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Abstract 

 

Recent GWAS of alcohol-related traits have uncovered key differences in the underlying genetic 

architectures of alcohol consumption and alcohol use disorder (AUD), with the two traits having 

opposite genetic correlations with psychiatric disorders. Understanding the genetic factors that 

underlie the transition from heavy drinking to AUD has important theoretical and clinical 

implications. We utilized longitudinal data from the cross-ancestry Million Veteran Program 

sample to identify 1) novel loci associated with AUD and alcohol consumption [measured by the 

Alcohol Use Disorders Identification Test-Consumption (AUDIT-C)] and 2) genetic variants with 

direct effects on AUD not mediated through alcohol consumption. We identified 26 loci 

associated with AUD, including 5 ancestry-specific and 6 novel loci and 22 loci associated with 

AUDIT-C, including 3 ancestry-specific and 8 novel loci. In secondary GWAS that excluded 
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individuals who report abstinence, we identify 7 additional loci for AUD and 8 additional loci for 

AUDIT-C. We demonstrate that, although the heterogeneity of the abstinent group biases the 

GWAS findings, unique variance between alcohol consumption and disorder remains after the 

group is excluded. Finally, using mediation analysis, we identified a set of variants with effects 

on AUD that are not mediated through alcohol consumption. The distinct genetic architectures 

of alcohol consumption and AUD suggest different biological contributions to the traits. Genetic 

variants with direct effects on AUD are potentially relevant to understanding the transition 

from heavy alcohol consumption to AUD and targets for translational prevention and treatment 

efforts.  
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Introduction 

Heavy alcohol use is common in the United States and associated with multiple adverse 

consequences(1). Regular heavy drinking is the major risk factor for alcohol use disorder (AUD), 

a problematic pattern of alcohol use accompanied by clinically significant impairment or 

distress(2). Recent genome-wide association studies (GWAS) of alcohol traits have identified 

more than 30 genome-wide significant (GWS) variants contributing to the risk of AUD, alcohol 

dependence (AD), or problematic alcohol use (PAU; which comprises AUD, AD, and a trait 

defined by alcohol-related problems)(3–5); and more than 100 GWS variants have been 

identified as contributing to alcohol consumption measures [e.g., AUDIT-C score(6), a measure 

of alcohol consumption derived from the first 3 items of the 10-item Alcohol Use Disorders 

Identification Test (AUDIT)(7)](4,8,9). Nearly all GWAS loci have been identified in European 

ancestry individuals, largely due to the much smaller numbers of individuals from other 

population groups for which comparable data are available. 

Although the genetic variation contributing to alcohol consumption partially overlaps 

with that of AUD, multiple variants are associated with one, but not the other, trait(10). 

Estimates of the genetic correlation between alcohol consumption and either AUD or PAU are 

moderate(4,5), suggesting that despite alcohol use being necessary for dependence, there is 

unique genetic liability to each trait. Furthermore, genetic correlations and phenome-wide 

association studies (PheWAS) of genetic liability for AUD and alcohol consumption show 

differential patterns of association with physical and mental health(4,5,8). 

The genetic divergence between alcohol consumption and AUD may result from 

confounding, or it may indicate a true difference in the biology underlying each trait. Potential 
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sources of bias include confounding of the frequency of alcohol consumption by socioeconomic 

status(11), and the heterogeneity of participants reporting alcohol abstinence(12). However, 

differences in genetic liability between alcohol consumption and AUD are observed even after 

these confounders are accounted for. Thus, there may exist a latent factor that underlies 

psychopathology and substance use disorders, but not substance use(13). As AUD is defined by 

several diagnostic criteria not directly related to the frequency or quantity of alcohol 

consumption, it is possible for individuals with the same level of alcohol consumption to receive 

differential diagnoses for AUD. Consequently, understanding the factors underlying AUD, 

separate from those that influence normative alcohol consumption, has important theoretical 

and clinical implications. 

We sought to identify genetic variants that contribute uniquely to the development of 

AUD by conducting multiple cross-ancestry GWASs in the Million Veteran Program (MVP)(14). 

