since a constant time-independent tumor growth rate would unlikely be observed in a clinical 124 

setting, we have added two additional parameters to the model that influence the growth rate of 125 

tumors in a time-dependent manner, which are: 126 

• The tumor growth rate decline (Dr): a parameter that describes to which extent the 127 

proliferation rate of tumor cells gradually declines over time.  128 

• The decay rate of the tumor growth rate decline (rd; hereafter referred to as ‘decline decay 129 

rate’): a parameter that indicates at which pace the tumor growth rate decline decreases.  130 

The model parameters and their values are listed in Table 1; their rationale is described previously27. 131 

Moreover, the values of the tumor growth rate decline and its decay rate were set to augment the 132 

interpatient variability in tumor development and allow for more extensive disease trajectories. At 133 

baseline, only one tumor cell and a pool of 106 naive T cells are presumed to be present, while activated 134 

T cells are absent, yielding the following initial conditions for the simulations: T(0) = 1, I(0) = 0, S(0) = 135 

0, and N(0) = 106. 136 
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 137 

Simulating untreated disease, chemotherapy, and immunotherapy in individual patients 138 

Using this ODE model, we simulated cancer development and disease trajectories in patients. We 139 

varied the tumor properties (i.e., the tumor growth rate, the growth rate decline, and the decline decay 140 

rate) between patients extensively to guarantee interpatient variation in disease courses. Unless 141 

otherwise specified, the remaining model parameters are set to the same values for all patients (Table 142 

1).  143 

Each patient is simulated from cancer onset (i.e., malignant transformation of the first cell) for 144 

up to more than two years (i.e., 800 days). A simulated time step corresponds to one day. The diagnosis 145 

threshold of a tumor mass was set to 65 * 108 cells, corresponding to the size at which common 146 

malignancies are diagnosed. The lethal tumor burden is set to 1012 tumor cells (a tumor volume of 147 

approximately 10.6 dm3). 148 

Disease trajectories of patients with cancer can be steered with therapy. Given their prominent 149 

roles in the oncological treatment landscape, we included immune checkpoint inhibitors (ICI) and 150 

chemotherapy in the model. Both treatments function through their primary modes of action. ICI are 151 

implemented as follows: once a cancer reaches a diagnosis threshold, immune checkpoint inhibitors 152 

increase the killing rate of cytotoxic T cells (multiplication factor: 0-7), enabling them to eradicate 153 

tumor cells. The duration and potency of the ICI treatment eventually determines patient outcome.  154 

In patients treated with chemotherapy, the immune system is still present; however, it is not 155 

boosted (as is the case during ICI treatment), hence the T cells are not potent enough to curb the tumor 156 

growth. Once a patient is diagnosed with cancer, chemotherapy can reduce the tumor growth rate 157 

with its cytotoxic capacity (multiplication factor: 0-1). Again, the duration and potency determine 158 

patient outcome. By default, the treatment duration for ICI and chemotherapy are two years and six 159 

months, respectively.  160 

 161 

Simulating untreated cohorts in an in silico trial: model fitting 162 

To expand our modeling approach from a single patient into a trial cohort, we simulated multiple 163 

patients with individualized disease courses based on unique tumor properties. As an illustrative 164 

example, we took a publicly available dataset of patients with advanced lung cancer from the North 165 

Central Cancer Treatment Group (NCCTG) and regarded the survival times of these patients as if they 166 

were untreated30. We fitted our model to the NCCTG dataset to show that our trial model can 167 

reproduce authentic survival kinetics as observed in clinical trials. Specifically, we searched for 168 

parameter combinations reflecting realistic survival times for each patient in our model. Since a single-169 

parameter fitting approach could not generate a sufficiently wide range of survival times, we used a 170 
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multidimensional fitting approach. An overview of the fitting approach is depicted in Supplementary 171 

Figure 1. 172 

Specifically, we fitted the tumor growth rate (r), the decline in tumor growth rate over time 173 

(∆r), and the decline’s decay rate (rd) of patients to OS. The fitting approach comprised two processes: 174 

1) sampling non-censored survival values and 2) translating these survival values to model parameters. 175 

We fitted a (parametric) Weibull distribution to the NCCTG lung cancer dataset (shape k: 1.32, scale l: 176 

417.76; Supplementary figure 1A). The choice for a Weibull distribution is based on the Akaike 177 

information criterion and the fact that a Weibull model is a survival model from which the parameters 178 

