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but fail to work in real-world clinical settings. Compared to the diagnosis task

in the closed setting, real-world clinical settings pose severe challenges, and we

must treat them differently. We build a clinical AI benchmark named Clinical

AIBench to set up real-world clinical settings to facilitate researches. We pro-

pose an open, dynamic machine learning framework and develop an AI sys-

tem named OpenClinicalAI to diagnose diseases in real-world clinical settings.

The first versions of Clinical AIBench and OpenClinicalAI target Alzheimer’s

disease. In the real-world clinical setting, OpenClinicalAI significantly out-

performs the state-of-the-art AI system. In addition, OpenClinicalAI develops

personalized diagnosis strategies to avoid unnecessary testing and seamlessly

collaborates with clinicians. It is promising to be embedded in the current

medical systems to improve medical services.

One-Sentence Summary: We propose a clinical AI benchmark and an open, dynamic ma-

chine learning framework to enable AI diagnosis systems to land in real-world clinical settings.

Introduction

Due to previous successive successes of AI in the clinical research field, AI is considered a

promising technology to provide high-quality and low-cost diagnostic services (1,2,3,4,5,6,7).

However, there is little evidence that these researches can be implemented into real-world clin-

ical settings (in short, real-world settings) and improve medical services (8, 9, 10). Fig. 1, 2, 3

qualitatively and quantitatively reveal the state-of-the-art and state-of-the-practice AI systems

only achieve acceptable performance on the stringent conditions. We call those stringent condi-

tions closed clinical settings (in short, closed settings). The closed settings have the following

primary assumptions: all categories of subjects are known a priori (11); the same diagnostic

strategy is applied to all subjects, e.g., every subject requires a nuclear magnetic resonance scan
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(MRI) (12); the state-of-the-art AI systems can only be deployed at medical institutions that

are able to execute the pre-prescribed diagnostic strategy (4, 13, 14). Vice versa, if the medi-

cal institution can not meet prerequisite conditions that are able to complete the pre-prescribed

diagnostic strategy, the corresponding AI system can not be deployed. In this context, the diag-

nosis problem is a closed set recognition problem that is artificially simplified (3, 4, 14, 5, 15).

Close settings are too ideal for real-world settings. The real-world setting is open with

uncertainty and complexity. The subject in real-world settings is not all pre-known categories

but contains many unknown and unfamiliar categories. Every subject is different, and there is

no one-size-fits-all diagnosis strategy. Conditions of medical institutions are different and not

pre-known, e.g., some hospitals have positron emission tomography (PET). In contrast, most of

the other hospitals in underdeveloped areas are not equipped with PET. The diagnosis problem

in real-world settings is an open set recognition problem (16).

Essentially, the diagnosis task in the closed setting is to find the optimal solution to classify

different categories of subjects in a limited space (so-called supervised task) with the help of

the ground truth of every subject. However, the real-world setting is open and puts the diagnosis

task into unlimited space. Compared to the limited space of closed settings, the infinite space of

real-world settings infinitely expands the scale of solving. Moreover, supervised learning will

lose efficacy since some categories of subjects and their ground truth are unknown during the

development of the AI model. Hence, the main problem of the diagnosis task in the real-world

setting converts to efficiently locate the known subjects from the uncertain and complex real-

world setting. Moreover, as shown in Fig. 2a and 3b,c, solving well the diagnosis task in the

closed setting is not much help to solve the diagnosis task in the real-world setting. Compared

to the diagnosis task in the closed setting, the diagnosis task in the real-world setting is a new

and challenging task that we must treat differently.

This paper calls for turning medical AI attention from algorithmic research in closed settings
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to systematic study in real-world settings. Specifically, we construct a clinical AI benchmark

named Clinical AIBench, which contains real-world and closed settings to promote the landing

of AI in real-world settings. To tackle uncertainty and complexity in real-world settings, we

propose an open, dynamic machine learning framework ( Fig. S1) and a diagnostic system

named OpenClinicalAI to embed in the current healthcare systems as shown in Fig. 1b.

