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Abstract
Late-stage cancer immunotherapy trials often lead to unusual survival curve shapes, like delayed curve separation or a
plateauing curve in the treatment arm. It is critical for trial success to anticipate such effects in advance and adjust the
design accordingly. Here, we use in silico cancer immunotherapy trials – simulated trials based on three different mathe-
matical models – to assemble virtual patient cohorts undergoing late-stage immunotherapy, chemotherapy, or combination
therapies. We find that all three simulation models predict the distinctive survival curve shapes commonly associated with
immunotherapies. Considering four aspects of clinical trial design – sample size, endpoint, randomization rate, and interim
analyses – we demonstrate how, by simulating various possible scenarios, the robustness of trial design choices can be
scrutinized, and possible pitfalls can be identified in advance. We provide readily usable, web-based implementations of
our three trial simulation models to facilitate their use by biomedical researchers, doctors, and trialists.
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Introduction1

Immunotherapy is revolutionizing the treatment landscape for patients with advanced cancers. While the number of2

immuno-oncology drugs under investigation is rising rapidly – around 4700 agents are currently in the development3

pipeline – the need to further improve patient outcomes remains high [1]. Well-designed immunotherapy trials are cru-4

cial to establish advances in clinical outcomes robustly. Unfortunately, the odds for cancer treatments to successfully5

pass the development pipeline are unfavorable, and only a minority of the treatments (5-10%) ultimately obtain market6

approval [2–4]. Even for cancer therapies that do reach late-stage development, approval rates remain modest at around7

27% [5]. The primary reason in most of these trials (i.e., 63.7%) is failure to demonstrate efficacy [5], which can be8

partly attributed to suboptimal trial design choices based on overly optimistic assumptions of the treatment effect. Such9

assumptions may be used to erroneously justify low numbers of patients or inappropriate endpoints and lower the power10

of these trials [5, 6].11

Immunotherapy trials raise complex design questions, and conventional design methods are not always a good match to12

the unique characteristics of immunotherapies [7]. There is a very broad spectrum of therapies based on various molecular13

mechanisms – ranging from immunomodulators to cell therapies, cancer vaccines, oncolytic viruses, and CD3-targeted14

bispecific antibodies – that can lead to unusual toxicity profiles, response patterns, and survival kinetics [8–10]. These ob-15

servations render a “one-design-fits-all” approach futile and stress the need for designs that are tailored to immunotherapy16

or even combination therapies.17

Immunotherapies are known to induce a delayed clinical effect and long-term overall survival (OS) in only a subset of18

patients [11]. The survival curve reflects these phenomena by a delayed curve separation and a plateau of the treatment19

arm at later stages of the trial [12]. These characteristics violate a fundamental premise that underlies the design of many20

trials: the proportional hazard assumption (PHA) – essentially stating that the treatment effect should remain constant over21

time [13]. As a result, immunotherapy trials based on this principle can have an overestimated power [12,13] and require22

a longer follow-up to demonstrate efficacy than initially planned [12], increasing the likelihood of a negative trial.23

These issues led to the development of innovative methods such as novel radiological criteria to quantify tumor responses24

[9, 14, 15], (surrogate) endpoints to capture unique survival kinetics [10, 16–19], biomarkers to enrich for patients more25

likely to respond to treatment [20–23], and statistical methods to retain a trial’s power in the presence of unusual survival26

kinetics [24–26]. Despite the multitude of available methods, it is difficult to predict trial outcomes in advance and select27

the methodology accordingly. The stakes are high: a trial design built on accurate predictions of the response kinetics is28

more likely to be positive, whereas misjudgment could result in a negative trial, potentially compromising patient benefit,29

vast amounts of work, and (public) research funds.30

In this study, we use late-stage in silico cancer immunotherapy trials to investigate how design decisions affect the trial31

outcome in the context of cancer immunotherapy, possibly combined with chemotherapy. The mechanism-based nature32

of these trials allows researchers to translate cellular processes in the tumor microenvironment and immunotherapeutic33

interventions thereon into predicted response patterns, survival kinetics, and trial outcomes. An in silico immunotherapy34

trial is based on explicit biological assumptions and provides an intuitive means to predict risk profiles and treatment35

efficacy. Moreover, it equips researchers with a tool to scrutinize trial designs and analysis strategies of upcoming trials36

in advance to identify potential risks and pitfalls.37

We use three different simulation models to perform our in silico trials, based on work by ourselves [27] and other au-38

thors [28, 29]. Despite considerable differences, all models replicate late-stage immunotherapy or combination trials39

reasonably well and capture their typical survival kinetics. Then, we demonstrate various applications of such trial simu-40

lations, including the ability to scrutinize a clinical trial’s design and sample size calculations based on a range of predicted41

possible outcomes. Finally, we illustrate the consequences of (not) considering immunotherapy-specific response patterns42

in settings selected for educational purposes, such as selecting survival endpoints and randomization ratios of upcoming43

trials and planning interim analyses.44
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Results45

Generating trial populations based on tumor-immune dynamics46

We used in silico cancer immunotherapy trials based onmechanistic simulations of cancer-immune dynamics to investigate47

the consequences of immunotherapy-specific response patterns on trial design principles [26]. The virtual patients in these48

trials are simulated with ODE models, which describe disease courses based on assumptions about interactions between49

tumor cells and the immune system [26]. In this paper, we will focus on simulating two years of follow-up after treatment50

– while it is straightforward to consider longer follow up times with in silico trials, a two-year time frame is common for51

contemporary immunotherapy trials [30–32].52

To investigate the extent to which our simulation results depend on specific modeling choices, we use three different ODE53

models. Model 1 (M1) describes the following tumor-immune dynamics in the tumor microenvironment: immunogenic54

tumor growth leading to priming and clonal expansion of naïve T cells, migration of effector T cells to the tumor microen-55

vironment, and formation of tumor-immune complexes to enable tumor cell killing (seeMethods; Figure 1A).We simulate56

treating these patients with immune checkpoint inhibitors (ICI), chemotherapy, or both. ICI increase the T cell killing rate57

and directly affect the tumor-immune dynamics. Chemotherapy has a cytotoxic effect on the tumor, slowing its growth. A58

detailed description of the model, including the rationale for parameter selection, has been published previously [26]. In59

contrast, model 2 (M2) does not represent T cells migration between lymph nodes and tumor microenvironment; however,60

it does contain an explicit representation of antigen-presenting cells (APCs) [33]. Finally, Model 3 (M3) does not contain61

either T cell migration or APCs, but it does take T cell exhaustion into account. Another important difference between62

the models lies in how tumor growth is represented: M1 uses a size-dependent growth rate, M3 a resource-constrained63

growth rate (logistic growth), and M2 uses unlimited exponential growth.64

Regardless of model specifics, in silico clinical trials describe cancer outcomes on three levels: (1) a cellular level, (2)86

a patient level, and (3) a trial population level. Cellular interactions in the tumor microenvironment are translated into87

clinical trial outcomes as follows: firstly, the ODEmodel is implemented, and model parameters that vary between patients88

are selected by fitting to existing survival data (Figure 1B; see Methods). Next, individualized disease trajectories –89

either treated or untreated – of cancer patients are generated (Figure 1C). Eventually, patients are randomized into two90

cohorts to resemble conventional phase III trials: a control group (either placebo or chemotherapy) and a treatment group91