(i.e., scale and shape) contain a mechanistic meaning and can, therefore, be interpreted. From the 179 

Weibull distribution, non-censored survival values were sampled (Supplementary figure 1B). To 180 

translate the survival times into model parameters, we generated a 3D grid containing survival times 181 

for ranges of parameters (r: 1.76 – 150, ∆: -0.6 - 0, rd: -2 - 0; Supplementary figure 1C). From this grid, 182 

combinations of these three parameters that led to a similar OS (i.e., the isosurfaces) were extracted 183 

with a marching cubes algorithm (Supplementary figure 1D). The isosurfaces corresponding to the non-184 

censored survival times from the Weibull distribution were selected, and parameter combinations 185 

were sampled from these isosurfaces randomly (Supplementary figure 1E). To illustrate that these 186 

parameter combinations led to realistic survival kinetics as seen in clinical trials, we compared the 187 

original NCCTG lung cancer dataset with our simulation result (Supplementary figure 1F; Figure 1).   188 

 189 

Simulating late-stage immunotherapy trials  190 

Late-stage (i.e., phase III) clinical trials traditionally contain two arms: a control arm and a treatment 191 

arm. The control arm can be a placebo (i.e., untreated) or a standard of care therapy. To construct 192 

phase III in silico immunotherapy trials, we extended the simulations with treatment cohorts (mono-193 

chemotherapy, mono-immunotherapy, chemoimmunotherapy, or induction chemotherapy followed 194 

by immunotherapy). These cohorts facilitate the comparison between various treatment regimens. A 195 

treatment cohort uses the same baseline parameter distribution as a control cohort. It differs in one 196 

critical aspect, though: once patients in the treatment arm reach a tumor burden that corresponds to 197 

the diagnosis threshold, patients can be treated with chemotherapy, ICI, or combination therapy, as 198 

described above.  The distribution of survival parameters is, unless otherwise specified, derived from 199 

the most mature, digitized data from the CA184-024 trial, as shown below31. At inclusion into the trial, 200 

patients are randomly assigned to a study arm (randomization).  201 

The primary endpoint of the trials is the 2-year OS. Given the absence of accrual times in in 202 

silico trials, the trial duration equals two years, which provides each patient in the trial with 24 months 203 
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follow-up at the time of analysis. If the OS endpoint is not reached for a patient, the patient is 204 

considered censored for the endpoint and regarded as such in subsequent analyses. 205 

 206 

Power simulations  207 

To illustrate how the analysis method can affect the outcome of immunotherapy trials, we use several 208 

simulation approaches to calculate the power of trials. Power simulations were performed as follows: 209 

per data point, 1000 clinical trials are simulated. The survival data from each trial is analyzed with a 210 

log-rank test (dependent on the proportional hazard assumption) or proportions test (Pearson’s chi-211 

squared test; independent on the proportional hazard assumption), and we count the number of 212 

positive trials (defined as p < 0.05). The percentage of positive trials indicates the power of the trial.  213 

 214 

Data digitization & reconstruction 215 

For some survival curves, the raw data was not available. Therefore, we extracted data points from 216 

the Kaplan-Meier curves with WebPlotDigitizer (https://apps.automeris.io/wpd/), and individual 217 

patient data was reconstructed with the IPDfromKM package in R. 218 

 219 

Analyses 220 

Analyses and visualizations were performed in R. The complete list of R packages used throughout this 221 

manuscript is provided in Supplementary Table 1. The code is accessible via 222 

https://github.com/jeroencreemers/in-silico-clinical-trials.  223 

  224 
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RESULTS 225 

Generating trial populations based on tumor-immune dynamics 226 

We used in silico cancer immunotherapy trials – a mechanism-based simulation platform of cancer-227 

immune dynamics – to investigate the consequences of immunotherapy-specific response patterns on 228 

trial design principles27. Patients within these trials are simulated with an ODE model, which describes 229 

cancer development in a patient by modeling the interaction between tumor cells and the immune 230 

system27. In short, the model describes the following tumor-immune dynamics in the tumor 231 

microenvironment: immunogenic tumor growth leading to priming and clonal expansion of T cells in 232 

the lymph nodes, migration of effector T cells from lymph node to the tumor microenvironment, and 233 

formation of tumor-immune complexes to enable tumor cell killing (see Methods; Figure 1A). The 234 

model allows the treatment of patients with ICI and chemotherapy. ICI increase the killing rate of T 235 

cells and have a direct effect on the tumor-immune dynamics. Chemotherapy has a cytotoxic effect on 236 