The first versions of Clinical AIBench and OpenClinicalAI target Alzheimer’s disease (AD)

as AD is an incurable disease that brings a heavy burden to our society (the total payment for

individuals with AD or other dementias is estimated at 277 billion) (17, 18, 19, 20). Early and

accurate AD diagnosis will result in the correct management of AD or other dementias, saving

up to $7.9 trillion in medical and care costs (19). However, it is estimated that 28 million of the

world’s 36 million people with dementia do not receive a diagnosis since the limited medical

resources and experts, etc. (21).

The current version of Clinical AIBench includes two clinical settings, which are curated

from a large enriched dataset Alzheimer’s disease neuroimaging initiative (ADNI): a closed set-

ting and a real-world setting (22). OpenClinicalAI is composed of multiple independent parts,

which can cooperate to handle unknown subjects in real-world settings, and dynamically adjust

diagnosis strategies according to specific subjects and medical institutions. OpenClinicalAI

provides an opportunity to embed the AI-based diagnostic system into the current healthcare

systems to cooperate with clinicians to improve healthcare services.

In the real-world setting of Clinical AIBench, we evaluate the performance of OpenClin-

icalAI against the state-of-the-art AI diagnosis system. Our evaluations show that the perfor-

mance of OpenClinicalAI exceeds that of the state-of-the-art AI diagnosis system in the real-

world setting. Additionally, OpenClinicalAI can develop personalized diagnosis strategies for

every subject in the real-world setting, maximizing the patient benefit.
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Results

Clinical AIBench

Clinical AIBench contains real-world and closed settings to develop and evaluate the AI system

designed for real-world settings. The first version targets Alzheimer’s disease. In this section,

we focus on real-world settings.

The diagnosis in a real-world setting requires clinicians to use both individual clinical exper-

tise and the best available external evidence, which is usually obtained by clinical examination,

to make a clinical decision for every specific subject (23). It means that at least two main fac-

tors must be considered in the diagnosis task in real-world settings: the subject and the available

clinical examination in the medical institution.

As shown in Fig. S2, the real-world setting is open with uncertainty and complexity. The

primary characteristics of the real-world setting are as follows:

(1) Real-world settings are open, and clinicians or AI systems often refer to unknown and

unfamiliar categories. Thus, the subject’s categories are not all pre-known and famil-

iar. A clinician has different expertise and may be unfamiliar with some diseases. In

the real-world setting of Clinical AIBench, an unknown subject category means that it is

not familiar to the clinician or AI system. Thus, we mark both unknown categories and

unfamiliar categories as unknown. In this work, Clinical AIBench divides all mild cogni-

tive impairment (MCI) and significant memory concern (SMC) subjects into the test set,

which are unknown categories during the development of the AI system.

(2) Subjects in real-world settings are under different situations. In this work, subjects with

varying conditions are from 67 sites in two countries ( Table S1). For every subject,

data of all visits are included in Clinical AIBench ( Table S2). The interval between two

contiguous visits of a subject is usually more than six months.
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(3) Medical institutions in real-world settings have wildly different executive abilities of the

examination. Not all the specific medical institutions and their specific executive abilities

of the examination are pre-known. In this work, missing data for subjects are not be filled

in the real-world setting of Clinical AIBench. In the real world, most of the subjects do

not have all examination data categories. The purpose of the lack of specific category

examination data is to keep the varied executive ability of the examination in different

medical institutions. That is to say, in the real-world setting of Clinical AIBench, the

lack of specific category examination data indicates that a medical institute lacks that

examination ability.

Specifically, in this work, the examination data in ADNI is divided into 13 categories: base

information (Base), cognition information (Cog), cognition testing (CE), neuropsychiatric in-

formation (Neur), function and behavior information (FB), physical neurological examination

(PE), blood testing (Blood), urine testing (Urine), nuclear magnetic resonance scan (MRI),

positron emission computed tomography scan with 18-FDG (FDG), positron emission com-

puted tomography scan with AV45 (AV45), gene analysis (Gene), and cerebral spinal fluid

analysis (CSF).

Details of the dataset in the real-world setting are as follows.

(1) All subjects with labels in ADNI are included.