(immunotherapy, chemoimmunotherapy, or induction chemotherapy followed by immunotherapy; Figure 1D). Since the92

cellular dynamics (e.g., tumor burden over time or the efficacy of T cell killing) and survival outcomes of these patients are93

known and can be modified, in silico clinical trials are suited to answer questions like:“Assuming that a novel treatment94

increases T cell killing 5-fold, how does this translate to a survival benefit in patients? Moreover, how many patients are95

needed to establish this benefit in a clinical trial? When should one analyze the results?” (Figure 1E).96

Despite their differing mechanisms, the models generate qualitatively similar predictions (Figure 2): tumors grow at real-97

istic speeds and are usually not cleared by the immune system without therapeutic intervention. In the models, therapeutic98

interventions can slow or even reverse tumor growth, in principle leading to two major contrasting outcomes: death or99

long-term survival. However, there is a unique effect in M3 where even after treatment and growth reverse, the tumor100

burden keeps oscillating over time, leading to regular self-resolving recurrences. While this may not be entirely realistic,101

it is not an issue for our purpose as we shall focus on the initial growth trajectory of the tumor preceding and up to 2 years102

after treatment, and recurrences happen after that.103

In silico late-stage immunotherapy trials yield realistic survival outcomes104

To investigate whether our in silicomodels can generate realistic survival curves as observed in late-stage immunotherapy105

trials, we fitted the models to three different datasets: (1) the NCCTG lung cancer survival dataset [34]; (2) the CA184-024106

trial (ipilimumab + dacarbazine vs. dacarbazine in previously untreated metastatic melanoma [35]); and (3) the CheckMate107

066 trial (nivolumab + placebo vs. dacarbazine + placebo in treatment-naive metastatic melanoma patients without BRAF108

mutation [36]). The choice for these trials is based on the size of the trials and the maturity of the data. The follow-up109

of the CA184-024 trial and the CheckMate 066 trial were five and three years, respectively. As the last two datasets110

were not publicly available, we extracted the data using image digitization (see Methods). As a reference for the in silico111

trials, we visualized the Kaplan-Meier estimators of these datasets (Figure 3A). Both trials were digitized correctly, as112

reflected by the nearly identical risk tables compared to the original manuscripts [35, 36]. Next, we fitted the tumor113

growth rate distributions and treatment effect parameters for chemotherapy and immunotherapy s (NCCTG: 3 parameters;114

immunotherapy trials: 4 parameters) to these datasets (M1: Figure 3B; M2, M3: Supplementary Figure S1). For the115

CA184-024 and CheckMate 066 trials, the simulated patients were treated with ICI upon diagnosis, increasing their T cell116

killing rates. For simplicity, we did not simulate dropout or censoring in the trials shown in this paper, although it could117

be added to the simulation. Model M1 achieved satisfactory fits to all datasets. However, M2 and M3 had difficulties118

fitting the CheckMate 066 data, with M2 predicting more rapid death in the control arm and M3 predicting a cross-over119

of survival curves. M3 also had difficulties fitting the other two datasets, as its survival curves plateaued from 12 months120
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Figure 1: In silico late-stage immunotherapy trials and their applications (A) Cellular interactions between a tumor
and the immune system as implemented in ODE model M1 (Methods). This model describes immunogenic tumor growth
leading to a T cell response originating from lymph nodes. Disease courses in patients can be steered by immunotherapy,
chemotherapy, or a combination of both. Parameters: α = naive T cell priming rate, δ = effector T cell death rate, ξ =
effector T cell killing rate, ρ = tumor growth rate, ρs = effector T cell proliferation rate, andms = effector T cell migration
rate. (B) After implementation, we used survival data from clinical trials to fit some of the model parameters. (C) Patients
received either no treatment (placebo), chemotherapy, immunotherapy, or both. Disease trajectories based on tumor-
immune dynamics were simulated for each patient, resulting in individual survival outcomes. (D) Subsequently, cohorts
of patients were constructed based on the fitted parameters to simulate actual immunotherapy trials. (E) Applications of
such trials include predicting possible survival outcomes of trials, estimating sample sizes needed for a range of scenarios,
and investigating endpoints, randomization ratios, and the timing of interim analyses.
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Figure 2: Simulating immunotherapy responses using different mathematical models. Each simulation starts with a
single malignant cell that establishes a tumor. Without treatment, this tumor grows to a lethal volume (upper horizontal
line) over the course of several months. Treatment is started when the tumor reaches a size of 65 × 108 cells (lower
horizontal line). Immunotherapy is implemented in each model by increasing the rate at which T cells kill tumor cells;
in M2, the death rate of T cells is additionally decreased by the same factor. The treatment effect sizes are chosen per
model such that there is a partial response (orange, leading to prolonged survival) or a complete response (red, leading to
tumor eradication). The recurrence of the tumor in M3 is a consequence of the model’s equations, which lead to oscillating
dynamics of the tumor burden rather than complete eradication in the complete response regime. Arrows indicate start of
treatment.
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Figure 3: Fitting in silico cancer immunotherapy trial models to actual data to simulate realistic survival curves.
(A) Kaplan-Meier estimators of the NCCTG, CA184-024, and CheckMate 066 trials. While the NCCTG dataset is pub-
licly available [34], the others are carefully reconstructed survival curves based on digitized data from their respective
manuscripts [35], [36]. (B) Trial simulations can generate realistic survival curves as observed in actual immunotherapy
trials. Specifically, typical immunotherapy-related survival curve shapes – such as a delayed curve separation and a plateau
in the treatment arm – arise from these simulations as emergent behavior.
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after treatment onwards. While the fit of all models can be improved by allowing more parameters to vary, we chose to121

keep the number of fitted parameters small to investigate the consequences of such issues on our downstream analyses.122

Hence, our in silico trials couple the disease mechanism and mechanistic treatment effect to a predicted clinical trial123

outcome. By allowing model parameters to vary between patients, such models can be fitted to existing clinical trial data.124

