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Despite extensive protective measures, SARS-CoV-2 widely circu-
lates within healthcare facilities, posing a significant risk to both
patients and healthcare workers. Several control strategies have
been proposed; however, the global efficacy of local measures imple-
mented at the ward level may depend on hospital-level organizational
factors. We aimed at better understanding the role of between-ward
interactions on nosocomial outbreaks and their control in a multi-
ward psychiatric hospital in Western France. We built a stochastic
compartmental transmission model of SARS-CoV-2 in the 24-wards
hospital, accounting for the various infection states among patients
and staff, and between-ward connections resulting from staff shar-
ing. We first evaluated the potential of hospital-wide diffusion of local
outbreaks, depending on the ward they started in. We then assessed
control strategies, including a screening area upon patient admis-
sion, an isolation ward for COVID-19 positive patients and changes
in staff schedules to limit between-ward mixing. Much larger and
more frequent outbreaks occurred when the index case originated in
one of the most connected wards with up to four times more trans-
missions when compared to the more isolated ones. The number
of wards where infection spreads was brought down by up to 53 %
after reducing staff sharing. Finally, we found that setting up an isola-
tion ward reduced the number of transmissions by up to 70 %, while
adding a screening area before admission seemed ineffective.
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1. Introduction1

The COVID-19 pandemic, caused by severe acute respiratory2

syndrome coronavirus 2 (SARS-CoV-2), has placed an unprece-3

dented burden on healthcare services worldwide (1),(2),(3).4

The crisis that followed incited most countries to go into partial5

or full lockdowns in an effort to curb the spread of the virus.6

Hospitals and Long Term Care Facilities (LTCFs) have been7

hit hard, with the former being on the front line to deal with8

the epidemic and the latter having to deal with repercussions9

on often vulnerable patients while not always being sufficiently10

prepared (4), (5), (6). Despite most countries doing their best11

to ramp up vaccination efforts in these healthcare institutions12

and among the healthcare worker (HCW) population, the13

spread of variants of concern which could evade vaccination is14

an ongoing issue (7), (8). In this context, within-hospital trans-15

mission, henceforth referred to as nosocomial transmission,16

can drastically impact day-to-day operations while putting17

both HCWs and vulnerable patients at risk. There has been18

a staggering number of SARS-CoV-2 outbreaks in LTCFs 19

and hospitals with often devastating consequences for elderly 20

patients and especially those with comorbidities (9). On 31 21

March 2021, LTCF residents in France and Belgium accounted 22

for 42 % and 57 % of total COVID-19 related deaths respec- 23

tively according to surveillance data from the European Centre 24

for Disease Prevention and Control. As of 31 August 2020, 25

residents of LTCFs accounted for 40 % of US COVID-19 re- 26

lated fatalities (10). Patients in LTCFs require constant care 27

putting them in close and frequent contact with HCWs who 28

might unknowingly act as vectors of transmission. On the 29

flip side, Taiwan’s impressive response to COVID-19 includes 30

an efficient and crucial role played by hospitals in mitigating 31

the spread of the infection (11). Similarly, in the US where a 32

massive vaccination campaign significantly reduced the death 33

toll in most states, the implementation of rigorous control 34

measures has also proven effective in a large medical center 35

(12). Hence, better comprehension of transmission pathways 36

and prevention strategies can greatly reduce the extent of 37

nosocomial COVID-19. 38
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(a) Intra-ward model for patients (b) Intra-ward model for healthcare workers

(c) Multi-ward network (d) Contact matrix for observed sharing of HCWs

Fig. 1. Structure of stochastic multi-ward model. The intra-ward compartmental models for patients and HCWs are represented on the top and middle figure respectively. Red
compartments correspond to contagious states while green ones correspond to non-contagious states. Grey compartments represent an intensive care unit (ICU), isolation
ward (IsoW) for patients and sick leave (SL) for HCWs. Refer to the material and methods section for a detailed description of each model state. On the bottom figure, the
multi-ward model includes all connections resulting from the sharing of HCWs. Wards located in the same building are colored similarly.

Mathematical modeling of the aforementioned phenom-39

ena serves as a powerful tool to evaluate the relevance of40

infection control strategies. Despite the work of many stud-41

ies on the epidemic risk at the national or regional levels42

(13),(14),(15),(16),(17), (18), (19), studies focusing on model-43

ing SARS-CoV-2 transmission in the healthcare setting are44

still limited (20), (21), (22), (23) (24), (25), (26), (27), (28),45

(29). Most of the latter focus on testing strategies as con-46

trol measures, and more importantly, none account for the47

organizational structure of the healthcare facility under study.48

Better understanding of nosocomial COVID-19 transmission49

and other possible infection control strategies should there-50

fore be thoroughly investigated with the aim to alleviate the51

burden on our healthcare institutions.52

With this goal in mind, we propose a new SARS-CoV-253

hospital transmission model that accounts for multiple inter-54

connected wards. After feeding this model with data from the55

main hospital site of a French psychiatric hospital, henceforth56

simply referred to as the hospital, we simulate different scenar-57

ios to assess the effectiveness of control measures on the spread58

of the epidemic within the hospital, notably underlining the59

importance of the ward connectivity.60

2. Results 61

The model describes the healthcare community as a meta- 62

population divided into W = 24 wards located in 8 different 63

buildings. HCWs are composed of doctors, nurses, medical 64

interns, caregivers, maintenance staff and administrative staff. 65

Each ward holds patients and HCWs distributed into several 66

epidemiological compartments representing the natural history 67

of SARS-CoV-2 infection in a discrete manner (Fig. 1a, Fig. 68

1b). HCWs may be shared between different wards; staff shar- 69

ing data allows to reconstruct a network of wards connected 70

by HCWs’ care activities (Fig. 1c). In simulation results that 71

follow, patients who were symptomatic on admission and those 72

who became symptomatic during their hospital stay, systemati- 73

cally underwent SARS-CoV-2 RT-PCR testing (sensitivity and 74

specificity as indicated in Table S1 of SI) and were transferred 75

to an isolation ward upon a positive test. Symptomatic HCWs 76

were also underwent RT-PCR testing and took sick leave if 77

their test results were positive. The model was parameterised 78

(see Table S1 of SI) based on data collected in the hospital 79

during the study period and on an outbreak that occurred in 80

ward A2 (Fig. 2). 81
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Fig. 2. Epidemic curve for ward A2