To examine the transition from alcohol consumption to AUD, we conducted analyses to identify 

genetic variants that are not mediated through alcohol consumption, but rather directly affect 

the risk of AUD.  
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Methods 

Overview of analyses 

This research was conducted with three aims in mind. First, we sought to identify novel 

loci associated with AUD and alcohol consumption by performing separate ancestry-specific 

primary GWAS of AUD and AUDIT-C, followed by cross-ancestry meta-analyses. Second, we 

evaluated the mediating effect of alcohol consumption on genetic risk for AUD by conducting 

GWAS in which we restricted AUD cases to those with an AUDIT-C score that pre-dated their 

receiving an AUD diagnosis and removed abstainers from cases and controls. Third, in 

secondary analyses, we elucidated the impact of phenotypic variation on gene discovery by 

performing an additional GWAS using a less stringent electronic health record (EHR)-defined 

definition of AUD. Supplemental Figure 1 provides an overview of the phenotype definitions 

and sample counts for each analysis.  

 

Million Veteran Program cohort and phenotype construction 

 The MVP is a large observational cohort study and biobank developed by the 

Department of Veterans Affairs (VA)(14). AUD diagnostic codes based on the International 

Classification of Diseases, Ninth Revision (ICD-9) and Tenth Revision (ICD-10) and AUDIT-C 

scores were obtained from the VA EHR. The AUDIT-C(6) comprises the first three questions of 

the 10-item AUDIT,
 
a valid, reliable instrument used to screen for individuals with hazardous or 

harmful drinking(7). We use the maximum AUDIT-C score (“AUDIT-C”) to approximate a trait, 

rather than state, alcohol consumption measure. The dataset comprised all MVP participants 

with at least one AUDIT-C measure between 2007 to 2018. In all analyses, age at the time of the 
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maximum AUDIT-C score was used as a covariate in GWAS. Further details on the phenotypes 

used for each analysis are described in the Supplemental Methods. 

 

Genome-wide association analysis 

For ancestry-specific analyses, we tested imputed SNPs that passed quality control (see 

Supplemental Methods) for association with 5 traits: 1) AUD (Stringent) (primary analysis), 2) 

AUDIT-C (primary analysis), AUD only among AUDIT-C>0 (mediation analysis) and AUDIT-C only 

among AUDIT-C>0 (mediation analysis), and AUD (Less stringent) (secondary analysis). The 

analyses used logistic or linear regression models as appropriate, in PLINK 1.9(15). Covariates 

included age at maximum AUDIT-C, sex, and the first 10 ancestral principal components (PCs). 

Cross-ancestry meta-analyses were performed in METAL(16) using the sample-size weighted 

method. Within each region, independent variants were identified by conditional analyses using 

GCTA-COJO(17) (see Supplemental Methods for additional details). 

 

Gene-based analyses, heritability analyses and genetic correlation 

 Gene-based association analyses for the primary AUD and AUDIT-C GWAS were 

performed using MAGMA(18) implemented in FUMA(19). Default settings were used to map 

input SNPs to 19,082 protein-coding genes. Genome-wide significance was defined at P = 

0.05/19,082 = 2.62x10
-6

. SNP-based heritability (h
2
) for all phenotypes was estimated using 

linkage disequilibrium score regression (LDSC(20)). Genetic correlation analyses were 

performed using LDSC(20) and POPCORN(21) (see Supplemental Methods). 
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Mediation 

 To identify a set of variants for mediation analyses, we selected all variants associated 

with either AUD (Stringent) or AUDIT-C at a suggestive p-value threshold of 1x10
-5 

in the cross-

ancestry meta-analyses. Among variants present in all 3 ancestries, 3,092 were selected for 

AUD and 3,019 for AUDIT-C. We performed LD-clumping using a range of 3000 kb and r
2
 > 0.1 

to create a set of 215 variants for AUD and 208 variants for AUDIT-C, yielding a total set of 372 

unique variants associated with either AUD, AUDIT-C, or both. 

The variant set was tested for association with a) AUD only among AUDIT-C>0; b) AUDIT-

C>0; and c) AUD only among AUDIT-C>0 with AUDIT-C as a covariate. All analyses included age, 

sex and the first 10 PCs as covariates. The direct effect of the variant on AUD was estimated 

from the association of the variant with AUD with AUDIT-C as a covariate. The mediated 

(indirect) effect of the variant on AUD through AUDIT-C was calculated using the regression 

method(22) from summary-level data for the association of the variant with the outcome (i.e., 