(2) 85% AD and cognitively normal (CN) subjects are divided as the training set. 5% of AD

and CN subjects are divided as the validation set. 20% AD and CN subjects, 100% MCI

subjects, and 100% SMC are divided as the test set.

(3) For every subject, different diagnosis strategies are combined according to the presence

of different examination data, and the data of each diagnosis strategy forms a sample.
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The test set is not accessible during the training of the AI system. In addition, since each

subject may have multiple visits ( each visit of the subject is treated as an independent subject),

we stipulate that each subject’s visit data can only appear in one of the training set, validation

set, and test set.

Sine previous AD diagnosis researches are developed in closed settings, the closed setting in

Clinical AIBench is similar to the previous research (24, 25, 26, 27, 28, 12, 29, 30, 31). Only AD

and CN subjects are included in the closed setting, and only the nuclear magnetic resonance

instrument and historical medical records are available. 80% of subjects are divided as the

training set, 5% of subjects are divided as the validation set, and 15% of subjects are divided as

the test set.

The performance of OpenClinicalAI on Alzheimer’s disease diagnosis

Ebrahimighahnavieh et al. and Tanveer et al. review many important works of Alzheimer’s

disease diagnosis (27, 28). Most of these works are based on MRI data and transfer learning

obtain the most excellent results. In addition, among the recent AI diagnosis researches, the

transfer learning framework of the pre-trained model followed by a classifier achieves the state-

of-the-art performance in many diagnosis tasks based on medical images (14,1,32,33,3). Thus,

based on the state-of-the-art transfer learning framework and MRI data, we utilize a trained

model named DenseNet201 (34) and a classifier called XGBoot (35) to develop an Alzheimer’s

disease diagnosis AI system which we consider as the baseline system to compare against Open-

ClinicalAI in the rest of this paper.

We validate the effectiveness of OpenClinicalAI in two ways. First, we compare OpenClin-

icalAI to the baseline system in the closed setting. Second, we compare OpenClinicalAI to

the baseline system in the real-world setting. Our comparison metrics are the area under the

receiver operating characteristic (ROC) curve (AUC) and sensitivity. The larger the value of
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AUC and sensitivity are, the better the AI system is.

The performance of OpenClinicalAI against the baseline system in the closed
setting.

To the best of our knowledge, all state-of-the-art and state-of-the-practice Alzheimer’s disease

diagnosis AI researches are developed and evaluated in closed settings (27, 28, 12, 29, 30, 31).

We firstly assess the baseline AI system in the closed setting, and then evaluate OpenClinicalAI

in the same closed setting without the limitation of that only the nuclear magnetic resonance

instrument and historical medical records are available.

As shown in Fig. 2 a, the baseline system obtains a high AUC score of 0.9779 (95% confi-

dence interval (CI) 0.9722-0.9827), and there is not much room for promotion. OpenClinicalAI

achieves an AUC score of 0.9926 (95% CI 0.9907-0.9945) and obtains the state-of-the-art per-

formance. However, the essential improvement from the baseline system to OpenClinicalAI is

that the latter can dynamically develop personalized diagnosis strategies according to specific

subjects and medical institutions. As shown in Fig. 2 b, less than 10% of the subjects require a

nuclear magnetic resonance scan, and most of the subjects only require harmless examination

such as cognitive examination. We conclude OpenClinicalAI can avoid unnecessary examina-

tion for subjects and suit medical institutions with different examination abilities 1.

The performance of OpenClincalAI against the baseline system in the real-
world setting.

Our goal is to develop an AI diagnosis system that can be embedded in the current medical

system and cooperated with clinicians. In this work, if the predicted probability of the AD or

CN is smaller than the probability threshold ( 0.95 ), the subject will be marked as unknown and

1Different hospitals have various clinical settings, such as community hospitals without nuclear magnetic res-
onance machines, big hospitals with multiple facilities.
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referral to the clinician. For comparison, we use the same baseline system discussed above. In

addition, we also consider OpenClinicalAI without an OpenMax mechanism ( Algorithm S2,3)

as the comparison system (11).