A. Ward of origin of index case determines the global risk of82

outbreak at the hospital level. The connectivity and topology83

of the ward network may impact the risk and size of an out-84

break at the hospital level. Wards were here characterized85

according to their size and connections to other wards. To bet-86

ter understand and quantify how importations in the different87

wards can lead to global dissemination risk, we simulated and88

analyzed the resulting epidemic size following the introduction89

of a non-contagious incubating patient in one ward at a time.90

40 days after the introduction, the median number of nosoco-91

mial acquisitions in the entire hospital ranged from two, for an92

index case introduced in the least connected wards, to sixteen,93

for an introduction in the most connected one (Fig. 3a). As94

expected, the number of secondary wards affected was higher95

when the index ward was more connected (higher degree) (Fig.96

3b). In this particular case, three additional interconnections97

led to one more infected ward on average. Starting from the98

introduction ward, other wards became infected with proba-99

bilities related to their proximity to this initial ward over the100

network, as illustrated in Fig. 3c-3e.101

B. Reorganizing HCW sharing can impact the epidemic risk.102

We then explored different work organization scenarios at the103

hospital level, i.e. different networks, to assess their impact104

on the epidemic risk. We considered as a baseline scenario105

(Fig. 1c, 1d) the observed HCW staffing provided by the106

hospital during the period under investigation. We investigated107

two hypothetical scenarios: one where between-ward staff108

sharing was limited by 52.9 % and one where staff sharing109

was exacerbated by 57.6 %, serving as best-case scenario and110

worst-case scenario respectively. Limited sharing was modeled111

by re-assigning HCWs working in multiple wards to fewer112

wards isolating wards as much as possible; exacerbated sharing113

was modeled by re-assigning HCWs between wards located in114

the same building. Both those scenarios implied a different115

sharing structure of HCWs albeit keeping the same working116

hours by profession in all wards as in the baseline scenario.117

Fig. 4a shows the impact of these sharing structures on the118

propagation of SARS-CoV-2. Particularly useful in cases of119

low community prevalences, limited staff sharing resulted in120

up to a 53 % decrease in mean number of wards infected.121

Oppositely, increasing staff sharing increased up to 44 % the 122

mean number of affected wards. We then assessed the epidemic 123

potential of each ward as point of origin of infection in the 124

three staff organization scenarios. We computed the number 125

of wards where infection spreads and summarized the results 126

based on the degree of the index ward (Fig. 4b). The limited 127

sharing scenario limited the degree of any ward to at most 4, 128

leading to the lowest probability of spread (see Fig. S4, S5 of 129

SI) and outbreaks that never exceed 5 secondary wards, which 130

is not surprising given that most wards were isolated following 131

the reduction in staff sharing (9 out of 24 wards). On the 132

other hand, oversharing of staff frequently led to widespread 133

contamination as illustrated by spates of red in the upper 134

y-values of Fig. 4b. 135

C. An isolation ward can help reduce outbreak size. We eval- 136

uated the efficacy of implementing a COVID-19 isolation ward 137

on preventing the dissemination of SARS-CoV-2 within the 138

hospital. A COVID-19 isolation ward serves as a separate 139

designated space to host detected SARS-CoV-2 positive pa- 140

tients. Symptomatic patients are systematically tested and 141

transferred in case of a positive test. We ran 500 simulations 142

over a 40-day period. Several levels of importation risk were 143

evaluated, assuming different levels of community prevalence 144

(from 0.1% up to 3%, corresponding to a situation close to the 145

epidemic peak during the first pandemic wave). Fig. 5a shows 146

that the presence of a COVID-19 isolation ward consistently 147

led to a lower median number of nosocomial transmissions 148

compared to the reference scenario, absence of a COVID-19 149

isolation ward. Isolating infected patients substantially brings 150

down the number of transmissions, ranging from a 59 % de- 151

crease up to 70 % decrease on average depending on community 152

prevalence. The maximum outbreak potential is also much 153

worse in non-isolation scenarios especially in cases of high 154

community prevalence. Setting up a COVID-19 isolation ward 155

therefore strongly contributes to limiting the dissemination 156

risk in the hospital. 157

D. Screening areas have limited impact on virus transmis- 158

sion. A screening area allows for temporary isolation of newly 159

admitted patients before clinical examination, with RT-PCR 160

tests administered to those presenting symptoms, thereby 161

limiting the admission of positive patients. We assessed the 162

impact of such screening areas and compared them with the 163

reference scenario where symptomatic patients on admission 164

were tested but no screening area was in place. Three types of 165

screening areas were investigated: a global common screening 166

area for the entire hospital, with dedicated staff; a local one for 167

each ward where admitted patients were isolated from other 168

patients from their admission ward; and a local one with isola- 169

tion from both patients and HCWs of the admission ward. In 170

all these scenarios, a COVID-19 isolation ward was set up and 171

patients who tested positive were assumed to be systematically 172

transferred to the isolation ward within 24 hours. Fig. 5b 173

shows that, for a given community prevalence, the predicted 174

median numbers of nosocomial transmissions after 40 days are 175

quite similar. Insofar as all symptomatic patients were tested 176

and systematically transferred to the isolation ward within 24 177

hours if they tested positive, screening areas, irrespective of 178

the level of isolation implemented within, showed no impact 179

on the epidemic risk. 180
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DRAFT(a) Number of transmissions over a period of 40 days (b) Mean number of wards affected depending on degree of index ward

(c) Index ward: A2 (d) Index ward: F2 (e) Index ward: B3

Fig. 3. How the index ward determines the global risk at the hospital level. (a) Global number of transmissions in the hospital after 40 days following the introduction of a
non-contagious incubating patient in each ward is assessed. The figure shows violin plots based on 500 simulations. Red dots represent the median number of transmissions.
(b) Mean number of wards affected by the virus following the introduction of a single case in an index ward, depending on the degree of index ward. (c)-(e) Illustrations of virus
spread following introduction in three distinct wards (A2(c), F2(d) and B3(e)).
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(a) Comparing the epidemic spread between the three staff organization levels

(b) Number of wards where infection spreads as a function of the degree of the index
ward

Fig. 4. How staff sharing impacts epidemic spread. The figure on the left corresponds to the percentage difference between staff sharing with the observed sharing structure
acting as baseline scenario. Y-axis values represent community prevalence values. Results are based on 500 simulations ran over 40 days for each scenario. The figure on the
right resumes the results obtained with each ward as index ward and no contamination from the community. Wards with similar degrees and same staff organization level are
grouped together. Bold colored shapes represent mean values.