Whether a good fit can be achieved depends on the model assumptions and the number of parameters that are allowed to125

vary. In our case, models M1 and M2 were able to fit the three datasets reasonably well, with M3 showing a substantially126

worse fit.127

Interestingly, although not incorporated explicitly, the models reproduced hallmark survival curve features arising as a128

consequence of the interaction between tumor and immune cells typically seen in immunotherapy trials: a delayed curve129

separation and a plateau of the survival curve of the treatment arm at later stages of the trial (last two columns in Figure 3B130

and Supplementary Figure S1).131

In silico immunotherapy trials predict immunotherapy-specific response patterns138

The design and the success rate of any clinical trial depends, among others, on a realistic predictions of the shape of139

the survival curves and the distribution of clinical outcomes. For late-stage immunotherapy trials, commonly observed140

immunotherapy-induced response patterns are a delayed curve separation and a plateauing tail of the survival curve of the141

treatment arm (Figure 3). These characteristic survival curve shapes violate a vital premise of many clinical trials: the142

proportional hazard assumption (PHA). The PHA states that the “instantaneous death rate” of a patient (i.e., the hazard143

rate) in both arms of the trial should be proportional, resulting in a constant hazard ratio. Many traditional design methods,144

ranging from sample size calculations to outcome analyses, are based on this convenient assumption. For late-stage145

immunotherapy trials, this induces two problems: (1) while a violation of the PHA needs to be addressed during trial146

planning, the hazard rates – and an eventual violation of the PHA – becomes available only after the trial; and (2) if a trial147

does not adhere to a PHA, what will be the shape of the survival curve? Especially in an era where treatment and control148

arm regimens are becoming increasingly complex, adjusting the design and analysis methods to various survival curve149
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shapes is challenging.150

In silico clinical trials can provide principled predictions about possible shapes of the survival curve, including the under-151

lying hazard rates and hazard ratios, before trial execution. We generated such survival predictions using the models –152

fitted to the CA184-024 data (Table 3) – and changed the treatment effect parameters according to the simulated scenario.153

A traditional scenario would be a trial in which patients are randomized 1:1 to mono-chemotherapy or placebo. Given the154

direct chemotherapy effect, the PHA is generally assumed to hold for these trials. An in silico trial in which chemotherapy155

reduces the tumor growth rate for the entire trial duration indeed replicates these assumptions (Supplementary Figure S2):156

the survival curves separate from the start of the trial, and the hazard ratio remains roughly constant over time. However,157

what happens if the chemotherapy effect does not last for the entire trial but for – maybe more realistically – 6 months?158

For M1 and M2, the initial proportional separation of the survival curves is followed by a parallel decay and eventual159

convergence of both curves, leading to an early but transient survival benefit for the chemotherapy arm (Figure 4A, B).160

For M3, the chemotherapy effect estimated from the CA184-024 data is more profound and instead induces a permanent161

response (Figure 4C). Hence, substantial deviations from the PHA are observed in all cases, even for seemingly simple162

chemotherapy trials. Also, a violated PHA becomes immediately apparent when considering a more contemporary sce-163

nario of immunotherapy combined with chemotherapy compared to chemotherapy alone: through approximately the first164

six months, the hazard rates remain constant over time, but after that, they start to decline in the immunotherapy group165

(cyan line), yielding a non-constant hazard ratio over time (Figure 4D).166

The flexibility of in silico trials lies in their ability to incorporate complex treatment regimens. For example, let us assume167

one would be interested in estimating the survival curves and underlying hazard ratio over time of an immunotherapy +168

placebo-chemotherapy vs. chemotherapy + placebo-immunotherapy trial (Figure 4E) or a trial with induction chemother-169

apy followed by immunotherapy vs. immunotherapy (Figure 4F). Mechanism-based immunotherapy trials translate bi-170

ological assumptions regarding the disease and treatment effects into survival curves (including its hazard rate/ratio esti-171

mates). The resulting survival curve shapes, such as crossing survival curves (Figure 4E) or a temporary curve separation172

(Figure 4F), may be hard to predict otherwise and can be detrimental to the trial outcome if addressed appropriately.173

We emphasize that different models can generate different predictions depending on model assumptions and parameters,174

as seen in our chemotherapy vs. placebo examples (Figure 4A, B, C). Conversely, however, even substantially different175

models can agree on the essential aspects of the predicted survival curves. For example, despite their differences, our176

three models all predict the characteristic delayed curve separation of immunotherapy trials (Figure 4D, Supplementary177

Figure S3, Supplementary Figure S4).178

190

Using in silico trials to select an appropriate outcomemetric for measuring a treatment’s clinical191

effect192

A key design decision in a clinical trial is which effect size metric to use to define treatment success. Two common choices193

are the overall hazard ratio, which is affected by the entire survival data of the trial, and a survival endpoint such as 2-year194

overall survival (OS), which only depends on the specifically defined time-point. When there is no solid clinical rationale195

to prefer one effect size measure over the other, statistical considerations such as power become important. To investigate196

the consequences of choosing hazard ratio or 2-year OS as the study effect size in different immunotherapy scenarios, we197

determined the power of in silico trials by conducting simulations at varying study population sizes.198

A potential advantage of using the hazard ratio is its use of the entire survival curve, which can increase power when the199

PHA is met and detect transient effects even if the PHA is not met. Indeed, when investigating the power of the transient200

chemotherapy effect generated by model M1 (Figure 4A), we found the power to be much greater when using the hazard201

ratio compared to the power to detect the minimal difference in survival still found after 2 years. The opposite was true202

when investigating the chemoimmunotherapy vs. immunotherapy scenario using M2 (Figure 4B): the power of trials that203

used the hazard ratio lagged far behind the power to detect a 2-year survival endpoint, as a consequence of the considerable204

violation of the PHA in this scenario. Indeed, when considering the persistent chemotherapy effect generated by model M3205

(Figure 4C), a scenario with a substantially lower variation of the hazard ratio, we found the power to be more comparable,206

although the hazard ratio still had a meaningful advantage. When using M3 to investigate the chemoimmunotherapy vs.207

immunotherapy scenario, the choice of endpoint made hardly any difference (Supplementary Figure S5).208

These results illustrate the critical importance of choosing an appropriate effect size to measure the clinical outcome, which209

in turn strongly depends on the shape of the survival curves. For established treatments, investigators can rely on their210

experience or published results to make an appropriate choice; however, the expected survival curve shape might be very211

uncertain for novel immunotherapies or combinations of existing immunotherapies. In such cases, running various in silico212

trials would help investigators prepare for different plausible scenarios and choose a robust trial design. In our examples,213

the models agreed that hazard ratio would be a suitable effect size for a chemotherapy vs. placebo trial even if the PHA214

does not entirely hold, whereas 2-year OS would be appropriate for the chemoimmunotherapy vs. immunotherapy case215