As shown in Fig. 3a, b, and c, compared to the baseline system, OpenClinicalAI demon-

strates a significant improvement in the AUC of identification of AD subjects (+0.1102) and the

AUC of identification of CN subjects (+0.1148). It is worth noting that OpenClinicalAI has a

vast improvement in the sensitivity of AD, CN, and unknown on the operating point.

For the baseline system, the sensitivity of known (AD and CN) subjects is low. The sensitiv-

ity of AD is just 0.5483 (95% CI 0.4604-0.6301), and the sensitivity of CN is just 0.3333(95%

CI 0.2663-0.3979). It indicates that most known subjects will be marked as unknown and sent

to the clinician for diagnosis. Moreover, the sensitivity of unknown subjects is 0.8888(95% CI

0.8753-0.9018), meaning 11.12% of unknown subjects will be misdiagnosed. In addition, the

baseline system requires that every subject has a nuclear magnetic resonance scan, and every

medical institution that deploys the baseline system must be equipped with a nuclear magnetic

resonance apparatus.

For OpenClinicalAI without an OpenMax mechanism, the sensitivity of known (AD and

CN) subjects is as good as OpenClinicalAI with an OpenMax mechanism. In contrast, the sen-

sitivity of unknown subjects is much worse than OpenClinicalAI with an OpenMax mechanism.

It means most unknown subjects will be misdiagnosed, and it is unendurable in real-world set-

tings.

OpenClinicalAI diagnoses most of the known (AD and CN) subjects correctly, marks most

of the rest as unknown, and sends them to the clinician for further diagnosis. Besides, most

unknown subjects are correctly identified, and the misdiagnosis of unknown subjects is only

6.04%. It means that OpenClinicalAI has enormous potential application value to implement in

real-world settings. In addition, as shown in Fig. 3d, similar to the behaviors of OpenClinicalAI
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in the closed setting, OpenClinicalAI can develop and adjust diagnosis strategies for every

subject dynamically in the real-world setting. Only a small part of subjects require a nuclear

magnetic resonance scan and more costs (economy and harm) examinations.

Development of diagnosis strategies

For every subject, firstly, OpenClinicalAI will acquire the base information of the subject. Sec-

ondly, OpenClinicalAI will give a final diagnosis or receive other examination information ac-

cording to the current data of the subject. Thirdly, repeat the previous step until the diagnosis is

finalized or there is no further examination.

As shown in Fig. 4a, diagnosis strategies of subjects are not the same ( Table S3). Open-

ClinicalAI dynamically develops 35 diagnosis strategies according to different subject situa-

tions and all 40 examination abilities in the test set( Table S4). For the known (AD and CN)

subjects, as shown in Fig. 4b, and c, most of the subjects require low-cost examinations (such as

cognition examination (CE)). A small part of subjects requires high-cost examinations (such as

cerebral spinal fluid analysis (CSF) ). For unknown subjects, as shown in Fig. 4d, different from

the diagnosis of known (AD and CN) subjects, identifying unknown subjects is more complex

and more dependent on high-cost examinations. The reason for the above phenomenon is that

according to the mechanism of OpenClinicalAI, it will do its best to distinguish whether the

subject belongs to the known categories. When it fails, OpenClinicalAI will mark the subject as

unknown. It means that the unknown subject will undergo more examinations than the known

subject. The details of the high-cost examinations requirement are as follows.

(1) 33.94% of unknown subjects require a nuclear magnetic resonance scan (that of the

known subject is 12.43%).

(2) 13.95% of unknown subjects require a positron emission computed tomography scan with

18-FDG ( that of the known subject is 4.75%).
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(3) 8.67% of unknown subjects require a positron emission computed tomography scan with

AV45 ( that of the known subject is 5.87%).

(4) 9.38% of unknown subjects require a gene analysis ( that of the known subject is 1.96%).

(5) 5.13% of unknown subjects require a cerebral spinal fluid analysis (that of the known

subject is 0.28%).

Potential clinical applications

OpenClinicalAI enables that the AD diagnosis system can be implemented in uncertain and

complex clinical settings to reduce the workload of AD diagnosis and minimize the cost of

subjects.