(a) Impact of Isolation ward and screening area on epidemic risk. (b) Impact of screening areas on the number of transmissions.

Fig. 5. How an isolation ward and screening areas impact epidemic spread. (a) Comparing reference scenarios and a scenario with an isolation ward where positive cases
are systematically transferred after 24h on the number of transmissions (y-axis) for different prevalence levels on admission (x-axis) (i.e prevalence in the community) (b)
Comparing various screening areas where symptomatic patients are tested, each with a different level of isolation, with a baseline scenario with no screening area on the
number of transmissions (y-axis) for different prevalence levels on admission (x-axis). In all scenarios, an isolation ward is implemented.

3. Discussion181

In view of the persisting nature of the pandemic and strain on182

healthcare institutions, all measures likely to limit nosocomial183

infections should be given serious consideration. In particular,184

hospital-level work organization plays a significant role in driv-185

ing the spread of infection and should not be overlooked when186

designing surveillance and control strategies. The literature on187

multi-ward models of healthcare-associated infection spread188

(30) has been on the rise recently, as the necessary contact and189

transfer data become increasingly available. However, to date,190

very few studies (23) have taken into account the multi-ward191

structure of hospitals and LTCFs in their methodology to192

assess the impact of nosocomial COVID-19 infections. Our193

study aims at filling this gap and provides an insight in the194

role of HCW staffing as a major drive of SARS-CoV-2 spread.195

In this work, we assessed several infection control strategies196

aimed at curbing the spread of nosocomial COVID-19 trans-197

missions. Our results indicate that the extent of an outbreak198

at the hospital level largely depends on the location of the 199

index case of infection. We also showed that the number of 200

connections through HCW sharing was a significant risk fac- 201

tor for widespread contamination. Within 40 days following 202

the introduction of an index case, one additional ward was 203

infected on average following three extra connections. We 204

demonstrated that limiting multi-assignment of HCWs could 205

significantly reduce the risk of epidemic spread throughout 206

the hospital. Finally, while the isolation of infected patients 207

proved to be very effective in curbing the spread of the virus, 208

this was not the case for screening areas. 209

We found here that HCW rescheduling was an efficient mea- 210

sure to limit nosocomial transmissions and prevent widespread 211

contamination. However, the practical implementation of such 212

a measure, especially if it implies major changes in staff plan- 213

ning, needs to be evaluated. Indeed, while disrupting the 214

routine of already burdened HCWs could prove ill-advised, 215

limiting their multi-assignments could substantially reduce 216
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the risk of large scale infection thus contributing to a safer217

