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ABSTRACT 

Rapid eye movement (REM) sleep behavior disorder (RBD), enactment of dreams during REM sleep, is 

an early clinical symptom of alpha-synucleinopathies. RBD also defines more severe forms of alpha-

synucleinopathies. The genetic background of RBD and its underlying mechanisms are not well 

understood. Here, we performed the first genome-wide association study of RBD, identifying five RBD risk 

loci. Expression analyses highlight SNCA-AS1 and SCARB2 differential expression in different brain 

regions in RBD, with SNCA-AS1 further supported by colocalization analyses. Genetic risk score and 

other analyses provide further insights into RBD genetics, highlighting RBD as a unique subpopulation 

that will allow future early intervention. 
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INTRODUCTION 

Rapid eye movement (REM) sleep behavior disorder (RBD), defined as loss of muscle atonia and dream 

enactment during REM sleep, is one of the most unique conditions in neurology1. Isolated RBD (iRBD), 

defined as having RBD without other significant clinical neurological signs, is the only early highly 

predictive clinical marker for some neurodegenerative diseases. Over 80% of iRBD patients will convert to 

overt neurodegeneration within 10-15 years on average, most commonly to Parkinson’s disease (PD) or 

dementia with Lewy bodies (DLB), or in rare cases, multiple system atrophy (MSA) or another 

neurodegenerative disorder.2,3 Although they demonstrate phenotypic differences, PD, DLB, and MSA are 

all alpha-synucleinopathies: disorders characterized by accumulation of the protein alpha-synuclein in the 

brain. Therefore, iRBD is considered a prodromal alpha-synucleinopathy which offers a unique 

opportunity to identify these conditions at a much earlier stage.4 

There is strong evidence that iRBD also represents distinct, more severe subtypes of alpha-

synucleinopathies. Approximately 30-60% of PD patients have RBD, including both iRBD and RBD as a 

symptom occurring after PD diagnosis (symptomatic RBD, sRBD).3 In this manuscript, we will use “RBD” 

to refer to all instances of RBD regardless of at which stage symptoms present, and iRBD or sRBD to 

specify before or after overt neurodegeneration diagnosis, respectively. The presence of RBD is currently 

the strongest predictor for the development of dementia in PD5 and is associated with more rapid 

progression of non-motor symptoms.3 RBD is more frequent in DLB, found in approximately 50-80% of all 

cases. While the phenotypic differences in DLB with or without RBD are less pronounced, those 

diagnosed with iRBD before developing DLB tend to have increased severity of DLB symptoms and more 

rapid deterioration.6 MSA patients also have a high prevalence of RBD, estimated at 75-95%, 40% of 

which have iRBD prior to the onset of MSA symptoms. Those with iRBD preceding MSA symptoms may 

have more frequent autonomic onset of MSA, less frequent parkinsonism at MSA onset, and a more 

severe disease course.7 Overall, RBD, and specifically iRBD, appears to represent a more malignant 

subtype of alpha-synucleinopathies. 

Thus far, the genetics of RBD has only been studied through the candidate gene approach. To 

better understand RBD and early alpha-synucleinopathy genetics and potential mechanisms, we 

performed a genome-wide association study (GWAS) on 2,843 cases and 139,636 controls. We further 

examined the biological implications of the nominated risk loci through pathway analysis, investigated 

variant effects on gene expression, and assessed the cumulative risk using polygenic risk score (PRS). 

Using the GWAS summary statistics, we studied the genetic relationship between RBD and the 

synucleinopathies to which it progresses, as well as conditions and exposures of interest using linkage 

disequilibrium (LD) score regression and Mendelian randomization (MR).  
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RESULTS 

Genome-wide association study identifies five RBD loci 

To identify genetic risk loci across the genome associated with RBD, we performed a case-control GWAS 

of iRBD (N cases=1,061, N controls=8,386) and a case-control GWAS from 23andMe, Inc. using PD 

patients with probable RBD (pRBD) and controls (PD+pRBD, diagnosed by a validated questionnaire, N 

cases=1,782, N controls=131,250), meta-analyzed for a total of 2,843 cases and 139,636 controls. After 

filtration, imputation, and meta-analysis, a total of 11,536,573 variants were examined. We tested for 

systemic biases using the genomic inflation factor (lambda) and LD-score regression, with satisfactory 

results (lambda=1.06, lambda1000=1.01, LD intercept= -0.01). With LD-score regression, the liability-

scale narrow-sense heritability of iRBD based on common variants is calculated at 12.3% (standard 