To identify the known (AD and CN) subject with high confidence, the operating point of

OpenClinicalAI is running with a high decision threshold (0.95). For the test set, OpenClini-

calAI achieved a accuracy value of 92.47% (95% CI 91.36%-93.44%), AD sensitivity value of

84.92% (95% CI 78.91%-90.51%), CN sensitivity value of 81.27% (95% CI 75.51%-86.67%)

while retaining an unknown sensitivity value of 93.96% (95% CI 92.90%-94.92%). In addition,

OpenClinicalAI can cooperate with the senior clinician to identify the known subject. In this

work, 15.08% (95% CI 9.49%-21.09%) of AD subjects and 18.73% (95% CI 13.33%-24.49%)

of CN subjects are marked as unknown and sent to senior clinicians to diagnose. The work

pattern is significant for the undeveloped area, which is a promising way to connect developed

areas and undeveloped areas to reduce the workload, improve the overall medical services, and

promote medical equity. To minimize the subject cost and maximize the subject benefit, Open-

ClinicalAI dynamically develops personalized diagnosis strategies for the subject according to

the subject’s situation and existing medical conditions.

For the subject, OpenClinicalAI will judge whether it can finalize the subject’s diagnosis
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according to the currently obtained information of subjects. If the current data of the subject is

not enough to support OpenClinicalAI to make a diagnosis, it will recommend the most suitable

further examination for the subject. It will mitigate the over-testing plight, minimize the subject

cost, and maximize the subject benefits. For the test set, 35 different diagnosis strategies are

applied to the subject by OpenClinicalAI ( Table S3). The details of the high-cost examination

are as follows.

(1) 31.07% of subjects require a nuclear magnetic resonance scan.

(2) 12.72% of subjects require a positron emission computed tomography scan with 18-FDG.

(3) 8.29% of subjects require a positron emission computed tomography scan with AV45.

(4) 8.39% of subjects require a gene analysis.

(5) 4.48% of subjects require a cerebral spinal fluid analysis.

For the medical institution, before the system recommends an examination for a subject,

OpenClinicalAI will inquire whether the medical institution can execute the examination. Sup-

pose the medical institution cannot perform the examination. In that case, OpenClinicalAI will

recommend other examinations until the current information of the subject is enough to support

it to make a diagnosis or until all common examinations have been suggested and the subject is

marked as unknown. It enables that OpenClinicalAI is able to deploy in the different medical

institutions with various examination abilities. In this work, OpenClinicalAI diagnoses subjects

on 40 conditions of medical institutions ( Table S4). In addition, for the subject of the test set,

due to lack of the information of recommended examinations (which may be equal to the medi-

cal institution not having the ability to execute the recommended examination), OpenClinicalAI

adjusts the diagnostic strategies 14654 times.
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Discussion

Currently, the media overhype the AI assistance diagnosis system. However, it is far from

being mature to be implemented in real-world clinical settings. Many clinicians are gradually

losing faith in the medicine AI (36, 37, 9, 38, 39, 40). Similar to the first trough of AI, the high

expectation and unsatisfactory practical implementation of medical AI may severely hinder the

development of medical AI. In addition, compared performances of state-of-the-art AI systems

on stringent conditions and real-world settings, solving well the diagnosis task on stringent

conditions is not much help to solve the diagnosis task in the real-world setting. It is time

to draw the attention from the pure algorithm research in closed settings to systematic study in

real-world settings, focusing on the challenge of tackling the uncertainty and complexity of real-

world settings. In this work, we propose an open, dynamic machine learning framework to make

the AI diagnosis system can directly deal with the uncertainty and complexity in the real-world

setting. Based on our framework, an AD diagnostic system demonstrates huge potentiality to

implement in the real-world setting with different medical environments to reduce the workload

of AD diagnosis and minimize the cost of the subject.