work environment for them as well as patients. A previous218

study done in the context of healthcare-acquired infections in219

general came to a similar conclusion (31).220

While isolation of identified cases in a dedicated COVID-19221

ward was found to be effective, implementation of screening222

areas focused on testing of symptomatic patients only were223

found to be ineffective as long as newly symptomatic patients224

were tested and isolated within 24 hours of admission. Previous225

studies also point out the effectiveness of an isolation ward226

and limited impact of measures analogous to a screening area227

(23), (32).228

In order to keep the model as generic and as simple as229

possible in a context of limited data, we made several assump-230

tions and limitations that should be highlighted. First, we231

assumed homogeneous mixing within the HCW and patient232

populations. Regarding HCWs, the risks of exposure are most233

probably profession-dependent. Similarly, small clusters of234

contacts may exist within the patient population. The homoge-235

neous mixing assumption may have led us to overestimate the236

risk of epidemic spread. Second, we estimated transmission237

rates using data from an outbreak observed in a specific ward238

and those estimates were then used to characterize all other239

wards. In doing so, we assumed the same contact patterns240

in all wards. Third, given that visits were strictly prohibited241

during the first pandemic wave, we did not account for contam-242

ination of patients and HCWs by visitors. In further analyses,243

this assumption should be relaxed to avoid underestimating244

the epidemic risk. Also, it would be of interest to account245

for vaccination in both patient and HCW populations in the246

model. Vaccine roll-out in LTCFs and hospitals surely plays247

an important role in further mitigating the spread of infection.248

Moreover, testing strategies based on network structure could249

be designed so as to make better use of testing resources in the250

hospital setting. Following the end of the first lockdown on 11251

May 2020, the hospital has been implementing contact tracing252

to break chains of transmission. Resulting contact data could253

be used in the model as an infection control measure to limit254

widespread contamination in case of outbreak. Lastly, a more255

in-depth and dynamic analysis of the network and its drivers256

could improve the predictive capacities of our model. Tools257

such as exponential random graph models (33) or dynamic net-258

work analysis taking into account the temporality of contact259

data could serve such objectives.260

We proposed a multi-ward stochastic model at the hospital261

level to simulate virus transmission and to assess infection262

control measures with the aim of mitigating the nosocomial263

spread of SARS-CoV-2. The model serves as a very helpful264

tool in anticipating the impact of measures to be implemented265

and therefore contributes in informing decision-makers. While266

we fed the model with data from a particular healthcare insti-267

tution, the model remains generic and could be easily imple-268

mented with data from other hospitals and LTCFs as input,269

given that specific data on staff scheduling are available. For270

instance, other healthcare institutions with different network271

structures might see better or worse outcomes following reorga-272

nization of HCW staffing as compared to the results presented273

in this paper.274

Materials and Methods275

276

Epidemiological model description. We build a stochastic compart- 277

mental model of SARS-CoV-2 transmission within a multi-ward 278

hospital population under the assumption of homogeneous mixing 279

of populations. Individuals are distributed across compartments 280

according to their infectious status and ward localization. Patients 281

can be: susceptible (Sp), non-contagious incubating (Ep), conta- 282

gious incubating before asymptomatic condition (EAp), contagious 283

incubating before symptomatic condition (ESp), contagious with 284

asymptomatic condition (IAp), contagious with mild symptoms 285

(I1p), contagious with severe symptoms (I2p) and recovered (Rp). 286

When patients develop severe symptoms, they can be transferred in 287

an intensive care unit (ICU). A ward designated to isolate detected 288

sick patients (IsoW) is also implemented. Finally, to model screen- 289

ing areas aiming at clinical examination and/or virological testing 290

before admission in a ward, 7 other compartments (SASp, SAEp, 291

SAEAp, SAESp, SAIAp, SAI1p, SAI2p, SARp) were incorporated 292

to the model. 293

Similarly, HCWs can be: susceptible (Sh), non-contagious incu- 294

bating (Eh), contagious incubating before asymptomatic condition 295

(EAh), contagious incubating before symptomatic condition (ESh), 296

contagious with asymptomatic condition (IAh), contagious with 297

mild symptoms (I1h), contagious with severe symptoms (I2h) and 298

recovered (Rh). HCWs with mild symptoms have a probability pSL 299

to take sick leave (SL) while HCWs with severe symptoms leave the 300

model and recover with probability 1 - pD. In case of death, they 301

are removed from the model. 302

Individuals move from one compartment to another following 303

stochastic transitions computed on the basis of a Gillespie algorithm 304

(34). Susceptible individuals are infected through at risk contacts 305

with contagious individuals (patients or HCWs) from the same ward 306

or connected wards via shared HCWs based on staffing schedules. 307

Each ward was independently modeled and wards were connected 308

through a meta-population system. We assumed that wards were 309

only connected by HCWs through multi-assignments or cover. Pa- 310

tient transfers were excluded in the present analysis. Patients are 311

therefore assumed to only be in contact with other patients and 312

HCWs working in the ward they belong to. The data was collected 313

during the first wave of the pandemic which occurred in March and 314

health practitioners at the hospital confirmed that patient transfers 315

and visits were stopped during that time. 316

Model parameters. 317

Statistical inference. The model was parametrized, when available, 318

directly from data compiled from the hospital database. Parameter 319

values for which no information was available were fixed from the 320

literature. We refer to Table 1 of SI for an exhaustive list of param- 321

eter values and their sources. Transmission rates were estimated to 322

reproduce observed data of suspected or confirmed COVID-19 cases 323

collected during an outbreak that occurred in ward A2 (Fig. 2). The 324

outbreak occurred during the first wave of the pandemic, affecting 325

6 patients and 10 HCWs. At that time, testing policy only targeted 326

symptomatic patients, who were systematically tested, while testing 327

of HCW was much more complicated for administrative reasons 328

and was not generalized. 329

A single ward model was fitted to the outbreak data of ward A2 330

using the pomp package (35) and iterative filtering method (36). 331

The observation model was the cumulative symptomatic infections in 332

the patient and HCW populations, assuming a Poisson measurement 333

model. Parameters were estimated by maximum likelihood, using 334

particle filtering to compute a robust estimate of the likelihood 335

and iterated filtering to maximize it over unknown parameters. 336

Estimations computed from synthetic data generated by the model 337

defined with four transmission rates did not result in the recovery of 338

known parameter values. Those parameters were not identifiable in 339

the model. Consequently, a single transmission rate β was estimated 340

with proportionality constraints on transmission rates βHP, βPP, 341

βPH and βHH. Multiple combinations of parameters were compared 342

and the set that maximized the likelihood was retained. Besides 343

the transmission rate β, we also estimated the number of initial 344

patients (Ep0) and HCWs (Eh0) in non-contagious incubation. 345

6
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The date of first infection (tinit) was not estimated but fixed to346

values ranging from 1 to 20 days prior to the first detected case.347

For each aforementioned value of tinit, we estimated parameters348

β, Ep0 and Eh0. The parameter estimates that maximized the349

likelihood were chosen as best estimates. The model was first350

tested on simulated data, generated to resemble the outbreak data,351

to evaluate the capacity to recover known parameter values. We352

refer to SI for a detailed description of the simulation study and353

estimation procedure.354

ACKNOWLEDGMENTS. The work was supported directly by355

internal resources from the French National Institute for Health and356

Medical Research, the Institut Pasteur, the Conservatoire National357

des Arts et Métiers, and the University of Versailles-Saint-Quentin-358

en-Yvelines/University of Paris-Saclay. This study received funding359

through the MODCOV project from the Fondation de France grant360

106059 as part of the alliance framework “Tous unis contre le virus”,361

the Université Paris-Saclay (AAP Covid-19 2020) and the French362

government through its National Research Agency project SPHINX-363

17-CE36-0008-01. The authors would like to acknowledge the help364

of the EMEA-MESuRS working group on the nosocomial modeling365

of SARS-CoV-2 (Audrey Duval, Kévin Jean, Sofía Jijón, Ajmal366

Oodally, Lulla Opatowski, George Shirreff, David RM Smith, Laura367

Temime).368

1. Miller IF, Becker AD, Grenfell BT, Metcalf CJE (2020) Disease and healthcare burden of covid-369

19 in the united states. Nature Medicine 26(8):1212–1217.370

2. Felice C, Di Tanna GL, Zanus G, Grossi U (2020) Impact of covid-19 outbreak on healthcare371

workers in italy: results from a national e-survey. Journal of community health 45(4):675–683.372

3. Nguyen LH, et al. (2020) Risk of covid-19 among front-line health-care workers and the gen-373

eral community: a prospective cohort study. The Lancet Public Health 5(9):e475–e483.374

4. Burton JK, et al. (2020) Evolution and effects of covid-19 outbreaks in care homes: a popu-375

lation analysis in 189 care homes in one geographical region of the uk. The Lancet Healthy376

Longevity 1(1):e21–e31.377

5. Shallcross L, et al. (2021) Factors associated with sars-cov-2 infection and outbreaks in378

long-term care facilities in england: a national cross-sectional survey. The Lancet Healthy379

Longevity.380

6. Hashan MR, et al. (2021) Epidemiology and clinical features of covid-19 outbreaks in aged381

care facilities: A systematic review and meta-analysis. EClinicalMedicine p. 100771.382

7. Sheikh A, McMenamin J, Taylor B, Robertson C (2021) Sars-cov-2 delta voc in scotland:383

demographics, risk of hospital admission, and vaccine effectiveness. The Lancet.384