AUD) including the mediator (i.e., covarying for AUDIT-C) and the mediator without the 

outcome (i.e., AUDIT-C). Analyses were conducted separately for each ancestry before 

calculating cross-ancestry meta-analyses in METAL. Variants that passed a Bonferroni-corrected 

p-value threshold of 1.34x10
-4

 (0.05/372) in the AUD (AUDIT-C>0) analysis (i.e., were associated 

with the outcome) were explored to partition the total effect into a direct effect and an indirect 

effect.  
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Results 

We included 409,630 MVP participants from three ancestral groups: European 

Americans (EAs) (N=296,989), African Americans (AAs) (N=80,764) and Hispanic Americans 

(HAs) (N=31,877) (Supplemental Table 1). Most of the population was male (91.5%). Nearly 

one-quarter (24.7%) of participants had at least one ICD-9/10 code for AUD (i.e., AUD [less 

stringent] EAs: 21.0%, AAs: 35.2%, HAs: 29.2%) and 20.8% had at least one inpatient or two 

outpatient codes for AUD (i.e., AUD [Stringent] EAs: 18.0%, AAs: 31.0%, HAs: 24.6%). The 

average number of annual AUDIT-C screenings was 8.1 (SD=3.8; EAs=8.1, SD=3.7; AAs=8.5, 

SD=3.9; HAs=7.6, SD=3.7). Among individuals with an AUD diagnosis, the average number of 

AUDIT-C screenings that pre-dated the diagnosis was 3.3 (SD=2.8; EAs=3.4, SD=2.9; AAs=3.2, 

SD=2.7; HAs=3.1, SD=2.6). The average maximum AUDIT-C score for all individuals was 3.0, with 

an average age at maximum AUDIT-C of 59.8 years. Maximum AUDIT-C mean scores were 

higher in AUD cases (5.6) than controls (2.2) (Supplemental Figure 2).  

 

Identification of cross-ancestry and ancestry-specific novel loci for AUD and AUDIT-C 

We performed ancestry-specific genome-wide analyses for AUD and AUDIT-C, followed 

by cross-ancestry meta-analyses (Supplemental Figure 3). In the cross-ancestry meta-analysis 

for AUD, 84 lead variants (mapping to 21 loci; Figure 1, Supplemental Table 2) were GWS 

(P<5x10
-8

). After conditioning on the lead variants within each locus, 26 variants were 

independently associated with AUD, of which 4 are novel (no previous reported associations 

with alcohol-related phenotypes within 1 Mb, Supplemental Table 4), including two that are 

intronic (rs11681373 in ZNF804A and rs3828783 in MLN) and two intergenic (rs138084484 near 
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NICN1 and rs565298761 near MIR5694). Supplemental Figure 4 and Supplemental Table 3 show 

the 27 lead variants (in 14 loci) in EAs, 5 lead variants (in 3 loci) in AAs, and 4 lead variants (in 1 

locus) in HAs. Of the lead variants identified in EAs, 4 variants in 3 loci were GWS in the 

ancestry-specific analysis only (Supplemental Figure 5), of which one is novel (rs34517574 near 

MIR129-2, Supplemental Table 4). All EA ancestry-specific variants were polymorphic in all 

populations (minor allele frequency [MAF] >10%), with the exception of rs34517574, which was 

not present in the AA sample due to low imputation quality. In AAs, 2 lead variants in 2 loci 

were ancestry-specific (Supplemental Figure 6), of which one is novel (rs7701111 in an intron of 

IL7R, Supplemental Table 4). Although one of these variants was rare in EAs and HAs 

(rs73792114; MAF: AA=5.9%, EA=0.04%, HA=0.08%), the novel variant was polymorphic in all 

populations (rs7701111; MAF: AA=20.4%, EA=32.7%, HA=42.1%). 

In the cross-ancestry meta-analysis for AUDIT-C, 87 lead variants (mapping to 19 loci; 

Figure 1, Supplemental Table 5) were identified. Conditional analysis yielded 24 independent 

variants, of which 6 are novel (Supplemental Table 7). Two of the novel variants are intronic 

(rs34305371 in NEGR1 and rs307914 in CACNG7) and four intergenic (rs62260887 near GBE1, 

rs12702456 near LOC101927021, rs144228648 near POT1, and rs8041398 near HMG20A). In 

ancestry-specific analyses (Supplemental Figure 7 and Supplemental Table 6), 37 variants (in 14 

loci) were GWS in EAs, 3 variants (in 2 loci) were GWS in AAs, and 4 variants (in 1 locus) were 

GWS in HAs. In EAs, 2 variants in 2 loci were ancestry-specific, of which one was novel and 

polymorphic in all populations (Supplemental Figure 8, Supplemental Table 7; rs13389219 near 

COBLL1). In AAs, there was one ancestry-specific variant, which was novel (Supplemental Figure 
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9, Supplemental Table 7; rs150461125 near OLFM1), though rare in AAs, almost monomorphic 

in EAs, and absent in HAs (MAF: AA=0.002%, EA<0.001%). 