Although many AI diagnostic systems have been proposed, how to embed these systems into

the current health care system to improve the medical service remains an open issue (2, 41, 42,

43). OpenClinicalAI provides a reasonable way to embed the AI system into the current health

care system. OpenClinicalAI can collaborate with clinicians to improve the clinical service

quality, especially the clinical service quality of undeveloped areas. On the one hand, Open-

ClinicalAI can directly deal with the diagnosis task in the uncertain and complex real-world

setting. On the other hand, OpenClinicalAI can diagnose typical patients of known subjects,

while sending those challenging or atypical patients of known subjects to the clinicians for di-

agnosis. Although AI technology is different from traditional statistics, the model of the AI

system still learns patterns from training data. For typical patients, the model is easy to un-
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derstand patterns from patients, while it is challenging to learn patterns for atypical patients.

Thus, every atypical and unknown patient is needed to treat by clinicians especially. In this

work, most of the known subjects are diagnosed by OpenClinicalAI, and the rest are marked as

unknown and sent to the senior clinician.

Over-testing has always been a concern and has been exacerbated in current AI-based di-

agnostic systems (44, 45). As samples, the systems proposed by Lu et al., Ding et al., and Liu

et al. achieved state-of-the-art performance. At the same time, they required every subject to

have a positron emission computed tomography scan, which is unnecessary for most subjects

in real-work settings (46, 31, 47). However, OpenClinicalAI enables AI systems able to de-

velop personalized diagnosis strategies to avoid unnecessary testing. OpenClinicalAI provides

a possible way that can effectively reduce over-testing under strict supervision.

Notably, the experiment of this work does not contain a comparison with clinicians. There

are two main reasons. First, OpenClinicalAI obtains an AUC value of 0.9927 (95% CI 0.9854-

0.9981) in the closed setting. It is very close to the ground truth and unnecessary compared to

clinicians. Second, the diagnosis patterns in real-world settings aim to diagnose typical patients

of known subjects (which is usually easier to diagnose) and send atypical patients of known sub-

jects ( which are generally difficult to diagnose) and unknown subjects to clinicians. The task

of OpenClinicalAI is quite different from that one of clinicians. Unlike current AI-based diag-

nostic systems, OpenClinicalAI performs as a new part of the whole healthcare system instead

of replacing the role of clinicians. Therefore, it is not necessary to compare OpenClinicalAI to

clinicians.

Although OpenClinicalAI is promising to impact the future research of the diagnosis sys-

tem, several limitations remain. First, the prospective clinical studies of diagnosis of Alzheimer’s

disease will be required to prove the effectiveness of our system. Second, the data of collection