8. Bernal JL, et al. (2021) Effectiveness of covid-19 vaccines against the b. 1.617. 2 variant.385

medRxiv.386

9. Abbas M, et al. (2021) Nosocomial transmission and outbreaks of coronavirus disease 2019:387

the need to protect both patients and healthcare workers. Antimicrobial Resistance & Infec-388

tion Control 10(1):1–13.389

10. Chen MK, Chevalier JA, Long EF (2021) Nursing home staff networks and covid-19. Pro-390

ceedings of the National Academy of Sciences 118(1).391

11. Chang YT, et al. (2020) Infection control measures of a taiwanese hospital to confront the392

covid-19 pandemic. The Kaohsiung Journal of Medical Sciences 36(5):296–304.393

12. Rhee C, et al. (2020) Incidence of nosocomial covid-19 in patients hospitalized at a large us394

academic medical center. JAMA network open 3(9):e2020498–e2020498.395

13. Salje H, et al. (2020) Estimating the burden of sars-cov-2 in france. Science.396

14. Hoertel N, et al. (2020) A stochastic agent-based model of the sars-cov-2 epidemic in france.397

Nature medicine 26(9):1417–1421.398

15. Aguiar M, Ortuondo EM, Van-Dierdonck JB, Mar J, Stollenwerk N (2020) Modelling covid399

19 in the basque country from introduction to control measure response. Scientific reports400

10(1):1–16.401

16. Kyrychko YN, Blyuss KB, Brovchenko I (2020) Mathematical modelling of the dynamics and402

containment of covid-19 in ukraine. Scientific reports 10(1):1–11.403

17. Covid I (2021) Modeling covid-19 scenarios for the united states. Nature medicine 27(1):94.404

18. Oliveira JF, et al. (2021) Mathematical modeling of covid-19 in 14.8 million individuals in bahia,405

brazil. Nature communications 12(1):1–13.406

19. Giordano G, et al. (2020) Modelling the covid-19 epidemic and implementation of population-407

wide interventions in italy. Nature Medicine pp. 1–6.408

20. Evans S, Agnew E, Vynnycky E, Robotham JV (2020) The impact of testing and infection409

prevention and control strategies on within-hospital transmission dynamics of covid-19 in410

english hospitals. medRxiv.411

21. Martos DM, Parcell B, Eftimie R (2020) Modelling the transmission of infectious diseases412

inside hospital bays: implications for covid-19. medRxiv.413

22. Zhang Y, Cheng SR (2020) Periodic covid-19 testing in emergency department staff.414

medRxiv.415

23. Baek YJ, et al. (2020) A mathematical model of covid-19 transmission in a tertiary hospital416

and assessment of the effects of different intervention strategies. Plos one 15(10):e0241169.417

24. Miller JC, Qiu X, MacFadden D, Hanage WP (2020) Evaluating the contributions of strategies418

to prevent sars-cov-2 transmission in the healthcare setting: a modelling study. medRxiv.419

25. Howick S, et al. (2020) Evaluating intervention strategies in controlling covid-19 spread in420

care homes: An agent-based model. Infection Control & Hospital Epidemiology pp. 1–60.421

26. Huang Q, et al. (2020) Sars-cov-2 transmission and control in a hospital setting: an individual- 422

based modelling study. medRxiv. 423

27. Vilches TN, et al. (2020) Multifaceted strategies for the control of covid-19 outbreaks in long- 424

term care facilities in ontario, canada. medRxiv. 425

28. Holmdahl I, Kahn R, Hay J, Buckee CO, Mina M (2020) Frequent testing and immunity-based 426

staffing will help mitigate outbreaks in nursing home settings. medRxiv. 427

29. Smith DR, et al. (2020) Optimizing covid-19 surveillance in long-term care facilities: a mod- 428

elling study. BMC medicine 18(1):1–16. 429

30. Assab R, et al. (2017) Mathematical models of infection transmission in healthcare settings: 430

recent advances from the use of network structured data. Current Opinion in Infectious Dis- 431

eases 30(4):410–418. 432

31. Valdano E, Poletto C, Boëlle PY, Colizza V (2021) Reorganization of nurse scheduling re- 433

duces the risk of healthcare associated infections. Scientific reports 11(1):1–12. 434

32. Zhang GQ, et al. (2020) The role of isolation rooms, facemasks and intensified hand hygiene 435

in the prevention of nosocomial covid-19 transmission in a pulmonary clinical setting. Infec- 436

tious Diseases of Poverty 9(1):1–6. 437

33. Ghafouri S, Khasteh SH (2020) A survey on exponential random graph models: an application 438

perspective. PeerJ Computer Science 6:e269. 439

34. Gillespie DT (1976) A general method for numerically simulating the stochastic time evolution 440

of coupled chemical reactions. Journal of computational physics 22(4):403–434. 441

35. King AA, Nguyen D, Ionides EL (2016) Statistical inference for partially observed markov 442

processes via the R package pomp. Journal of Statistical Software 69(12):1–43. 443

36. Ionides EL, Bhadra A, Atchadé Y, King A, , et al. (2011) Iterated filtering. The Annals of 444

Statistics 39(3):1776–1802. 445

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 17, 2021. ; https://doi.org/10.1101/2021.09.09.21262609doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.09.21262609
http://creativecommons.org/licenses/by-nc/4.0/


Supplementary Information1

2

The deterministic version of the transmission model can be illustrated using differential equations which describe the dynamics3

of each compartment (see Table S3 for a description of each compartment) in each time step. Equations in the absence of a4

screening area are given below.5

Equations for patients

dSp
dt

= −(βHP × PHCW,cw
inf + βPP × PPat

inf )× Sp − µ× Sp
dEp
dt

= (βHP × PHCW,cwinf + βPP × PPatinf )× Sp − γ1 × Ep

− µ× Ep
dEAp
dt

= (1− p)× γ1× Ep − γ2EAp − µ× EAp
dESp
dt

= p× γ1 × Ep − γ2 × ESp − µ× ESp
dIAp
dt

= γ2 × EAp − γ3IAp − µ× IAp
dI1p
dt

= (1− p2p)× γ2 × ESp − γ3 × I1p − γPreIsoW × I1p

− µ× I1p
dI2p
dt

= p2p× γ2 × ESp − (1− pT )× (γPreIsoW + γ4)× I2p

− pT × γT × I2p − µ× I2p
dRp
dt

= γ3 × IAp + γ3 × I1p + γIsoW × IsoW

+ (1− pDrea)× γ5 × ICU − µ×Rp
dIsoW

dt
= γpreIsoW × I1p − γIsoW × IsoW

dICU

dt
= pT × γT × I2p − γ5 × ICU

Equations for HCWs

dSh
dt

= −(βPH × PPat,cw
inf + βHH × PHCW,cw

inf )× Sh
dEh
dt

= (βPH × PPat,cw
inf + βHH × PHCW,cw

inf )× Sh

− γ1 × Eh
dEAh
dt

= (1− p)× γ1× Eh − γ2EAh

dESh
dt

= p× γ1 × Eh − γ2 × ESh
dIAh
dt

= γ2 × EAh − γ3IAh

dI1h
dt

= (1− p2)× γ2 × ESh − (1− pSL)× γ3 × I1h

− pSL × γBSL × I1h
dI2h
dt

= p2× γ2 × ESh − γ4 × I2h
dRh
dt

= γ3 × IAh + γ3 × I1h + (1− pD)× γ4 × I2h

+ γSL × SL
dSL

dt
= pSL × γBSL × I1h − γSL × SL

6

where PHCW,cw
inf (w) denotes the proportion of infected HCWs in contact with patients belonging to a given ward w. We7

denote the total number of wards by W ∈ N. We first compute the proportion of infected HCWs in each ward as follows for8

w = 1, . . . ,W :9

PHCW
inf (w) = Ra × EAh(w) + ESh(w) +Ra × IAh(w) + I1h(w) + I2h(w)