 We conducted three additional GWAS: 1) AUD in individuals with AUDIT-C>0, 2) AUDIT-C 

in individuals with AUDIT-C>0, and 3) AUD using a less stringent diagnosis (Supplemental 

Figures 3 and 10-12, Supplemental Tables 8-13). In all analyses, correlations between effect 

sizes for GWS loci identified in the primary GWAS and the secondary GWAS were high (r
2
=0.99).  

 

Gene-based analyses 

 Gene-based association analyses for AUD identified 58 GWS (pP<P2.69×10
−6

) genes in 

EAs, 10 in AAs, and 7 in HAs (Supplemental Figure 13). Genes not identified in the SNP-based 

analyses of AUD (EA: N=47, AA: N=8, HA: N=4) include ADH4, which was GWS in both EAs and 

AAs, ADH5, which was GWS in AAs, and ADH7, which was GWS in HAs. Gene-based association 

analyses for AUDIT-C identified 45 GWS genes in EAs, 7 in AAs, and 6 in HAs (Supplemental 

Figure 14). In EAs, 38 of these were not identified in SNP-based analyses, including CACNA1C; 6 

in AAs, including METAP1; and 3 in HAs, including TRMT10A.  

 

Heritability and genetic correlation of AUD and AUDIT-C phenotypes 

 SNP-based heritability (h
2

SNP) for the five related GWAS traits was estimated using LDSC 

for both EAs and AAs (Figure 2a). Heritability values were higher for AAs than EAs and increased 

with the specificity of the phenotype. Pairwise genetic correlations (rg) between the five GWAS 

traits were high within both EAs and AAs (rg>0.7; Supplemental Figure 15). Correlations were 

strongest within the AUD and AUDIT-C phenotypes, and weaker between the two kinds of 
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traits. Genetic correlations between EAs and AAs within traits were estimated using POPCORN 

(Supplemental Table 14).  

 

Genetic correlations with other traits 

 The genetic correlations between the five GWAS traits and other traits or diseases were 

estimated in the EA population using LDSC (Figure 2b, Supplemental Table 15). As in our 

previous work(4), the magnitude and direction of genetic correlations differed substantially 

between AUD and AUDIT-C. AUD was correlated with 22 traits, including positive correlations 

with several psychiatric disorders, insomnia, and neuroticism, and negative correlations with 

years of schooling and age at first birth. In contrast, AUDIT-C was positively genetically 

correlated with HDL cholesterol and lung function and negatively correlated with 

anthropometric traits and Type 2 diabetes. Traits significantly genetically correlated with AUD 

(AUDIT-C>0) and AUD (less stringent) were generally the same as those correlated with AUD. 

Many of the traits that were significantly genetically correlated with AUDIT-C were also 

correlated with AUDIT-C>0 in the same direction. However, AUDIT-C>0 was also significantly 

positively correlated with psychiatric traits. 

 

Mediation 

In mediation analysis we identified total effects of variants on AUD and AUDIT-C, and 

direct and indirect effects of variants on AUD (Figure 3 and Supplemental Tables 16-19). In the 

cross-ancestry meta-analysis, 54 variants were associated with AUD at a Bonferroni-corrected 

p-value threshold of 1.34x10
-4

. For 17 of these (31%) the direct effect on AUD accounted for 
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more than two-thirds of the total effect, indicating that AUD susceptibility at these loci was not 

predominantly driven by a genetic predisposition for alcohol consumption.  

Most variants that showed evidence for mediation had a concordant directionality for 

the direct and indirect effects (Figure 3B). The strongest association with both AUD and AUDIT-

C was rs1229984 in ADH1B (Figure 3A, Supplemental Table 16). In the mediation analysis, this 

SNP showed both a strong direct and a strong indirect effect on AUD. Other variants with both 

strong direct and indirect effects on AUD included rs13107325 in SLC39A8, rs1154431 in 

LOC100507053, rs138081390 in STPG2 and rs3216150 in ADH1C. Variants in GCKR (rs11336847) 

and FTO (rs1421085, rs55872725) had almost equal direct and indirect effect sizes. 