error=0.07), similar to the recently reported 10.8% heritability for DLB.8 

We identified novel RBD-associated loci near SCARB2 and INPP5F, and replicated known RBD 

associations near SNCA,9 GBA,10,11 and TMEM17512 (Table 1, Figure 1). Conditional-joint analysis 

identified a secondary associated single nucleotide polymorphism (SNP) in GBA, confirming RBD risk 

association with known PD nonsynonymous variants p.Glu326Lys and p.Asn370Ser. These five loci have 

also been implicated in PD,13 however the RBD-associated SNPs in SNCA and SCARB2 are not in LD 

with the top PD-associated SNPs in these loci, and are thus considered independent. Additionally, SNPs 

associated with PD or DLB-associated SNPs in notable GWAS loci, such as MAPT, LRRK2, and APOE8 

are not associated with RBD despite sufficient power to detect them, suggesting that RBD has a distinct 

and only partially overlapping genetic background with PD and DLB.  

 

 

Differential gene expression in different brain regions may drive the independent associations of 

SNCA and SCARB2 in RBD and PD 

We found that although the SNCA and SCARB2 loci are important in both RBD and PD, the associations 

with both conditions in these loci are driven by independent variants. In the SNCA locus, rs3756059 (in 

the 5’ region of the gene) was associated with RBD in the current GWAS and with DLB.8 In contrast, 

rs356182 (in the 3’ region), which is not in LD with rs3756059 (R2=0.17, D’=0.56), is the most significant 

of all association signals in GWAS of PD risk,13 yet showed no association with iRBD. Similarly, in the 

SCARB2 locus, rs7697073 is associated with RBD and rs6825004 is associated with PD, and the two 

SNPs are not in LD (R2=0.06, D’=0.26). We therefore hypothesized that the different SNPs in these loci 

associated with RBD and PD may be associated with differential expression patterns of their respective 

genes in different brain regions. To examine this hypothesis, we used the publicly available Genotype-

Tissue Expression (GTEx) consortium v8 online portal (https://www.gtexportal.org/home/)14 to investigate 

how each variant affects gene expression in specific brain tissues. We examined the effects of these 

variants on the expression of SCARB2, SNCA and SNCA antisense-1 (SNCA-AS1), since variants in 

SNCA have previously been linked to SNCA-AS1 expression.8 The expression quantitative trait loci 
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(eQTL) effect size (ES) reported here is the slope of the linear regression of normalized expression data 

versus the genotype status using single-tissue eQTL analysis, performed by the GTEx consortium. 

Comparative results are visualized in Figure 2.  

In the SNCA/SNCA-AS1 locus, the RBD risk variant rs3756059 is most strongly associated with 

increased expression for SNCA-AS1 expression in multiple cortical regions (frontal cortex ES=-0.39, 

p=6.3E-05; anterior cingulate cortex ES=-0.41, p=2.6E-04), the cerebellum (ES=-0.74, p=9.9E-19) and 

the spinal cord (ES=-0.54, p=2.0E-05), all with statistical significance after correction for multiple 

comparisons. The PD variant rs356182 is only associated with SNCA-AS1 expression in the anterior 

cingulate cortex (ES=-0.46, p=2.5E-05). The RBD risk variant at the SCARB2 locus (rs7697073) is most 

strongly associated with increased expression in the cortex (ES=0.15, p=1.4E-03), while the SCARB2 PD 

risk variant (rs6825004) is most strongly associated with substantia nigra increased expression (ES=0.25, 

p=4.6E-04). The PD variant is also associated with decreased SCARB2 expression in the cerebellum, 

while the opposite is shown for the RBD variant. Of note, SCARB2 associations are nominal and lack 

significance after GTEx v8 multiple testing correction.  

 

 

Colocalization analyses demonstrate tissue and cell-specific differential effects of RBD-

associated variants 

We further investigated RBD loci effects on gene expression using colocalization analysis to determine 

whether association signals for RBD risk and regulation of gene expression in the whole brain or blood 

are driven by a shared causal variant. eQTLs were obtained from PsychENCODE15 and eQTLGen,16 

large human brain and blood eQTL datasets, respectively. In brain, we found one RBD locus with strong 

evidence of colocalization with eQTLs regulating SNCA-AS1 expression (posterior probability of 

hypothesis 4 [one shared variant between RBD GWAS and eQTL, PPH4] = 0.89; Figure 3A; 

Supplementary Table 1). Using beta coefficients derived from the RBD GWAS and PsychENCODE 

eQTLs, we found that SNPs in the region surrounding SNCA-AS1 tended to show an inverse relationship 

between RBD risk and SNCA-AS1 expression, suggesting that reduced RBD risk is associated with 

increased SNCA-AS1 expression (Supplementary Fig. 4), which in turn may be associated with reduced 

alpha-synuclein protein level. 