Sh(w) + Eh(w) + EAh(w) + ESh(w) + IAh(w) + I1h(w) + I2h(w) +Rh(w)

where Ra is the relative risk of transmission of individuals in the asymptomatic pathway relative to individuals in the10

symptomatic pathway. For simplicity, we omit the ward notation for compartments going forward. The proportion of infected11

HCWs in contact with patients belonging to a given ward w is therefore computed as follows:12

PHCW,cw
inf (w) =

W∑
v=1

Cw,vP
HCW
inf (v)

where C ∈MW×W (R≥0) is a contact matrix computed based on the connections between all W wards which are determined13

by the sharing of HCWs (Fig. S4d). Each entry corresponds to the proportion of total working hours spent by HCWs from the14

row ward in the column ward. For instance, HCWs of ward H2 typically spend 33% of their working time on average in ward15

H1.16

The proportion of infected patients in a given ward w is computed as follows:

PPat
inf (w) = Ra × EAp + ESp +Ra × IAp + I1p + I2p

Sp + Ep + EAp + ESp + IAp + I1p + I2p +Rp

We recall that susceptible HCWs can be infected upon contact with contagious patients and HCWs in all wards they work in.17

The proportion of infected patients with which HCWs from a given ward w are in contact with is therefore computed as follows:18

PPat,cw
inf (w) =

W∑
v=1

Cw,vP
Pat
inf (w)

The differential equations which govern the deterministic version of the model with a screening area are given below.19
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Equations for patients

dSASp
dt

= −
(
βSA

HP × PHCW,cw
inf × NSA

HCW
Nh

+ βSA
PP × PPat,SA

inf

)
× SASp

− 1
TExCli

× SASp

dSAEp
dt

=
(
βSA

HP × PHCW,cw
inf × NSA

HCW
Nh

+ βSA
PP × PPat,SA

inf

)
× SASp

− 1
TExCli

× SAEp

dSp
dt

= −(βHP × PHCW
inf + βPP × PPat

inf )× Sp − µ× Sp
dEp
dt

= (βHP × PHCWinf + βPP × PPatinf )× Sp − γ1 × Ep

− µ× Ep
dEAp
dt

= 1
TExCli

× SAEAp + (1− p)× γ1× Ep − γ2EAp

− µ× EAp
dESp
dt

= 1
TExCli

× SAESp + p× γ1 × Ep − γ2 × ESp

− µ× ESp
dIAp
dt

= 1
TExCli

× SAIAp + γ2 × EAp − γ3IAp − µ× IAp

dI1p
dt

= 1
TExCli

× SAI1p + (1− p2p)× γ2 × ESp−

γ3 × I1p − γPreIsoW × I1p − µ× I1p
dI2p
dt

= 1
TExCli

× SAI2p + p2p× γ2 × ESp − (1− pT )×

γPreIsoW × I2p − pT × γT × I2p − µ× I2p
dRp
dt

= 1
TExCli

× SARp + γ3 × IAp + γ3 × I1p

+ γIsoW × IsoW + (1− pDrea)× γ5 × ICU − µ×Rp
dIsoW

dt
= (1− pT )× γpreIsoW × I2p + γpreIsoW × I1p

− γIsoW × IsoW
dICU

dt
= pT × γT × I2p − γ5 × ICU

Equations for HCWs

dSh
dt

= −

((
1− NSA

HCW
Nh

)
× βPH × PPat,cw

inf

+ NSA
HCW
Nh

×
(

(1− τ)× βPH × PPat,cw
inf

+ τ × βSA
PH × PPat,SA,cw

inf

)
+ βHH × PHCW

inf

)
× Sh

dEh
dt

=

((
1− NSA

HCW
Nh

)
× βPH × PPat,cw

inf

+ NSA
HCW
Nh

×
(

(1− τ)× βPH × PPat,cw
inf

+ τ × βSA
PH × PPat,SA,cw

inf

)
+ βHH × PHCW

inf

)
× Sh

− γ1 × Eh
dEAh
dt

= (1− p)× γ1× Eh − γ2EAh

dESh
dt

= p× γ1 × Eh − γ2 × ESh
dIAh
dt

= γ2 × EAh − γ3IAh

dI1h
dt

= (1− p2)× γ2 × ESh − (1− pSL)× γ3 × I1h

− pSL × γBSL × I1h
dI2h
dt

= p2× γ2 × ESh − γ4 × I2h
dRh
dt

= γ3 × IAh + γ3 × I1h + (1− pD)× γ4 × I2h

+ γSL × SL
dSL

dt
= pSL × γBSL × I1h − γSL × SL

20

where NSA
HCW is the total number of HCWs taking care of patients in the screening area of a given ward and Nh is the total21

number of HCWs working in the ward. PPat,SA
inf (w) is the number of patients infected in the screening area of a given ward w22

and is calculated as follows:23

PPat,SA
inf (w) = Ra × SAEAp + SAESp +Ra × SAIAp + SAI1p + SAI2p

SASp + SAEp + SAEAp + SAESp + SAIAp + SAI1p + SAI2p + SARp

PPat,SA,cw
inf (w) =

∑W

v=1 Cw,vP
Pat,SA
inf (v) is the proportion of infected patients in screening areas where HCWs of a given ward24

w are working in. τ represents the proportion of patients in the screening area of a ward.25

τ =
SASp + SAEp + SAEAp + SAESp + SAIAp + SAI1p + SAI2p + SARp

SASp + SAEp + SAEAp + SAESp + SAIAp + SAI1p + SAI2p + SARp + Sp + Ep + EAp + ESp + IAp + I1p + I2p +Rp