the tumor, slowing down its growth rate. A detailed description of the model, including the rationale 237 

for parameter selection, has been published previously27.  238 

The in silico clinical trials describe cancer outcomes on three levels: (1) a cellular level, (2) a 239 

patient level, and (3) a trial population level. Cellular interactions in the tumor microenvironment are 240 

translated into clinical trial outcomes as follows: firstly, the ODE model is implemented, and model 241 

parameters are selected using a fitting approach (Figure 1B; see Methods). Next, individualized disease 242 

trajectories – either treated or untreated – of cancer patients are generated (Figure 1C). Eventually, 243 

patients are randomized into two cohorts to resemble conventional phase III trials: a control group 244 

(either placebo or chemotherapy) and a treatment group (immunotherapy, chemoimmunotherapy, or 245 

induction chemotherapy followed by immunotherapy; Figure 1D).  Since the cellular dynamics (e.g., 246 

tumor burden over time or the efficacy of T cell killing) and survival outcomes of these patients are 247 

known and can be modified, in silico clinical trials are suited to answer questions like: “Assuming that 248 

a novel treatment X increases T cell killing by 5%, how does this translate to a survival benefit in 249 

patients? Moreover, how many patients are needed to establish this benefit in a clinical trial? When 250 

should one analyze the results?” (Figure 1E).  251 

  252 
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 253 
Figure 1: In silico late-stage immunotherapy trials and their applications.  254 
(A) Cellular interactions between a tumor and the immune system are captured in an ODE model. This model describes 255 
immunogenic tumor growth leading to a T cell response originating from lymph nodes. Disease courses in patients could be 256 
steered by immunotherapy, chemotherapy, or a combination of both. Parameters: a = naive T cell priming rate, d = effector 257 
T cell death rate, x = effector T cell killing rate, r = tumor growth rate, ps = effector T cell proliferation rate, and ms = effector 258 
T cell migration rate. (B) After implementation, we used clinical trial-derived survival data to fit the model parameters (see 259 
Suppl. Figure 1). (C) Patients received either no treatment (placebo), chemotherapy, immunotherapy, or both. Disease 260 
trajectories based on tumor-immune dynamics were simulated for each patient, resulting in individual survival outcomes. (D) 261 
Subsequently, cohorts of patients were constructed based on the fitted parameters to simulate actual immunotherapy trials. 262 
(E) Applications of these trials include predicting survival outcomes of trials, estimating appropriate sample sizes, selecting 263 
endpoints and randomization ratios, and investigating the timing of interim analyses. 264 
 265 
In silico late-stage immunotherapy trials yield realistic survival outcomes  266 

To illustrate that this in silico clinical trial approach can generate realistic survival kinetics as observed 267 

in late-stage immunotherapy trials, we fitted the simulation to three different datasets: (1) the NCCTG 268 

lung cancer survival dataset30; (2) the CA184-024 trial [ipilimumab + dacarbazine vs. dacarbazine in 269 

previously untreated metastatic melanoma31]; and (3) the CheckMate 066 trial [nivolumab + placebo 270 

vs. dacarbazine + placebo in treatment-naive metastatic melanoma patients without BRAF mutation32]. 271 

The choice for these trials is based on the size of the trials and the maturity of the data. The follow-up 272 

of the CA184-024 trial and the CheckMate 066 trial were five and three years, respectively. As the last 273 

two datasets were not publicly available, we extracted the data using image digitization (see Methods). 274 

As a reference for the in silico trials, we visualized the Kaplan-Meier estimators of these datasets 275 

(Figure 2A). Both trials were digitized correctly, as reflected by the nearly identical risk tables compared 276 

to the original manuscripts31, 32. Next, we fitted our trial simulation model on the NCCTG dataset and 277 

the control arms of the CA184-024 and CheckMate 066 trials (Figure 2B; black lines). Given the limited 278 

response rates of dacarbazine for metastatic melanoma (15%), the patients in the control arm were 279 
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regarded as untreated, and the model was fitted as such. For simplicity, we did not simulate dropout 280 

or censoring in the trials shown in this paper, although it could be added to the simulation. On average, 281 

the simulations capture the survival kinetics of the trials accurately, which is reflected by similar 282 

median overall survival values and reasonably corresponding risk tables. The final step to fully 283 

resemble late-stage immunotherapy trials in a simulation setting is replicating the treatment arms of 284 