In blood, we found evidence of colocalizations between the same RBD locus and eQTLs 

regulating MMRN1 expression (MMRN1, PPH4 = 0.86; Figure 3B; Supplementary Table 1). Sensitivity 

analyses confirmed that SNCA-AS1 and MMRN1 colocalizations were robust to changes in the prior 

probability of a variant associating with both traits (i.e., p12 prior). We did not find evidence of 

colocalization between the RBD SCARB2 locus and eQTLs in brain or blood (Supplementary Figures 5-

7).  
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As both the SNCA-AS1 and MMRN1 colocalizations were observed at the same RBD risk locus 

on chromosome 4, but in different tissues, we hypothesized that this may be due to tissue-specific 

regulation of SNCA-AS1 and MMRN1 expression. Using specificity, a measure of the proportion of a 

gene’s total expression attributable to one tissue or cell type, we explored the tissue- and cell-type-

specific patterns of SNCA-AS1 and MMRN1 expression in (i) human bulk-tissue RNA-sequencing from 

GTEx consortium17 and (ii) human single-nucleus RNA-sequencing of the medial temporal gyrus from the 

Allen Institute for Brain Science (AIBS; 7 cell types).18 At the tissue level, SNCA-AS1 expression was 

predominantly brain-specific, while MMRN1 expression was most specific to thyroid, adipose and lung 

tissues and least specific to brain tissues (Figure 3C; Supplementary Table 2). At the cellular level, 

SNCA-AS1 demonstrated neuronal specificity, while MMRN1 was specific to microglia (Figure 3D; 

Supplementary Table 2). Together, these findings support the hypothesis that SNCA-AS1 and MMRN1 

expression is regulated differently across cell types and tissues, and in turn, suggest that the RBD risk 

locus at chromosome 4 may operate differently depending on the cell type or tissue investigated.  

 

 

Polygenic risk scores distinguish iRBD and PD with RBD from PD without RBD 

Next, we examined whether RBD-specific PRS can distinctly identify RBD as opposed to PD without 

RBD. We withheld a testing set of iRBD cases (N=212) and controls (N=1,265), re-performed the GWAS 

and meta-analysis with the remaining samples, then created a polygenic risk profile for RBD using all 

independent variants (R2>0.1) which passed GWAS FDR correction (p<1E-05, 47 variants, 

Supplementary Table 3). We calculated PRS in the withheld testing set of iRBD cases and controls, as 

well as independent cohorts of PD+pRBD and PD without pRBD (PD-pRBD) patients and controls. In 

iRBD, the PRS can differentiate between iRBD cases and controls with an area under the curve (AUC) of 

0.61 (95% CI 0.58-0.65, Figure 1B), on par with recent PD PRS performance.19 In PD+pRBD, predictive 

performance was similar to iRBD with an AUC of 0.60 (95% CI 0.56-0.63), compared to decreased 

predictive power in PD-pRBD with an AUC=0.55 (95% CI=0.51-0.59, Figure 1B). 

We then divided the RBD PRS into quartiles in the iRBD, PD+pRBD, and PD-pRBD cohorts, and 

performed logistic regression against the phenotype (Figure 1C). In iRBD, those in the top quartile for 

RBD PRS were 2.9 times more likely to have RBD than those in the bottom quartile (95% CI 1.87-4.66, 

p=3.5E-06), while in PD+pRBD those in the top quartile were 2.4 times more likely to have PD+pRBD 

(95% CI 1.62-3.56, p=1.0E-05) compared to the lowest quartile of genetic risk as a reference. This 

difference is likely due to the presence of both iRBD patients (i.e. individuals who had RBD prior to the 

onset of PD) and PD patients who developed RBD after the onset of PD, which may be genetically 

different. False positives of pRBD could also contribute. As noted in the AUC analysis, the RBD PRS 

does not distinguish well between PD-pRBD cases and controls; those in the top quartile were only 1.53 

times more likely to have PD-pRBD, without statistical significance (95% CI 0.99-2.34, uncorrected 
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p=0.053, Figure 1C). The lack of RBD PRS predictive power in PD-pRBD suggests that we are likely 

tagging RBD-specific loci.  