Statistical inference26

Transmission rates. Transmission rates βPP, βHH, βHP and βPH were estimated based on an outbreak that occurred in ward27

A2. The model defined with four transmission rates was not identifiable in simulation settings, resulting in poor recovery28

of known parameter values. Instead, we defined each transmission rate as a certain constant times β and then proceeded29

with the estimation of the single rate β. Multiple combinations were tested and the set that subsequently maximized the30

likelihood was defined as follows. Taking into account HCW working hours which we assumed to be on average 25 % of the31

time, and assuming a similar contact rate in-between and between patients and HCWs, we came up with the following ratios:32

βPP = βPH = β, βHH = 0.25× β and βHP = 0.7× β.33

2 of 14Ajmal Oodally, Pachka Hammami, Astrid Reilhac, Guillaume Guérineau de Lamérie, Lulla Opatowski and Laura Temime

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 17, 2021. ; https://doi.org/10.1101/2021.09.09.21262609doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.09.21262609
http://creativecommons.org/licenses/by-nc/4.0/


Likelihood based inference with pomp. We implemented a within-ward model parametrized and initialized to match patient34

and HCW populations’ structure in ward A2 during that period. The likelihood-based inference framework for the stochastic35

model was provided by iterated filtering methods (1) which were readily implemented in the R package pomp (2). The36

pomp object was constructed by specifying the model observations as cumulative symptomatic infections in the patient and37

HCW populations, the spread of infection based on a Gillespie algorithm using rprocess to define the observation process,38

the measurement model defined as Poisson distributed with parameter equal to the cumulative infections for patients and39

HCWs using rmeasure. Finally, dmeasure which is an evaluator of the measurement model was defined analogously to rmeasure.40

Following each time step, the observation process provides a likelihood of observing the data given the internal state of the41

system. The total likelihood was then computed as the product of likelihood values at each time step. Unknown parameters42

were estimated by maximum likelihood, using particle filtering to compute a robust estimate of the likelihood and iterated43

filtering to maximize it over unknown parameters. Particle filtering uses a set of particles to represent the posterior distribution44

of the stochastic process given noisy observations. Each particle has a likelihood weight assigned to it that represents the45

probability of that particle being sampled from the probability density function. Resampling is performed at each observation46

to produce copies of the few particles with the highest weights. The method was implemented using the pfilter function47

and outputs a stochastic estimate of the likelihood. The particle filter was applied a few times to obtain an estimate of the48

variability, typically ten times with a high number of particles, 106 in our case. The idea behind the iterated particle filtering49

algorithm is to apply a particle filter to the model in which the parameter vector for each particle is subjected to random50

perturbations at each observation. In doing so, the parameter vector is made to follow a random walk. As the iterations51

progress, the intensity of the perturbations is decreased according to a cooling schedule. For instance, we set the cooling52

fraction such that after 50 iterations, the perturbations are reduced to half their original magnitudes. The iterated filtering53

algorithm was implemented in the function mif2 of pomp.54

Preliminary validation of the procedure using synthetic data. The model and statistical inference framework were first validated55

on synthetic data generated from a range of known parameter values which were then estimated. For each set of parameter56

values, we generated 50 independent stochastic datasets using the rmeasure functionality of pomp with each one of them57

consisting of at least one case in both patient and HCW populations over the observation period. Parameters were then58

recovered using the iterated filtering algorithm in function mif2 with the number of particles and number of iterations set at59

values of 1500 and 500 respectively. We estimated parameter β in multiple scenarios with 1 or 2 non-contagious incubating60

patients and HCWs as index cases and different times of introduction of the index cases (day 1, day 5 and day 10). In all61

scenarios, estimates for β were adequately close to the true value on average as shown in Fig. S1.62

Parameter estimation on real outbreak data. Following validation of our estimation framework on synthetic data, we analyzed63

the real outbreak data of ward A2. We estimated the transmission rate β, initial number of non-contagious incubating patients64

Ep0 and initial number of non-contagious incubating HCWs Eh0 by building likelihood profiles for each parameter. In doing so,65

we constructed 95 % confidence intervals for each parameter using the chi-square approximation to the likelihood ratio statistic.66

For instance, for a given parameter, say β, we computed the likelihood using the particle filtering algorithm for a range of67

fix values of β while estimating Ep0 and Eh0 in every step. A 95 % confidence interval was then determined as all values68

above the highest likelihood minus half of the 95 % quantile of the χ2-square distribution with two degrees of freedom. We69

repeated this procedure for times of introduction of the index cases (tinit) ranging from 1 to 20 days before the first observed70

symptomatic patient. The set of parameter values that maximized the likelihood was then retained as estimates. The profile71

likelihoods coupled with 95 % confidence intervals for best set of parameter estimates are shown in Fig. S2. The best fit72

suggested an index case 12 days prior to the detection of the first symptomatic patient. The set of parameter estimates that73

maximized the likelihood were then fed to the transmission model to generate 1000 datasets. We then plotted the mean of74

those simulations to compare with the observed data for patients in Fig. S3b and observed data for HCWs in Fig. S3b.75
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Table S1. Description of model parameters

Symbol Parameter Value
βPP effective transmission rate between patients 0.4 (Estimated)
βHH effective transmission rate between HCWs 0.1 (Estimated)
βHP effective transmission rate between contagious HCWs

and susceptible patients
0.28 (Estimated)

βPH effective transmission rate between contagious pa-
tients and susceptible HCWs

0.4 (Estimated)

Transmission rates βSA
PP effective transmission rate between patients in screen-

ing area
0.4 (Estimated)

βSA
HH effective transmission rates between HCWs in screen-

ing area
0.1 (Estimated)

βSA
HP effective transmission rates between contagious HCWs

and susceptible patients in screening area
0.28 (Estimated)

βSA
PH effective transmission rates between contagious pa-

tients and susceptible HCWs in screening area
0.4 (Estimated)

Ra relative risk of secondary attack rate of people with
asymptomatic infections

0.35 (3)

1/γ1 duration of non-contagious incubation period 5 (4)
1/γ2 duration of contagious incubation period 2 (4)
1/γ3 duration of contagious period when asymptomatic

and non-severe symptoms
7 (4)

1/γ4 duration of contagious period when severe symptoms 8 (Assumption)
1/γ5 duration of stay in intensive care before recovery or

death
10 (Hospital data)