the CA184-024 and CheckMate 066 trials. These simulated patients were treated with ICI upon 285 

diagnosis. ICI increased their T cell killing rate seven-fold and prolonged their survival, leading to OS 286 

benefit in the in silico trial that matched the original trial. Hence, these in silico trials couple the disease 287 

mechanism and mechanistic treatment effect to a realistic clinical trial outcome. Interestingly, 288 

although not incorporated explicitly in our model, the trials show survival kinetics arising as a 289 

consequence of the interaction between tumor and immune cells typically seen in immunotherapy 290 

trials: a delayed curve separation and a plateau of the survival curve of the treatment arm at later 291 

stages of the trial (Figure 2B (last two columns)).  292 

 293 
Figure 2: In silico cancer immunotherapy trials can generate a wide array of immunotherapy-specific survival kinetics.  294 
(A) Kaplan-Meier estimators of the NCCTG, CA184-024, and CheckMate 066 trials. While the NCCTG dataset is publicly 295 
available 30, the others are carefully reconstructed survival curves based on digitized data from their respective manuscripts 296 
31, 32. (B) These trial simulations can mimic representative survival kinetics as observed in actual immunotherapy trials. 297 
Specifically, typical immunotherapy-related survival kinetics – such as a delayed curve separation and a plateauing survival 298 
curve in the treatment arm – arise from these simulations as emergent behavior. Note: We matched the risk table intervals 299 
to the original manuscripts for comparative purposes. 300 
 301 
In silico immunotherapy trials enable a priori prediction of trial outcomes and uncover 302 

immunotherapy-specific response patterns  303 

 304 
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The design and the success rate of any clinical trial depends, among others, on an accurate a priori 305 

prediction of the survival kinetics – i.e., the shape of the survival curves and the trial outcome. For late-306 

stage immunotherapy trials, commonly observed immunotherapy-induced response patterns are a 307 

delayed curve separation and a plateauing tail of the survival curve of the treatment arm (Figure 2). 308 

These characteristic survival curve shapes reveal a violation of a vital premise at the basis of many 309 

clinical trials: the proportional hazard assumption (PHA). The PHA states that the 'instantaneous death 310 

rate' of a patient (i.e., the hazard rate) in both arms of the trial should be proportional, resulting in a 311 

constant hazard ratio. Many traditional design methods, ranging from sample size calculations to 312 

outcome analyses, depend on this theory. For late-stage immunotherapy trials, this induces two 313 

problems: (1) while a violation of the PHA needs to be addressed during trial planning, the hazard rates 314 

– and thereby the fact if the trial adheres to or violates the PHA – become available after analysis of 315 

the trial, and (2) if a trial does not adhere to a PHA, what will be the shape of the survival kinetics? 316 

Especially in an era where treatment and control arm regimens are becoming increasingly complex, 317 

adjusting the design and analysis methods to unknown survival kinetics is challenging.  318 

 In silico clinical trials can provide principled estimates of the shape of the survival curve, 319 

including the underlying hazard rates and hazard ratios before trial execution. The most traditional 320 

scenario would be a trial in which patients are randomized 1:1 to mono-chemotherapy or placebo. 321 

Given the direct chemotherapy effect, the PHA is generally assumed to hold for these trials. An in silico 322 

trial in which chemotherapy reduces the tumor growth rate to 70% for the duration of the trial indeed 323 

replicates these assumptions (Supplementary Figure 2): the survival curves separate from the start of 324 

the trial, and the hazard ratio is constant over time. However, what happens if the chemotherapy 325 

effect does not last for the entire trial but for – maybe more realistically – 6 months? Initial 326 

proportional separation of the survival curves is followed by a nearly parallel decay of both curves, 327 

leading to an early survival benefit for the chemotherapy arm (Figure 3A). Consequently, for any 328 

therapy with a non-constant treatment effect – even for chemotherapy trials – deviations from the 329 

PHA might be observed. When we switch to immunotherapy in the treatment arm, a violated PHA 330 

becomes immediately apparent. Recall that in our model, immunotherapy exerts its mechanistic effect 331 

indirectly on the tumor via an increase in the killing rate of T cells.  Through approximately the first six 332 

months, the hazard rates remain constant over time, but after that, they start to decline in the 333 

immunotherapy group (red line), yielding a non-constant hazard ratio over time (Figure 3B). 334 

 The flexibility of in silico trials lies in their ability to incorporate complex treatment regimens. 335 