(Supplementary Figure S5).216
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Figure 4: In silico clinical trials can predict immunotherapy-specific survival patterns based on biological assump-
tions. (A-F) Examples of 1:1 randomized trials with various (treatment) regimens (n=600 per arm). (A-C) A traditional
chemotherapy trial (vs. placebo) only shows a proportional hazard ratio when the biological treatment effect targets the tu-
mor directly and remains constant over time (compare to Supplementary Figure S2). (D) An in silico immunotherapy trial
elicits typical immunotherapy-induced survival curve shapes (i.e., delayed curve separation) and violates the proportional
hazard assumption. (E-F) More intricate treatment or control regimens – (D) immunotherapy + chemotherapy-placebo vs.
chemotherapy + immunotherapy-placebo, or (E) induction chemotherapy followed by immunotherapy vs. immunother-
apy – induce more complex survival patterns, including (E) crossing survival curves or (F) only a temporary separation
of the survival curves. Horizontal bars underneath the survival curves indicate the duration of the treatment effect (T =
treatment, C = control). The red dot in column three indicates the hazard ratio averaged over the entire trial. Shading:
95% CIs.
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Figure 5: Immunotherapy-specific survival curve shapes critically determine a trial’s power to detect different
treatment effects. We analyzed the power of in silico trials to detect a difference in 2-year OS (black lines) or a hazard
ratio <1 (red lines) for (A) chemotherapy vs. placebo (transient effect, M1); (B) chemoimmunotherapy vs. chemotherapy
(M2); and chemotherapy vs. placebo (long-term effect; M3). Choosing an inappropriate effect size for the response pattern
at hand leads to a significant reduction in trial power, greatly reducing the probability of success. The chemotherapy effect
for M3 was set to a 20% reduction in growth rate to simulate a more subtle effect; all other parameters were set to the
values fitted to the CA184-024 data. Error bars: 95% CIs.

In silico trials can help to choose endpoints and randomization ratios before trial execution217

Clearly, the success rate of novel immunotherapy trials depends on more than its sample size alone. To establish an OS218

benefit of the treatment arm, it is crucial to analyze the trial once the data have reached a certain maturity – i.e., the219

treatment needs to be granted sufficient time to induce a survival benefit. We assumed that a delayed curve separation220

in immunotherapy trials would prolong the follow-up needed to establish an OS benefit of immunotherapy and thereby221

defer reaching maturity of the trial data. If the therapy is effective, data maturity can be regarded as the time point when222

a treatment effect can be observed. Hence, an optimal trial endpoint would be the earliest time at which this treatment223

effect can be detected with sufficient power. Therefore, we analyzed the power of differently sized trials with respect224

to their OS endpoint. Herein, we distinguished trials that were subject or were not subject to a delayed curve separation225

(immunotherapy and chemotherapy, respectively). In a classic chemotherapy trial, the treatment effect translates directly to226

a survival benefit in the treatment arm – the survival curves separate from the start. Therefore, the highest power is obtained227

after the total duration of the treatment effect (Figure 6A, panel 1). In this case, the treatment effect lasts for six months,228

leading to the 6-months OS as the endpoint with the highest power. The delayed curve separation in immunotherapy trials229

renders it futile to analyze OS data early on in the trial (Figure 6B, panel 1). A practical ramification is that in the presence230

of a delayed curve separation, the trial requires a sufficiently long follow-up and an adequate size to gain power and detect231

immunotherapy-specific treatment effects. Mechanism- and simulation-based power calculations with in silico trials can232

consider these specific survival curve features when determining the sample size for upcoming trials.233

Given the observation that both the size of an immunotherapy trial and its endpoint heavily influence the probability of234

finding the survival benefit of interest, we presumed that increasing the size of the treatment arm – i.e., an unequal ran-235

domization scheme – would similarly affect the power. Instead of varying the study size, we now varied the randomization236

ratio (second panel of Figure 6A/B). Interestingly, while the power logically depended on the OS endpoint, the random-237

ization ratio did not greatly affect the power (Figure 6B). Considering that an unequal treatment allocation may provide238

ethical benefits, we confirm that the randomization ratio in immunotherapy trials is of secondary importance compared to239

its size or primary OS endpoint.240

In summary, our in silico immunotherapy trials replicate existing insights from trial design as to how violation of the PHA241

affects power and analysis choices. Our ability to directly translate biological assumptions on treatment mechanisms into242

survival curve shapes allows the trialist to reason deliberately about whether such violations of the PHA would or would243

not be expected in their specific trial design and how the problem could be addressed if it arises.244

Simulating interim analyses to evaluate the trade-off between patient benefit and trial resources245

We have observed a clear trade-off between the power of an immunotherapy trial on the one hand, and the primary OS246

endpoint, and correspondingly the data maturity, on the other. Luckily, the two are not entirely mutually exclusive: interim247

analyses have been developed for ethical purposes to establish positive or harmful treatment effects early. However, there248

is a catch: the necessity to control for multiple testing at each interim analysis lowers the significance threshold on the249

final analysis to maintain the same overall type I error rate. This raises the question: “How many interim analyses should250
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Figure 6: In silico trials guide decisions on OS endpoints and randomization ratios of upcoming immunotherapy
trials. (A-B) In silico trials can be used to find the optimal endpoint (panel 1) or randomization ratio (panel 2) of novel
trials. (A) Since the survival curves in classical chemotherapy trials separate from the trial onset, the highest power – and
optimal endpoint – is obtained at the end of the treatment interval (i.e., after six months in this example; see Figure 4A).
Although less influential, a similar observation can be made for randomization ratios (study size panel 2: 300 patients). (B)
Delayed curve separation in immunotherapy trials emphasizes that a premature final analysis of the primary OS endpoint
is detrimental to the trial outcome. These trials permit validating the pre-specified survival outcomes of novel trials a
priori. Commonly selected randomization ratios do not seem to be heavily influenced by immunotherapy-specific response
patterns (study size panel 2: 1200 patient). Trial characteristics are similar to Figure 4A/D. All simulations performed
using M1. Error bars: 95% CIs.
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you plan, and when should you plan them?” Again, well-founded answers to such questions can be obtained with the help251

of in silico immunotherapy trials. To illustrate this, we used M1 to simulate 1000 immunotherapy trials with 1200 patients252

per trial, randomized 1:1 over immunotherapy with a strong treatment effect or a placebo (Figure 7A). In the absence253

of interim analyses, the vast majority of the trials are predicted to end up positive. Adding interim analyses (O’Brien-254