and processing are required to follow the standards of ADNI.
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Fig. 1: The workflow of the baseline clinical AI system and OpenClinicalAI. a, The work-
flow of the mainstream AI-based diagnostic systems for closed settings. The system only ac-
cepts subjects with pre-specified clinical states. First, the same pre-specified medical exami-
nations will be executed by a medical institution with the pre-specified examination ability for
every subject. And then, the system will calculate the probability of each pre-defined clinical
state for the subject according to the examination. Finally, the system will take the clinical states
with the maximum probability as the output and make the final diagnosis. b, The workflow of
OpenClinicalAI. It can deal with different categories of subjects, including the unfamiliar and
unknown categories of subjects during the development of the system. It can deploy in var-
ious medical institutions with different examination abilities from small-scale country clinics
to large-scale hospitals. First, OpenClinicalAI will obtain the basic information of the subject
and combine the history clinical information of the subject as input. Second, according to the
input, OpenClinicalAI calculates the probability of each disease-related examination and each
pre-defined clinical state, including the unknown clinical state. Third, for each pre-defined clin-
ical state, if a clinical state’s possibility is greater than the specific threshold, then the clinical
state is the final diagnosis of OpenClinicalAI, which will be sent to clinicians to review. Oth-
erwise, go to the next step. Fourth, for each examination, if the probability of an examination
is greater than the specified threshold and the medical institution can execute this examination,
then obtain the examination data, add the data to the input of OpenClinicalAI, and go to step
two. Otherwise, go to the next step. Fifth, for the medical institution with specific examination
ability, select an executable routine examination with the least cost that has not been executed
for the subject, add the examination data to the input of OpenClinicalAI, and go to step two.
Otherwise, go to the next step. Finally, mark the subject without diagnosis as unknown and
send them to clinicians to diagnose. Notably, the atypical subject with specified clinical states,
unfamiliar and unknown subjects are marked as unknown and sent to the clinician for diagnosis.
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Fig. 2: The performance of OpenClinicalAI with personalized strategies against the base-
line system on Alzheimer’s disease diagnosis task in the closed setting. a, The ROC curves
of two systems in the closed dataset. The red curve is the ROC curve of the baseline system, and
it obtains an AUC score of 0.9779 (95% CI 0.9722-0.9827). The black curve is the ROC curve
of OpenClinicalAI with various examination data, and it obtains an AUC score of 0.9926 (95%
CI 0.9907-0.9945). b, The examination used during the AD diagnosis process. The baseline
system consistently uses MRI data and historical data as the system input. In other words, every
subject must have a nuclear magnetic resonance scan. OpenClinicalAI is able to develop and
adjust the diagnosis strategies according to individual conditions and existing medical condi-
tions during the diagnosis process, and only 71 subjects in the test set should have a nuclear
magnetic resonance scan. Most subjects only need to have two or several simple examinations
during the diagnosis process.
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Fig. 3: The performance of OpenClinicalAI with personalized strategies against the base-
line system in the real-world setting. a, The ROC curves of OpenClinicalAI. It obtains two
high AUC scores of 0.9502 (95% CI 0.9304-0.9662) and 0.9927 (95% CI 0.9854-0.9981) for
AD and CN detection. The operating point of AI system is a group of score thresholds that
separates positive and negative decisions of every category of the subject (0.95 for AD, 0.95 for
CN, and 0.8 for unknown). On the operating point, OpenClinicalAI obtains the sensitivity of
AD, CN, and unknown are 0.8492 (95% CI 0.7891-0.9051), 0.8127 (95% CI 0.7551-0.8667),
and 0.9396 (95% CI 0.9290-0.9492) respectively. b, The ROC curves of OpenClinicalAI with-
out an OpenMax mechanism. It obtains two AUC scores of 0.8795 (95% CI 0.8540-0.9038)
and 0.8571 (95% CI 0.8331-0.8797) for AD and CN detection. On the operating point, the sen-
sitivity of AD and CN are 0.8820 (95% CI 0.8282-0.9324) and 0.8589 (95% CI 0.8100-0.9056),
respectively. However, the sensitivity of the unknown is only 0.3332 (95% CI 0.3133-0.3528).
c, The ROC curves of the baseline system. The baseline system obtains two AUC scores of
0.8400 (95% CI 0.8055-0.8728) and 0.8779 (95% CI 0.8506-0.9025) for AD and CN detection.
On the operating point, the unknown’s sensitivity is 0.8888 (95% CI 0.8753-0.9018). However,
the sensitivity of AD and CN are only 0.5483 (95% CI 0.4604-0.6301) and 0.3333 (95% CI
0.2663-0.3979), respectively. d, The examination used during the AD diagnosis process. All
subjects diagnosed by the baseline system require the nuclear magnetic resonance scan. The
subject diagnosed by OpenClinicalAI without an OpenMax mechanism is similar to the sub-
ject diagnosed by OpenClinicalAI with an OpenMax mechanism. The selection of examination
depends on the situation of the subject and existing medical conditions. Thus the examination
number is not fixed.
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Fig. 4: Diagnosis strategies for subjects. a, Diagnosis strategies for all subjects. Due to
OpenClinicalAI developing and adjusting the examination for each subject, the selection of ex-
aminations for subjects is not the same. b, Diagnosis strategies for AD subjects. Compared to
the high-cost examination, OpenClinicalAI pays more attention to the subject’s basic informa-
tion, cognitive, mental, behavioral, and physical examination information for the AD subject.
In contrast, biochemical testing, imaging, and genetic data are less considered. c, Diagnosis
strategies for CN subjects. The behaviors of OpenClinicalAI for CN recognition are similar to
those for AD diagnosis, and the difference between those behaviors is that more examinations
are required to identify the CN subject. d, Diagnosis strategies for unknown (MCI and SMC)
subjects. Compared to the known subject recognition, identifying unknown subjects is more
complicated, and more examinations are required.
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