For example, let us assume one would be interested in estimating the survival curves and underlying 336 

hazard ratio over time of a chemoimmunotherapy vs. chemotherapy trial (Figure 3C), an 337 

immunotherapy + chemotherapy-placebo vs. chemotherapy vs. immunotherapy-placebo trial (Figure 338 

3D), or a trial with induction chemotherapy followed by immunotherapy vs. immunotherapy (Figure 339 
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3E). Mechanism-based immunotherapy trials provide the means to translate biological assumptions 340 

regarding the disease and treatment effects into survival kinetics (including its hazard rate/ratio 341 

estimates). These survival kinetics, such as crossing survival curves (Figure 3D) or a temporary curve 342 

separation (Figure 3E), may be hard to predict otherwise and can be detrimental for the trial outcome 343 

if not dealt with appropriately.  344 

 345 
Figure 3: In silico clinical trials can predict immunotherapy-specific survival patterns based on biological assumptions.  346 
 (A-E) Examples of 1:1 randomized trials with various (treatment) regimens (n=600 per arm). (A) A traditional chemotherapy 347 
trial (vs. placebo) only shows a proportional hazard ratio when the biological treatment effect targets the tumor directly and 348 
remains constant over time (compare to Supplementary Figure 2). (B) An in silico immunotherapy trial elicits typical 349 
immunotherapy-induced survival kinetics (i.e., delayed curve separation) and violates the proportional hazard assumption. 350 
(C-E) More intricate treatment or control regimens – (C) chemoimmunotherapy vs. chemotherapy, (D) immunotherapy + 351 
chemotherapy-placebo vs. chemotherapy + immunotherapy-placebo, or (E) induction chemotherapy followed by 352 
immunotherapy vs. immunotherapy – induce more complex survival kinetics, including (D) crossing survival curves or (E) only 353 
a temporary separation of the survival curves. The horizontal bars in column 1 indicate the duration of the treatment effect 354 
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(T = treatment, C = control). The red dot in column three indicates the overall hazard ratio. For an accurate prediction of the 355 
hazard rates and hazard ratios, saturated survival curves (n=100.000 patients per arm) were used, and the data was smoothed 356 
before plotting.  357 

 358 
Ignoring immunotherapy-specific response patterns might cause an overestimation of an 359 
immunotherapy trial’s power 360 
To investigate the consequences of violating the PHA on the power of a clinical trial, we compared the 361 

power calculated using a PHA-dependent method (the Log Rank test) with a non-PHA-dependent 362 

method (Pearson’s Chi-squared test) for different clinical scenarios. An essential difference between 363 

both methods is that the Log Rank test considers the entire survival curve, while Pearson’s Chi-squared 364 

test only compares the number of events in both arms at 24 months. Logically, in a scenario that 365 

approximates the PHA the closest (such as a chemotherapy vs. placebo trial), a PHA-dependent 366 

method is superior (Figure 4A). However, a traditional immunotherapy trial violates the PHA, leading 367 

to a vast underestimation of the power of the trial when PHA-dependent methods are used for its 368 

planning (Figure 3B/4B). Given similar survival characteristics, this also holds for 369 

chemoimmunotherapy vs. chemotherapy trials (Figure 3C/4C). When survival curves cross during the 370 

trial, as seen in the immunotherapy vs. chemotherapy trial (Figure 3D), the PHA does not hold, and 371 

there is only a small survival benefit at 24 months for one of the arms of the trial. In this case, both 372 

methods predict the need for a large sample size to reach adequate power (Figure 4D). This insight 373 

indicates that it may be more rational to lengthen the trial’s follow-up (i.e., a different endpoint) 374 

instead of increasing the number of participants; a finding that – on top of the absolute power – 375 

requires insight in the shape of the survival kinetics. As a general finding, ignoring immune-specific 376 

response patterns might induce an overestimation of a trial’s current power, while in reality, a larger 377 

sample size (or a different endpoint) is necessary to establish the desired outcome.  378 

 379 

 380 
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 381 
Figure 4: A mismatch between survival kinetics and analysis methods induces an underestimation of the power of an 382 
immunotherapy trial.  383 
A power comparison using a PHA-dependent method (Log-rank test) or a PHA-independent method (Pearson’s Chi-squared 384 
test) was made in different clinical scenarios: (A) a chemotherapy vs. placebo trial, (B) an immunotherapy vs. placebo trial, 385 
(C) a chemoimmunotherapy vs. chemotherapy trial, and (D) an immunotherapy vs. chemotherapy trial. Neglecting 386 
immunotherapy-specific response patterns while setting up a novel trial leads to a significant underestimation of the number 387 
of patients needed to show the efficacy of a treatment, thereby overestimating the power of the trial and reducing the 388 
probability of success.  389 
 390 
In silico trials can validate endpoints and randomization ratios before trial execution 391 