Of the 17 variants with predominantly direct effects on AUD, the strongest effects were 

for rs7517355 in LINC01360, rs61687445 near DRD2, rs73201625 near LOC157273, 

rs114569212 near CDC5L, two variants near BRD3 (rs146671954, rs146281019), and 

rs61739176 near LILRB1. Variants near LPHN3 (rs115663100) and TMX2 (rs79260745, 

rs7948571), and in an intron of SLC9A8 (rs76728843) had strong direct effects on AUD but an 

indirect effect in the opposite direction, reducing their overall association with AUD. 
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Discussion 

Here, we performed cross-ancestry GWAS of AUD and AUDIT-C in 409,630 individuals, 

including the largest sample of non-European-ancestry individuals for these traits to date (AA: 

N=80,764, HA: N=31,877). These populations were 40-50% larger than in our previous GWAS 

for AUDIT-C(4) and AUD,(4) which allowed us to identify novel loci in both the cross-ancestry 

meta-analysis and the ancestry-specific analyses. We conducted mediation analysis to establish 

a set of variants directly associated with AUD, independent of alcohol consumption. We 

propose that these variants are high-priority candidates for in-vitro study to understand the 

biology of the transition from alcohol use to the development of AUD, as they could help 

account for why individuals with the same level of alcohol consumption differ in their risk to 

develop AUD. 

We identified 26 loci associated with AUD, including 4 novel loci in the cross-ancestry 

meta-analysis and 2 novel loci in ancestry-specific analyses. Many of the loci, though novel for 

alcohol-related traits, have been associated with psychiatric disorders or other substance use or 

disorders. One novel intronic variant (rs11681373) in ZNF804A (Zinc Finger Protein 804A) is 

located in intron 2, close to a variant previously associated with increased susceptibility to a 

broad psychosis trait (including schizophrenia and bipolar disorder) and heroin addiction(23). 

The second novel intronic variant (rs3828783) is located in MLN (Motilin), a gene previously 

associated with smoking(9), and depression(24). A novel intergenic variant (rs138084484) 

located upstream of NICN1 (Nicolin 1), which has been associated with depression(25) and 

intelligence(26), is a known eQTL for multiple other genes(27). The novel AA-specific variant is 

located in the intron of IL7R (Interleukin 7 Receptor), which plays a critical role in the 
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development of immune cells(28). Chronic alcohol consumption is known to impair immune 

response functions, and concentrations of IL7 are altered during detoxification(29). 

Twenty-two loci were associated with AUDIT-C, including 6 novel loci in the cross-

ancestry meta-analysis and 2 novel variants in the ancestry-specific analyses. No prior 

associations with psychiatric disorders have been identified for these novel loci, consistent with 

the observed divergence in the genetic architectures of the AUDIT-C and AUD(10). Both of the 

novel intronic variants are located in genes with prior associations with intelligence and 

educational attainment (rs34305371 in NEGR1 [Neuronal Growth Regulator 1] and rs307914 in 

CACNG7 [Calcium Voltage-Gated Channel Auxiliary Subunit Gamma 7])(26,30). The novel EA-

specific variant rs13389219 near COBLL1 has been associated with multiple phenotypes 

including Type 2 diabetes(31), whereas variants located nearby have shown associations with 

HDL cholesterol and triglyceride measures in current drinkers(32). The novel AA-specific variant 

rs150461125 is located near OLFM1, a gene associated with smoking behavior(9). 

We refined both the AUD and AUDIT-C phenotypes by removing individuals who never 

report alcohol consumption. In the UK Biobank and the Veterans Aging Cohort Study, where 

participants’ specific reasons for discontinuing drinking was available, we found that this group 

is heterogeneous, consisting of both lifelong abstainers and former drinkers(12). Removing 

them from the analyses did not increase the number of GWS loci, likely in part because they 

make up almost a quarter of our original sample. However, we observed an increase in the SNP 

heritability for both AUD and AUDIT-C following their removal. Furthermore, in genetic 

correlation analyses with other traits, the removal of these individuals revealed positive 

correlations of AUDIT-C with psychiatric traits and a negative correlation with intelligence.  
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 Evaluating the mediating effect of AUDIT-C on the genetic risk of AUD identified variants 

in three alcohol metabolizing genes (alcohol dehydrogenase 1B [ADH1B], 1C [ADH1C] and 7 

[ADH7]) with both direct and indirect effects on AUD risk. Variants in these genes alter the 

metabolic rate of alcohol and consistently are associated with protective effects against 

excessive alcohol consumption, thereby reducing AUD risk(33). The direct (non-mediated) 

effect of these variants on AUD could result from their effects on alcohol consumption earlier in 

life, prior to the measurement of AUDIT-C, or convey risk of AUD via an independent pathway. 