1/γT duration of contagious period before transfer in in-
tensive care when severe symptoms

2 (Hospital data)

Durations (in days) 1/γBSL duration before sick leave when mild symptoms 1 (Hospital data)
1/γSL duration of sick leave 14 (Hospital data)
1/γpreIsoW duration between first symptoms and transfer in a

specific ward designated to isolate symptomatic pa-
tients

1 (Hospital data)

1/γIsoW duration of stay in a specific ward designated to
isolate symptomatic patients

11 (Hospital data)

TExCli duration of stay in screening area for clinical exami-
nation

1/24 (Hospital data)

TTest duration of stay in screening area for RT-PCR testing 1/24 (Hospital data)
p probability of symptoms 0.7 (3)
p2 probability of severity if symptoms for HCW 0.2 (Assumption)
p2p probability of severity if symptoms for patient 0.5 (Assumption)
pDrea probability of death in ICU following severe symp-

toms for patient
0.5 (Assumption)

Probabilities pD probability of death following severe symptoms for
HCWs

0.1 (Assumption)

pT probability of being transferred following severe symp-
toms

0.2 (Assumption)

pSL probability that HCWS take sick leave following
symptoms

0.8 (Hospital data)

PrevCom prevalence in general population 0.1 % - 3 %
SensInf sensitivity of RT-PCR test when testing contagious

individuals
0.8 (5)

Testing SensNInf sensitivity of RT-PCR tests when testing non-
contagious individuals

0.3 (5)

Spec specificity of RT-PCR tests 1 (5)
µ probability of discharge or death 0.00749 - 0.0547 (Hospital data)
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Table S2. Description of each hospital ward including number of HCWs shared between wards.

Ward Number of patients Number of assigned
HCWs

Number of shared HCWs Average stay of patients
(in days)

Degree (number of
connected wards)

A1 20 18 18.3 6
A2 20 16 89 133 6
A3 25 25 27.4 5
A4 20 19 50.8 5
A5 25 21 47 21.9 6
A6 20 18 21.6 5
B1 20 22 82.7 6
B2 23 20 31 40.9 2
E1 25 20 35.9 2
C1 20 16 53.5 2
D1 20 18 38 20.3 2
D2 20 16 19.1 2
C2 19 18 27.8 4
C3 20 18 18.8 4
E2 28 22 56 41.6 7
F1 24 22 64.6 7
F2 24 24 147 7
B3 22 18 18.5 6
B4 19 16 52 30.7 6
C4 19 13 19.8 6
G1 18 17 39 32.7 3
G2 19 17 25.7 1
H1 25 19 38 26.3 2
H2 24 21 24.5 2
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Fig. S1. Mean estimates of β in multiple scenarios. Mean estimates of β in red with 95 % confidence intervals based on 50 simulations in each instance. The number of
patients (Ep0) and HCWs (Eh0) in non-contagious incubation on the first day are fixed at values indicated in the column facet labels. Row facet labels indicate the date of
introduction of the index cases.
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(a) Likelihood profile for β computed using particle filtering at fixed
values of β in steps of 0.01 from 0 to 1 while estimatingEp0 andEh0
via iterated filtering. The point corresponding to the highest likelihood
is taken as estimate and values of β above the dashed line lie in the
95 % confidence interval.

(b) Likelihood profile for Ep0 computed using particle filtering at fixed
values of Ep0 in steps of 0.1 from 0 to 7 while estimating β and Eh0
via iterated filtering. The point corresponding to the highest likelihood
is taken as estimate and values of Ep0 above the dashed line lie in
the 95 % confidence interval.

(c) Likelihood profile for Eh0 computed using particle filtering at fixed
values of Eh0 in steps of 0.1 from 0 to 7 while estimating β and Ep0
via iterated filtering. The point corresponding to the highest likelihood
is taken as estimate and values of Eh0 above the dashed line lie in
the 95 % confidence interval.

Fig. S2. Likelihood profile for parameters β, Ep0 and Eh0 computed on real outbreak data.
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(a) 1000 simulations with 95 % confidence intervals in blue based on set of
parameters that maximized the likelihood and best fit the data. The black
line corresponds to the mean number of symptomatic cumulative cases in the
patient population. Red points correspond to the true cumulative number of
symptomatic patient cases.

(b) 1000 simulations with 95 % confidence intervals in blue based on set of
parameters that maximized the likelihood and best fit the data. The black
line corresponds to the mean number of symptomatic cumulative cases in the
HCW population. Red points correspond to the true cumulative number of
symptomatic HCW cases.

Fig. S3. Simulating patient and HCW data using best set of parameter estimates. Cumulative incidence over time (a) in patients and (b) in HCWs
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(a) Limited sharing of HCWs (b) Contact matrix for limited sharing of HCWs

(c) Observed sharing of HCWs (d) Contact matrix for observed sharing of HCWs

(e) Over sharing of HCWs (f) Contact matrix for over sharing of HCWs

Fig. S4. Wards located in the same building are color coded similarly. From top to bottom, network representation of the sharing structure on the left with respective contact
matrix on the right.
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Supplementary simulation results76
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Fig. S5. Impact of altering HCWs sharing matrix on the number of wards affected after the introduction of an index case. Probability of spread (y-axis) in number of wards
ranging from 1 to 24 (x-axis) for the three staff organization levels based on 500 simulations over a period of 40 days. Facet labels correspond to index wards. Context of
simulation: No possible contamination from the community. Introduction of a non-contagious incubating patient in each ward.
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Fig. S6. Risk of dissemination at the hospital level depending on the ward of introduction. Number of transmissions following the introduction of an index case in each ward for
three staff organization levels based on 500 simulations over a period of 120 days. No contamination from the community considered.
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Table S3. Description of model compartments

Abbreviation Description
SA screening area aiming at clinical examination and/or

virological testing before admission in a ward
S susceptible
E non-contagious incubating
EA contagious incubating before asymptomatic condi-

tion
Epidemiological history of patients and HCWs ES contagious incubating before symptomatic condi-

tion
IA contagious with asymptomatic condition
I1 contagious with mild symptoms
I2 contagious with severe symptoms
R recovered
ICU intensive care unit for patients with severe symp-

toms
Measures implemented following detection of a pos-
itive case in the patient or HCW population

IsoW isolation ward for detected positive patients

SL sick leave of absence for HCWs
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