Clearly, the success rate of novel immunotherapy trials depends on more than its sample size alone. 392 

To establish an OS benefit of the treatment arm, it is crucial to analyze the trial once the data have 393 

reached a certain maturity – i.e., the treatment needs to be granted sufficient time to induce a survival 394 

benefit. We assumed that a delayed curve separation in immunotherapy trials would prolong the 395 

follow-up needed to establish an OS benefit of immunotherapy and thereby defer reaching maturity 396 

of the trial data. If the therapy is effective, data maturity can be regarded as the time point when a 397 

treatment effect can be observed. Hence, an optimal trial endpoint would be the earliest time at which 398 

this treatment effect can be detected with sufficient power. Therefore, we analyzed the power of 399 

differently sized trials with respect to their OS endpoint. Herein, we distinguished trials that were 400 

subject or were not subject to a delayed curve separation (immunotherapy and chemotherapy, 401 

respectively). In a classic chemotherapy trial, the treatment effect translates directly to a survival 402 

benefit in the treatment arm – the survival curves separate from the start. Therefore, the highest 403 

power will be obtained after the total duration of the treatment effect (Figure 5A, panel 1). In this case, 404 

the treatment effect lasts for six months, leading to the 6-months OS as the endpoint with the highest 405 

power. The delayed curve separation in immunotherapy trials renders it futile to analyze OS data early 406 
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on in the trial (Figure 5B, panel 1).  A practical ramification is that in the presence of a delayed curve 407 

separation, the trial requires a sufficiently long follow-up and an adequate size to gain power and 408 

detect immunotherapy-specific treatment effects. Mechanism- and simulation-based power 409 

calculations with in silico trials can consider these specific kinetics when determining the sample size 410 

for upcoming trials.  411 

 Given the observation that both the size of an immunotherapy trial and its endpoint heavily 412 

influence the probability of finding the survival benefit of interest, we presumed that increasing the 413 

size of the treatment arm – i.e., an unequal randomization scheme – would similarly affect the power. 414 

Instead of varying the study size, we now varied the randomization ratio (second panel of Figure 5A/B). 415 

Interestingly, while the power logically depended on the OS endpoint, the randomization ratio did not 416 

greatly affect the power (Figure 5B). Considering that an unequal treatment allocation may provide 417 

ethical benefits, we confirm that the randomization ratio in immunotherapy trials is of secondary 418 

importance compared to its size or primary OS endpoint. In summary, our in silico immunotherapy 419 

trials replicate existing insights from trial design on how violation of the PHA affects power and analysis 420 

choices. Our ability to directly translate biological assumptions on treatment mechanisms into survival 421 

kinetics allows the researcher to reason in a principled manner about whether such violations of the 422 

PHA would or would not be expected in their specific trial design and how the problem could be 423 

addressed if it arises.  424 

 425 
Figure 5: In silico trials guide decisions on OS endpoints and randomization ratios of upcoming immunotherapy trials.  426 
(A-B) In silico trials can be used to find the optimal endpoint (panel 1) or randomization ratio (panel 2) of novel trials. (A) 427 
Since the survival curves in classical chemotherapy trials separate from the trial onset, the highest power – and most optimal 428 
endpoint – is obtained at the end of the treatment interval (i.e., after six months in this example; see Figure 3A). Although 429 
less influential, a similar observation can be made for randomization ratios (study size panel 2: 300 patients). (B) Delayed 430 
curve separation in immunotherapy trials emphasizes that a premature final analysis of the primary OS endpoint is 431 
detrimental to the trial outcome. These trials permit validating the pre-specified survival outcomes of novel trials a priori. 432 
Commonly selected randomization ratios do not seem to be heavily influenced by immunotherapy-specific response patterns 433 
(study size panel 2: 1200 patient). Trial characteristics are similar to Figure 3A/B.  434 
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 435 