 The variant with the second strongest direct and indirect effects on AUD was in SLC39A8 

(solute carrier family 39 member 8; rs13107325), which has highly pleiotropic effects, having 

been associated with over 60 traits(34), including anthropometric traits such as BMI(35), and 

psychiatric traits such as schizophrenia(36). Thus, this variant may affect risk for AUD both via 

alcohol consumption and via effects on the psychopathological dimension of addiction. 

 We identified 17 variants for which greater than two-thirds of the effect on AUD risk 

was  direct, i.e., not mediated through alcohol consumption. We hypothesize that these 

variants contribute to an addictive dimension of AUD that is not directly influenced by levels of 

consumption. Of these, 4 variants were in or near genes with prior associations with 

schizophrenia(36) (LINC01360 [Long Intergenic Non-Protein Coding RNA 1360], DRD2 

[Dopamine Receptor D2], CSMD1 [CUB And Sushi Multiple Domains 1], and ZNF804A [Zinc 

Finger Protein 804A]), three of which (DRD2, CSMD1 and ZNF804A) are mostly expressed in 

brain(27). Other variants were in or near genes previously associated with cortical surface area 

(ALCAM [Activated Leukocyte Cell Adhesion Molecule])(37), chronotype (LINC01249 [Long 

Intergenic Non-Protein Coding RNA 1249])(38), lung function (CDC5L [Cell Division Cycle 5 
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Like])(39), and caffeine consumption (SPECC1L-ADORA2A [Readthrough (NMD Candidate)])(40). 

These variants warrant further examination as potential contributors to the transition from 

heavy drinking to AUD. 

 Our study has limitations. Our measure of alcohol consumption, the AUDIT-C, was self-

reported and subject to recall bias. Further, we systematically captured consumption reported 

in the VA health system only since 2007. Therefore, if an individual’s maximum alcohol 

consumption occurred prior to this date this measure may not be accurate. Furthermore, the 

AUDIT-C measure is made up of three items that capture quantity and frequency of drinking 

and heavy drinking. Different responses to these items could result in the same overall score, 

and yet each item may be differentially associated with AUD. Finally, the MVP sample is mostly 

male (>90%) and we therefore could not perform sex-specific analyses. As AUDIT-C scores vary 

by sex, this will be an important direction for future studies. 

 In conclusion, our study identifies novel associations for AUD and AUDIT-C, including 

novel ancestry-specific associations. We address some of the differences between the genetic 

architectures of AUD and AUDIT-C by reducing heterogeneity in the dataset, but also 

demonstrate that there is unique variance that remains after refinement of these traits. Finally, 

we identify a set of variants with direct effects on AUD that are not mediated through alcohol 

consumption. We propose these as targets for research aimed at understanding the transition 

from heavy alcohol consumption to AUD, elucidation of the biology of which could inform 

prevention and treatment efforts. 
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Figure Legends 

 

Figure 1: Manhattan plot for cross-ancestry meta-analysis of AUD (top, N case=85,391, N 

control=308,488) and AUDIT-C (bottom, N=409,630). Sample-size-weighted meta-analyses were 

performed using METAL. 

 

Figure 2: Heritability and genetic correlation analyses for AUD (less stringent), AUD, AUD 

(AUDIT-C>0), AUDIT-C, and AUDIT-C>0. A: Heritability calculated for EAs and AAs using LDSC. B: 

Genetic correlations with other traits in EAs calculated using LDSC. Non-grey bars are significant 

at a Bonferroni-corrected p-value (p<1.95x10
-3

). 

 

Figure 3: Mediation analysis of variants associated with AUD. A: Manhattan plots showing 

direct effects of variants on AUD (top) and indirect effects mediated by AUDIT-C (bottom). 

Variants significantly associated with AUD at a Bonferroni corrected p-value, and then 

subsequently having a direct and/or indirect effect, are labelled. For ease of visualization, only 

the most significant SNP in or near each gene is labelled. Variants where more than two thirds 

of the effect is direct are labelled with an asterisk. B: Effect sizes (Z-scores) for each variant. 

Direct effects are shown on the x-axis and indirect effects are shown on the y-axis. The majority 

of variants have the same direction of effect for both direct and indirect effects. 
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