Fleming approach) to the equation induces a trade-off. On the one hand, increasing the number of equally-spaced interim255

analyses increases the probability of early detecting a positive treatment effect (e.g., approximately 60% of the trials are256

positive after 18 months in the case of three interim analyses; Figure 7A). On the other hand, the overall probability257

of ending up with a negative trial due to more stringent analyses (i.e., less power) also increases, especially in the case258

of immunotherapies with a weaker treatment effect (±57% without an interim analysis vs. ±63% with three interim259

analyses; Figure 7B). In an actual trial, the latter needs to be corrected by including additional patients to maintain the260

pre-planned power. Furthermore, we observe that the timing of the interim analysis is crucial. Whereas an interim analysis261

at 18 months provides additional value to the trial, interim analyses before 16 months are predicted to be wasteful due to262

non-proportional hazards and less mature data. As a control, we simulated trials without any treatment effect. By design,263

approximately 95% of the trials should end up negative irrespective of the number of interim analyses, which indeed264

seemed to be the case (Figure 7C). Logically, the weaker the treatment effect, the higher the probability of erroneously265

finding a harmful treatment effect – a characteristic that the simulation also exhibits (Figure 7B/C).266
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Figure 7: A priori scrutiny of the interim analysis plan to evaluate possible advantages and disadvantages of timed
additional analyses during the trial. (A) In the case of immunotherapy with a potent effect, in silico trials help develop
a rationale for the timing of the interim analyses. In these simulations, while an interim analysis at 12 months might not
add value to the trial, analyses after 16 and 18 months, respectively, have a probability of approximately 24% and 40%
to lead to early stopping with a positive result. (B) Multiple interim analyses can reduce the probability of confirming
the desired treatment effect in case of a weak immunotherapy effect. (C) In the absence of any treatment effect (a control
scenario), the number of interim analyses does not heavily influence the trial outcome. Each trial simulation contains
1200 patients (randomization ratio 1:1) to ensure adequate power of the trial. Trials are analyzed with a proportions test
(Pearson’s chi-squared test). Treatment effect (fold increase of the T cell killing rate): strong = 12, weak = 4, no effect =
0 (see Methods). All simulations were performed using M1.
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Discussion278

Over the past decade, tumor-immune dynamics have been investigated extensively with in silico models. In the early279

days of cancer immunotherapy, these modeling efforts focused – next to chemotherapy [37] – on cellular immunotherapy280

[38, 39]. More recently, the field has addressed ICI therapy (e.g., [33, 40, 41]). Models of tumor-immune dynamics281

have been applied to study pharmacokinetic and therapy dynamics (PK/PD), treatment effects (including mechanism(s)282

of action, optimizing dosing regimens), treatment combinations, toxicity, biomarker prediction, drug resistance, and drug283

discovery (see reviews on these topics [38, 42–47]). These extensive modeling efforts by the Mathematical Oncology284

community have created a rich and valuable methodological resource. The goal of the work described in this paper is to285

tap into this resource for the purpose of clinical trial design. Once parameterized, a mathematical model can predict likely286

outcomes of treatments for individual patients; using such a model for trial design requires considering heterogeneity287

between patients and translating these into likely survival curve shapes for each arm of the trial.288

In this study, we leveraged mathematical models to perform cancer immunotherapy trials in silico, predicting survival289

and response profiles of various treatment regimens. Complementary to conventional design methods, in silico trials290

provide the ability to investigate the implications of a researcher’s biological (as opposed to statistical) hypotheses about a291

drug’s mechanism of action for the design, conduct, analysis, and outcome of clinical trials. When comparing the simulated292

outcomes to actual immunotherapy trial outcomes, we showed that in silico trials are suited to translate complex biological293

mechanisms (such as those observed during the treatment of patients with ICI) into realistic trial outcomes. Crucially,294

regardless of the model, the survival curves from these mechanism-based simulations reflected two pivotal components295

often found in immunotherapy trials: a delayed curve separation and a plateauing tail of the survival curve at later stages296

of the trial. In line with genuine immunotherapy trials, we find that these immunotherapy-specific response patterns differ297

considerably from chemotherapy. Our findings confirm that diversity in survival curves profoundly impacts the outcomes298

of immunotherapy trials [48]. Consequently, these features need to be considered when deciding on the sample size,299

endpoint, randomization ratio, and the number and timing of interim analyses of a novel cancer immunotherapy trial.300

In silico clinical trials are gaining popularity in medicine. Such trials enable investigating, among others, how novel drugs,301

treatment schedules, dosing regimens, and inter-patient heterogeneity affect the outcome of a clinical trial [49]. In silico302

clinical studies have a wide range of applicability from pediatric infectious [50] and orphan diseases [51] to diabetes [52],303

inflammatory autoimmune diseases [53], traumatic injury [54], psychiatric illness [55], and cancer. In oncology, several in304

silico clinical trials involving chemotherapy and tyrosine kinase inhibitors have been performed [56], [57]. Moreover, with305

the onset of checkpoint inhibitors, in silico immunotherapy trials have gained interest, leading to trials with anti-CTLA-306

4-antibodies and anti-PD-(L)1 antibodies [58], [59], [60]. The common denominator in these trials is that they primarily307

center on dosing regimens and treatment schedules. Herein lies themain difference with our simulation approach: although308

the ‘key ingredients’ of these approaches are similar – they are based on a mathematical abstraction of a disease mechanism309

– our trials do not aim to optimize treatment schedules. Instead, we complement traditional design methodology by adding310

the means to predict key aspects of response and survival a priori to steer design decisions of novel immunotherapy trials.311

These trials differ from traditional trial design research in that these, often statistically-grounded, approaches simulate312

clinical trials based on population-level assumptions (e.g., with particular distributions of survival times, study durations,313

or with a specific censoring mechanism). Examples of such high-level simulation approaches include, but are certainly not314

limited to, studies aiming to calculate the sample size and power of clinical trials [61], [62], [63]. Since these methods lack315

a direct link to the underlying biological disease mechanism, interpreting their parameters for individual trial participants316

is difficult or even impossible. In contrast, in silico trials are founded on biological assumptions but then translate these317

assumptions into statistical concepts such as hazard ratios. In this manner, simulated trials encourage an interdisciplinary318

discussion about the design of an upcoming trial.319

In silico clinical trials are applicable in several settings. First, they provide the means to verify clinical trial and treatment320

assumptions before investing extensive amounts of work and funds into the development and execution of a clinical trial321

and can, thereby, function as a proof of principle of the soundness of the hypotheses for an upcoming trial. Scrutiniz-322

ing each aspect of the trial design might lead to better design decisions and reduce unanticipated outcomes. Moreover,323

this mechanism-based approach does not necessitate a deep understanding of complex mathematical theorems; instead, it324

requires a biological understanding of a disease. This mechanistic basis is intuitive, which benefits the communication325

between clinical doctors and biomedical researchers on the one hand and statisticians and clinical trialists on the other.326