Validating interim analyses to balance patient benefit and trial resources 436 

We have observed a clear tradeoff between the power of an immunotherapy trial on the one hand, 437 

and the primary OS endpoint, and correspondingly the data maturity, on the other. Luckily, the two 438 

are not entirely mutually exclusive: interim analyses have been developed for ethical purposes to 439 

establish positive or harmful treatment effects early. However, there is a catch: the necessity to control 440 

for multiple testing at each interim analysis lowers the significance threshold on the final analysis to 441 

maintain the same overall type I error rate. This begs the question: “How many interim analyses should 442 

you plan, and when should you plan them?” Again, principled answers to such questions can be 443 

obtained with the help of in silico immunotherapy trials. To illustrate this, we simulated 1000 444 

immunotherapy trials with 1200 patients per trial, randomized 1:1 over immunotherapy with a strong 445 

treatment effect or a placebo (Figure 6A). In the absence of interim analyses, the vast majority of the 446 

trials are predicted to end up positive. Adding interim analyses (O’Brien-Flemming approach) to the 447 

equation induces a tradeoff. On the one hand, increasing the number of equally-spaced interim 448 

analyses increases the probability of early detecting a positive treatment effect (e.g., approximately 449 

60% of the trials are positive after 18 months in the case of three interim analyses; Figure 6A). On the 450 

other hand, the overall probability of ending up with a negative trial due to more stringent analyses 451 

(i.e., less power) also increases, especially in the case of immunotherapies with a weaker treatment 452 

effect (±57% without an interim analysis vs. ±63% with three interim analyses; Figure 6B). In an actual 453 

trial, the latter needs to be corrected by including additional patients to maintain the pre-planned 454 

power. Furthermore, we observe that the timing of the interim analysis is crucial. Whereas an interim 455 

analysis at 18 months provides additional value to the trial, interim analyses before 16 months are 456 

predicted to be wasteful: both due to the presence of non-proportional hazards and less mature data. 457 

As a control, we simulated trials without any treatment effect. By design, approximately 95% of the 458 

trials should end up negative irrespective of the number of interim analyses, which seemed to be the 459 

case (Figure 6C).  Logically, the weaker the treatment effect, the higher the probability of erroneously 460 

finding a harmful treatment effect – a characteristic that the simulation also exhibits (Figure 6B/C).  461 

 462 
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 463 
Figure 6: A priori validation of the interim analysis plan steers the selection of the optimal number and timing of the 464 
analyses, avoids futile or even harmful analyses, and might optimize the use of trial resources.  465 
(A) In the case of immunotherapy with a potent effect, in silico trials help develop a rationale for the timing of the interim 466 
analyses. While an interim analysis at 12 months might not add value to the trial, analyses after 16 and 18 months, 467 
respectively, have a probability of approximately 28% and 60% to lead to early stopping with a positive result. (B) Multiple 468 
interim analyses can reduce the probability of confirming the desired treatment effect in case of a weak immunotherapy 469 
effect. (C) In the absence of any treatment effect (a control scenario), the number of interim analyses does not heavily 470 
influence the trial outcome. Each trial simulation contains 1200 patients (randomization ratio 1:1) to ensure adequate power 471 
of the trial. Trials are analyzed with a proportions test (Pearson’s chi-squared test). Treatment effect (amplification factor of 472 
T cell killing rate): strong = 7, weak = 3, no effect = 0 (see Methods).  473 

 474 

DISCUSSION 475 

In this study, we used mechanism-based in silico cancer immunotherapy trials to predict survival 476 

kinetics and response profiles of novel immunotherapy trials. Complementary to conventional design 477 

methods, in silico trials provide the ability to investigate the implications of a researcher’s biological 478 

(as opposed to statistical) hypotheses of a drug’s mechanism of action for the design, conduct, analysis, 479 

and outcome of clinical trials. When comparing the simulated outcomes to actual immunotherapy trial 480 

outcomes, we showed that in silico trials are suited to translate complex biological mechanisms (such 481 

as observed during the treatment of patients with ICI) into realistic trial outcomes. Crucially, the 482 

survival kinetics that arose from these mechanism-based simulations reflected two pivotal 483 

components often found in immunotherapy trials: a delayed curve separation and a plateauing tail of 484 
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the survival curve at later stages of the trial. In line with genuine immunotherapy trials, we find that 485 

these immunotherapy-specific response patterns differ considerably from chemotherapy-based 486 

kinetics. Our findings confirm that diversity in survival kinetics profoundly impacts the outcomes of 487 

immunotherapy trials33. Consequently, these features need to be considered when deciding on the 488 

sample size, endpoint, randomization ratio, and the number and timing of interim analyses of a novel 489 

immunotherapy trial.  490 

 Over the past two decades, in silico clinical trials are gaining in popularity. These trials enable 491 

investigating, among others, how novel drugs, treatment schedules, dosing regimens, and interpatient 492 

heterogeneity affect the outcome of a clinical trial34. In silico clinical studies have a wide range of 493 

applicability from pediatric infectious35 and orphan diseases36 to diabetes37, inflammatory 494 

autoimmune diseases38, traumatic injury39, psychiatric illness40, and cancer. In oncology, several in 495 

silico clinical trials involving chemotherapy and tyrosine kinase inhibitors have been performed41, 42. 496 