Additionally, in silico trials might serve as excellent educational tools. The ability to simulate a wide range – from basic327

to highly advanced – research questions can be exploited in teaching activities for entry-level clinicians to experienced328

trialists. A final implication, which holds for any trial simulation, is that they may provide some degree of insight when329

conventional clinical trials are unfeasible due to practical or ethical constraints (e.g., clinical trials in rare diseases, pedi-330

atrics, or critical care medicine).331

Nonetheless, in silico clinical trials have to be considered in light of some limitations. The most critical limitation is332

universal to any scientific model, whether in vitro, in vivo, or computational: the immunotherapy trial outcomes depend333

heavily (if not entirely) on the biological assumptions of the model, meaning that incorrect interactions or erroneous334

parametrization of the model can lead to inaccurate predictions. The parameterization, in particular, might pose a problem:335
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given the often novel treatment mechanisms, data to fine-tune the parameters of the model accurately might be scarce. In336

these cases, the simulation itself can be used as a sensitivity analysis to assess to what extent a certain parameter range,337

or the structure of the model itself, influences the robustness of the predictions. Our use of three different models in this338

paper can be seen as such a type of sensitivity analysis; indeed, despite the major differences, it was reassuring to observe339

that the models often agreed when it came to the critical qualitative aspects of the predicted survival curves.340

In addition, while ODE models can be rather simple and intuitive to understand, translating biological principles into an341

ODE model and implementing it into a simulation requires thorough knowledge of computational methods, potentially342

limiting its widespread applicability. To address these limitations, we have made our model implementations available343

as (1) an interactive website that can be used without installing any software and without any programming knowledge344

(https://computational-immunology.org/models/immunotherapy-trials/); (2) an R package allowing to run345

simulations without requiring knowledge of ODEs and their solutions.346

In summary, in silico cancer immunotherapy trials offer a versatile approach to simulate immunotherapy trials based on347

biological assumptions. As a simulation tool, they facilitate the scrutiny of trial design decisions to optimize the probability348

of a successful immunotherapy trial and contribute to high-quality research for cancer patients.349
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Methods350

Mechanism-based models of the tumor microenvironment351

We implemented three ordinary differential equation (ODE) models of tumor-immune interactions: one from our previous352

work [27] and two by other authors [28, 29]. We first describe the common aspects of the models, then explain the353

differences and show the model equations. All models describe cancer onset and progression, and we initialize each354

model by seeding a single growing tumor cell. This tumor cell divides, leading to a proliferating mass of tumor cells.355

The parameter ρ controls the grows rate. Within the tumor microenvironment, an anti-tumor immune response induces356

cytotoxic T cells to kill tumor cells at rate ξ. Intratumoral T cells die at a rate δ. In these models, the rate at which357

T cells are activated and/or proliferate depends initially on the tumor size: an early stage microscopic tumor presents358

fewer antigens than a larger – but still small – tumor. However, antigen presentation saturates as the tumor grows further359

(scaling factor T/(g+ T ) in Equations 3,4,3,9). Thus, four model parameters are shared between the models. Depending360

on the parameter values, it is possible that the immune response eliminates the tumor or that the tumor escapes and grows361

in an uncontrolled fashion.362

We now discuss the model equations and parameters. In all models, we denote the number of tumor cells by T (Equa-363

tions 1,5,8) and the number of intratumoral T cells by I (Equations 2,6,9). Compared to their original versions, variables364

and parameters in the equations below have been renamed, and the units of some parameters scaled to make the models365

easily comparable.366

Model M1 is based on our previous work [27] and has the following equations:367

dT

dt
= ρT

3
4 − ξI

T

1 + I
hI

+ T
hT

(1)

dI

dt
= mSS − δI (2)

dS

dt
=

(
T

g + T

)
(αNN + pSS)−mSS (3)

dN

dt
= −

(
T

g + T

)
αNN (4)

We implemented a tumor growth rate that is slower than exponential growth. This is a common modeling choice based368

on data and the biological premise that a growing tumor needs to sustain itself with nutrients. A common method to369

implement a sub-exponential growth, which we adopt here, is to raise the number of tumor cells to the 3/4th power to370

obtain the number of actively dividing cells [64]. We had previously modeled slightly faster-growing tumors using the371

less common power 4/5th [27]. However, given that the other two models already implement faster-growing tumors, we372

here use the more common, slower one. The killing of tumor cells is implemented using a double saturation model [65]373

parameterized as proposed by Gadhamsetty et al. [66] (Michaelis constants hT and hI ). The double saturation model374

reflects that T cell killing of tumor cells takes hours [67]. The immune cells within the tumor microenvironment originate375

from tumor-draining lymph nodes, where naive cytotoxic T cells (N , Equation 4) turn into activated T cells (S, activation376

rate αN ; Equation 4). Activated T cells proliferate at rate pS and migrate to the tumor microenvironment to become377

infiltrating T cells (I). The migration step leads to a slight delay between T cell activation and tumor cell killing on the378

order of days (mS = 1day−1). If desired, the distinction between lymph node and tumor microenvironment sites could379

be removed for simplicity, given that the migration takes place on a faster timescale than the immune response.380

ModelM2, proposed by Tsur et al. [28], conceptually differs fromM1 in five aspects. First, its tumor growth is unrestricted381

exponential. Second, the anti-tumor response saturates with increasing numbers of tumor cells but not with increasing382

numbers of T cells. Third, it explicitly represents antigen-presenting cells, called A (Equation 7), which are recruited at383

rate αA in response to the tumor growth. Fourth, its T cells do not proliferate but are produced at a capped rate. Fifth, it384

does not distinguish between T cells in the lymph node and intratumoral T cells. As mentioned above, this is likely not385

critical. The model equations are as follows:386

dT

dt
= ρT − ξI

T

1 + T
hT

(5)

dI

dt
= αeA− δI (6)

dA

dt
= αA

T

g + T
− δAA (7)

387

Model M3 was recently proposed by Bekker et al. [29]. It has two equations representing tumor cells and T cells. It388

resembles M2 in that tumor growth is initially exponential, but there is a maximum capacity for tumor cells (logistic389
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Model(s) Symbol Meaning Unit
M1,M2,M3 ρ Tumor proliferation rate day−1

M1,M2,M3 δ T cell death rate day−1

M1,M2,M3 ξ T cell killing rate day−1 cell−1

M1,M2,M3 g Amount of tumor cells at which antigen presentation is half-maximal cell
M1,M2 hT Michaelis constant for tumor-dependent killing saturation cell

M2,M3 αA T cell influx cell day−1

M1 hI Michaelis constant for T cell-dependent killing saturation cell
M1 ms T cell migration rate day−1

M1 ps Proliferation rate of T cells in lymph nodes day−1

M1 αN Activation rate of naïve T cells day−1

M2 αe Production rate of intratumoral T cells day−1

M2 δA Death rate of antigen-presenting cells day−1

M3 pI Proliferation rate of intratumoral T cells day−1

M3 β Maximum number of tumor cells the body can sustain cell
M3 ϵ Rate at which tumor cells exhaust T cells day−1 cell−1

Table 1: Overview of parameters used in the threemodels. Four parameters are shared between all models. The number
of parameters is the largest for M1 at 9 parameters, followed by M2 and M3 (8).

growth). Killing dynamics follow a “mass-action law” (i.e., there is no saturation of the killing rate like in M1 and M2).390

Further, it includes a term for tumor size-dependent T cell exhaustion. This modeling choice leads to oscillating numbers391

of T cells and tumor cells in many parameter regimes. The model equations are as follows:392

dT

dt
= ρT (1− T/β)− ξIT (8)

dI

dt
= αA + pII

T

g + T
− δI − ϵIT (9)

393

We emphasize that M3 has been presented by Bekker et al. [29] as an abstraction of the general mechanisms underlying394

immunotherapy similar to M1; neither model claims to fit specific time-resolved data. Nevertheless, we included it as we395

were interested in the impact of the different modeling choices.396

Model parameters397

Table 1 shows an overview of the parameters in the three models. Four parameters appear in every model, but note that398

this does not necessarily mean that the parameters can be interpreted in the same way. For example, in a model where399

killing saturates in a scenario where there are many more tumor cells than T cells (M1 and M2), the same value of the400

killing rate will lead to less effective killing than in a model where there is no such saturation (M3). Other parameters are401

model-specific. To improve the inter-model comparability and reduce the potential for over-fitting, we left the parameters402

in all models fixed except the tumor growth rate ρ, which we varied to obtain heterogeneous patient populations.403

Parameter values for M1 and M2 were taken from earlier publications [27,28], where the biological reasoning underlying404

these values is explained, and references are provided. Differences in model structure, and in experimental data being405

referred to, yield extensive variation in parameter values (Table 2). The variation in ρ is just a consequence of the different406

tumor growth models, which give a different meaning to the parameter in each model. Despite the differences, the values407

actually lead to comparable growth kinetics. The biggest quantitative differences are in the killing kinetics. M2’s killing408

rate ξ is three orders of magnitude smaller than M1’s, but M2 compensates for this by saturating the killing at a number of409

tumor cells that is five orders of magnitude higher than M1’s. Overall, the amount of cells being killed when the immune410

system is active and the tumor exceeds the diagnosis threshold is comparable across the models.411

M3 was not explicitly parameterized by the authors [29]. Therefore, we set its parameters to the same values as in M1412

or M2 as much as possible. For instance, because both M2 and M3 contain essentially unrestricted exponential growth413

of the tumor cells until M3 approaches the carrying capacity, we used the value for the tumor growth rate in M2 for M3.414

For the killing rate, we used a value that gave similar killing speed as M1 for tumors containing 109 − 1010 T cells. Note415

that due to the saturation term in M1, the killing is faster in M3 for larger tumors and slower for smaller tumors. Two416

parameters, the T cell exhaustion rate and the carrying capacity, were unique to M3. We set both to values that lead to417

a small influence of the corresponding terms on the simulation result and obtained comparable kinetics to the other two418

models at those parameter settings.419
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Parameter ρ δ ξ g hT αA hI mS pS αN αe δA pI β ϵ

M1 5 .019 .001 10000000 571 571 1 1 .0025
M2 .045 .178 .00000134 92330 60095000 2073.5 .8318 .231
M3 .045 .019 .0000000001 10000000 2073.5 0.05 1.1 · 1012 10−12

Table 2: Fixed sarameter values used in our simulations. All values except ρ are taken from previous work, and are
kept constant in all simulations. The value of ρ is allowed to vary between simulated patients to account for heterogeneity,
and the distribution of ρ is fitted to real data. The values of ρ shown here were those used to generate Figure 2.

Parameter ρ (log10 mean) ρ (log10 sd) chemotherapy effect immunotherapy effect
M1 2.54 1.01 0.6 12.15
M2 -3.94 1.29 0.6 218.75
M3 -3.49 0.37 0.75 2.25

Table 3: Fitted parameter values used in Figure 5–Figure 7. The chemotherapy effect parameters were fixed and the
other three parameters were then fitted using Approximate Bayesian Computation as described in the methods.

Simulating untreated disease, chemotherapy, and immunotherapy in individual patients420

Using ODE models, we can implement different cancer immunotherapies in two general ways: (1) by changing model421

parameters; (2) by adding or removing cells at a certain time.422

Using this ODE model, we simulated cancer development and disease trajectories in patients. We extensively varied the423

tumor properties (i.e., the tumor growth rate, the growth rate decline, and the decline decay rate) between patients to424

generate interpatient variation in disease courses.425

Each patient is simulated from cancer onset (i.e., malignant transformation of the first cell) for up to ten years. As argued426

previously [27], we start from a diagnosis threshold of a tumor mass of 65 ∗ 108 cells, corresponding to the size at which427

common malignancies are diagnosed [68–70]. The lethal tumor burden is set to 1012 tumor cells (a tumor volume of ap-428

proximately 10.6 dm3). Since we expect both thresholds to vary considerably between patients, depending, for example,429

on the timing of doctor visits or a tumor’s location, we implement them as random variables that change with every sim-430

ulation. Specifically, every threshold is drawn from a log-normal distribution with a 4σ range of one order of magnitude.431

The upper 2σ point (95.45% quantile) is set to 65 ∗ 108 for diagnosis and 1012 for death.432

Disease trajectories of patients with cancer can be steered with therapy. In our model, treatment is implemented by chang-433

ing the model parameters once the tumor exceeds the diagnosis threshold, as we assume this is when treatment starts.434

Given their prominent roles in many oncological treatment plans, we included immune checkpoint inhibitors (ICI) and435

chemotherapy in the models. Both treatments function through their primary modes of action. ICI are implemented by436

increasing the killing rate of cytotoxic T cells (i.e., the parameter ξ) in M1 and M3. In M2, it is implemented by increasing437

the T cell activation rate αA and decreasing the death rate δ; for simplicity, we restrict this such that the fold increase of438

αA equals the fold decrease of δ. These changes are implemented directly after diagnosis and remain active for the rest of439

the simulation unless stated otherwise. The duration and potency of the ICI treatment (as measured by the magnitude of440

the change of the affected parameters) eventually determine patient outcome.441

In patients treated with chemotherapy, the immune system is still present; however, it is not boosted (as is the case during442

ICI treatment). Hence, the T cells are not potent enough to curb tumor growth. We implement the cytotoxic capacity of443

chemotherapy in the models uniformly by reducing the tumor growth rate (parameter ρ) to a smaller number. Again, the444

duration and potency (as measured by the reduction in tumor growth rate) determine patient outcome. By default, the445

treatment duration for ICI and chemotherapy are two years and six months, respectively.446