Moreover, with the onset of checkpoint inhibitors, in silico immunotherapy trials have gained interest, 497 

leading to trials with anti-CTLA-4-antibodies and anti-PD-(L)1 antibodies43, 44, 45. The common 498 

denominator in these trials is that they primarily center around the therapies’ dosing regimens and 499 

treatment schedules. Herein lies the main difference with our simulation approach: although the ‘key 500 

ingredients’ of these approaches are similar – they are based on a mathematical abstraction of a 501 

disease mechanism – our trials do not aim to optimize treatment schedules. Instead, we complement 502 

traditional design methodology by adding the means to predict trial outcomes and elucidate trial 503 

kinetics a priori to steer design decisions of novel immunotherapy trials. These trials differ from 504 

traditional trial design research in that these, often statistically-grounded, approaches simulate clinical 505 

trials based on population-level assumptions (e.g., with particular distributions of survival times, study 506 

durations, or with a specific censoring mechanism). Examples of these high-level simulation 507 

approaches include, but are certainly not limited to, studies aiming to calculate the sample size and 508 

power of clinical trials46, 47, 48. Since these methods lack a direct link to the underlying biological disease 509 

mechanism, interpreting their parameters for individual trial participants is difficult or even 510 

impossible. In contrast, in silico trials are founded on biological assumptions but then translate these 511 

assumptions into statistical concepts such as hazard ratio kinetics. In this manner, simulated trials 512 

encourage an interdisciplinary discussion about the design of an upcoming trial.  513 

 In silico clinical trials are applicable in several settings. First, they provide the means to verify 514 

clinical trial and treatment assumptions before investing extensive amounts of work and funds into 515 

the development and execution of a clinical trial and can, thereby, function as a proof of principle of 516 

the soundness of the hypotheses for an upcoming trial. Scrutinizing each aspect of the trial supports 517 

optimal design decisions and might reduce unanticipated outcomes. Moreover, this mechanism-based 518 

approach does not necessitate a deep understanding of complex mathematical theorems; instead, it 519 
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requires a biological understanding of a disease. This mechanistic basis is intuitive, which benefits the 520 

communication between clinical doctors and biomedical researchers on the one hand and statisticians 521 

and clinical trialists on the other. Additionally, in silico trials might serve as excellent educational tools. 522 

The ability to simulate a wide range – from basic to highly advanced – research questions can be 523 

exploited in teaching activities for entry-level clinicians to experienced trialists. A final implication, 524 

which holds for any trial simulation, is that they may provide insight when conventional clinical trials 525 

are unfeasible due to practical or ethical constraints (e.g., clinical trials in rare diseases, pediatrics, or 526 

critical care medicine).  527 

 Nonetheless, in silico clinical trials have to be considered in light of some limitations. The most 528 

critical limitation is universal to any – either in vitro, in vivo, or computational – scientific model: the 529 

immunotherapy trial outcomes depend heavily (if not entirely) on the biological assumptions of the 530 

model, meaning that incorrect interactions or erroneous parametrization of the model might induce 531 

inaccurate outcomes. The parameterization, in particular, might pose a problem: given the often novel 532 

treatment mechanisms, data to fine-tune the parameters of the model accurately might be scarce. In 533 

these cases, the simulation itself can be used as a sensitivity analysis to assess to what extent a certain 534 

parameter range influences the robustness of the predictions. In addition, while the model itself is 535 

intuitive to understand, translating biological principles into an ODE model and implementing it into a 536 

simulation requires thorough knowledge of computational methods, limiting its widespread 537 

applicability.  538 

In summary, in silico cancer immunotherapy trials offer a versatile approach to simulate 539 

immunotherapy trials based on biological assumptions. Furthermore, as a simulation tool, they 540 

facilitate the verification of trial design decisions to optimize the probability of a successful 541 

immunotherapy trial and contribute to high-quality research for cancer patients.  542 

 543 

  544 
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