Simulations of patient cohorts and parameter fitting447

To generate heterogeneous patient populations, we draw each patient’s growth rate parameter ρ from a log-normal distri-448

bution. Depending on the parameter, the simulated patient’s tumor may clear spontaneously; such results are discarded449

(rejection sampling). When the tumor reaches the diagnosis threshold, we apply ICI, chemotherapy, a combination of450

chemotherapy and ICI, or we leave the patient untreated (i.e., a placebo treatment). Therefore, each patient cohort (Fig-451

ure 3) is characterized by two to four parameters: mean and standard deviation of the log tumor growth rate, immunother-452

apy treatment effect size, and chemotherapy treatment effect size. These two to four parameters can be fitted to a given453

dataset.454

Due to the stochastic nature of our model, we used an approximate Bayesian computation / sequential Monte Carlo (ABC-455

SMC) algorithm [71] to fit the parameters. As the test statistic for ABC-SMC, we used the root mean squared differ-456

ence (RMSD) between model-predicted and data-estimated survival curves (i.e., Kaplan-Meier curves) evaluated for each457

month in a 2-year time window upon diagnosis. We set the sample size for generating the model-predicted survival curve458
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to the same number of patients that is contained in the data being fitted. Figure 3 and Supplementary Figure S1 show,459

for each model, the simulation that achieved the lowest RMSD to the target data during each ABC run.460

We applied the ABC-SMC algorithm to all three patient cohorts shown in Figure 4. When examining the posterior distri-461

butions of the parameters, we found that a wide range of chemotherapy effect values achieved comparable RMSD values462

for each model – which is not surprising, given that a higher baseline growth rate combined with a higher chemotherapy463

effect leads to similar predicted tumor growth as a lower baseline growth rate combined with a lower chemotherapy effect.464

We therefore performed a further set of fits to the CA184-024 data where we kept the chemotherapy effect values fixed at465

0.6 for M1 and M2 and at 0.75 for M3, respectively – values that were chosen to obtain comparable and realistic impacts466

of chemotherapy on the 2-year OS curves (Figure 5A), and were plausible given the posterior distributions. We then467

again fitted the remaining three parameters to the CA184-024 data using ABC-SMC. By estimating the mode of the joint468

posterior distribution using kernel density smoothing, we obtained the parameter values shown in Table 3.469

Simulating late-stage immunotherapy trials470

Late-stage (i.e., phase III) clinical trials traditionally contain two arms: a control arm and a treatment arm. The control arm471

can be a placebo (i.e., untreated) or a standard of care therapy. To construct phase III in silico immunotherapy trials, we472

extended the simulations with treatment cohorts (mono-chemotherapy, mono-immunotherapy, chemoimmunotherapy, or473

induction chemotherapy followed by immunotherapy). These cohorts facilitate the comparison between various treatment474

regimens. The treatment cohort uses the same baseline distribution of tumor growth parameters as the control cohort.475

Upon reaching the diagnosis threshold, up to two different treatments are applied in each arm; patients can be treated with476

chemotherapy, ICI, combination therapy, or left untreated (as described above). Unless otherwise specified, the baseline477

distribution of tumor growth parameters was derived from the most mature, digitized data from the CA184-024 trial, as478

shown below [35].479

The primary endpoint of the trials is the 2-year OS. Given the absence of accrual times in in silico trials, the trial duration480

equals two years, providing each virtual patient with 24 months of follow-up at the time of analysis. If the OS endpoint481

is not reached for a patient (i.e., the patient’s tumor burden does not reach the lethal volume within the time frame of the482

simulated trial), the patient is considered censored for the endpoint and regarded as such in subsequent analyses.483

Power and interim analysis simulations484

To illustrate how the analysismethod can affect the outcome of immunotherapy trials, we use several simulation approaches485

to calculate the power of trials. Power simulations were performed as follows: a varying number of clinical trials were486

simulated per data point. The survival data from each trial was analyzed with a log-rank test (dependent on the proportional487

hazard assumption) or proportions test (Pearson’s chi-squared test; independent of the proportional hazard assumption),488

and we counted the number of positive trials (defined as p < 0.05). The percentage of positive trials indicates the power489

of the trial. A harmful trial is defined as a positive trial with an effect size that favours untreated patients.490

Data digitization & reconstruction491

For some survival curves, the raw data was not available. Therefore, we extracted data points from the Kaplan-Meier492

curves with WebPlotDigitizer 4.6 (https://apps.automeris.io/wpd/), and individual patient data was reconstructed493

with the IPDfromKM package in R.494

Analyses495

Analyses and visualizations were performed in R. The complete list of R packages used throughout this manuscript is496

provided in Supplementary Table S1. The R code used to perform all analyses is available at https://github.com/497

jtextor/insilico-trials.498
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Data availability499

All simulated data used to generate the figures is available at this paper’s GitHub repository at https://github.com/500

jtextor/insilico-trials. The digitized survival data from the CA184-024 and CheckMate 066 trials is also available501

at the same repository.502

Code availability503

C++ code that implements models M1, M2 and M3, and an R package that wraps the C++ code using Rcpp is available at504

this paper’s GitHub repository at https://github.com/jtextor/insilico-trials/models/TumorImmuneModels/.505

The R code used to perform all analyses and generate all plots is also available at the same repository. An interactive, web-506

based implementation of ourmodels, written in Javascript andHTML, is available at https://computational-immunology.507

org/models/immunotherapy-trials/.508
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Supplementary Figure S1: Fits of models M2 and M3 to three survival datasets from clinical trials (compare to Figure 3).
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Supplementary Figure S2: In silico chemotherapy trial that approximately fulfills the proportional hazards assumption.
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Supplementary Figure S3: Predicted immunotherapy trial survival curves for model M2 based on its fit to the CA184-024
trial data.
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Supplementary Figure S4: Predicted immunotherapy trial survival curves for model M3 based on its fit to the CA184-024
trial data.
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Supplementary Figure S5: Power analyses for chemotherapy vs. placebo and chemoimmunotherapy vs. immunotherapy
trials using all three models.
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R package Reference Version Source
bshazard [72] 1.1 CRAN
dplyr [73] 1.0.10 CRAN
ggplot2 [74] 3.3.6 CRAN
ggsankey [75] 0.0.99999 github.com/davidsjoberg/ggsankey
grid [76] 4.2.0 part of R 4.2.0
IPDfromKM [77] 0.1.10 CRAN
ks [78] 1.13.5 CRAN
ldbounds [79] 2.0.0 CRAN
Rccp [80] 1.0.9 CRAN
survival [81] 3.3-1 CRAN
survminer [82] 0.4.9 CRAN

Supplementary Table S1: R packages used in this manuscript with references and versions.
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