We tested whether the RBD PRS is associated with changes in age at onset (AAO) or rate of 

conversion from RBD to overt neurodegeneration, but found no statistically significant relationship at this 

sample size.  

 

 

Pathway analysis reveals potential role for the autophagy-lysosomal pathway in RBD 

pathogenesis  

To examine whether specific pathways are enriched according to the RBD GWAS results, we performed 

pathway enrichment analysis with WebGestalt using the GWAS-nominated genes for cellular components 

and biological processes (Figure 1D, Supplementary Table 4). The nominated cellular components 

include whole membrane (FDR corrected p=0.004), lysosome (FDR p=0.004), and vacuole (FDR 

p=0.005). Biological processes include positive regulation of receptor recycling (FDR p=0.037), vacuole 

organization (FDR p=0.037), and endocytosis (FDR p=0.039). All these nominations suggest involvement 

of the autophagy lysosomal pathway (ALP), a key mechanism for clearing alpha-synuclein whose 

disruption can lead to the alpha-synuclein aggregation seen in alpha-synucleinopathies.20,21 

 

 

Comparison to PD GWAS loci reveals additional loci with potential distinct effects in RBD 

PD is currently the best genetically-characterized alpha-synucleinopathy due to the large sample sizes 

available for GWAS. We aimed to further examine how PD GWAS loci behave in RBD, given the 

differential effects observed in the SNCA and SCARB2 loci. We compared the effect size and direction of 

effect of the latest PD GWAS-significant variants (N=90)13 to the effect sizes and direction of effect of the 

same variants in the summary statistics of this RBD GWAS (N=90 variants were available for 

comparison) and the most recent DLB GWAS8 (N=72).  

Figure 4A-C shows the similarities and differences of effect size and direction at these loci across 

RBD, PD and DLB. Notably, iRBD shows marked differences at some key PD loci (Figure 4A) including 

SNCA, CYLD (encoding a deubiquitinating enzyme), and FYN (encoding a membrane-associated 

tyrosine kinase). In these loci, the direction of effect in iRBD is opposite of that seen in PD, with nominal 

significance in iRBD (none of these pass the GWAS significance threshold for iRBD). The PD+pRBD 

cohort significantly deviates from this pattern with 100% of loci showing the same direction of effect with 

PD (Figure 4B). However, strong PD signals, such as SNCA 3’ variants and LRRK2, are not significant in 

the PD+pRBD cohort despite sufficient power. Similarly, all DLB nominally significant loci share the same 

direction of effect with PD (Figure 4C). Yet, DLB also deviates from PD, as the MAPT, LRRK2, and SNCA 

3’ loci are not statistically significant despite sufficient power. All statistics are detailed in Supplementary 

Table 5. 
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LD score regression further supports distinct genetic background for iRBD 

We used LD-score regression to examine the genetic correlation between RBD and relevant traits and 

exposures (Figure 5A-C). Although iRBD and PD+pRBD are positively correlated with nominal 

significance (rg=0.56, se=0.24, p=0.02), the two cohorts behave differently when it comes to other alpha-

synucleinopathies. PD+pRBD is highly and significantly correlated with the latest PD GWAS (rg=0.76, 

se=0.13, p=1.2E-09). On the contrary, iRBD is not correlated with PD (rg=0.17, se=0.14, p=0.23). 

PD+pRBD is not correlated with DLB (rg=0.29, se=0.23, p=0.21), yet the meta-analysis of iRBD and 

PD+pRBD is positively correlated with DLB (rg=0.68, se=0.26, p=0.009), although it loses significance 

after multiple testing correction. Therefore, this possible association is likely driven by iRBD; however, LD 

score regression could not accurately measure genetic correlation between iRBD and DLB due to lack of 

sufficient power when comparing the two datasets. Additionally, iRBD is genetically correlated with Type 

II Diabetes (rg=0.66, se=0.23, p=0.0047), while PD+pRBD is not (rg=-0.09, se=0.10, p=0.40).  

PD+pRBD and iRBD behave more similarly when discussing the following traits, so we will simply 

refer to the meta-analysis results. RBD shows similarities to PD with potential genetic correlations with 

less smoking, more education, and excessive daytime sleepiness, without significance after multiple 

testing correction (Supplementary Table 6). We found no genetic correlation with other sleep traits such 

as insomnia or sleep duration.  

 

 

Mendelian randomization suggests shared causal associations in RBD and PD  

Mendelian randomization (MR) allows for the assessment of causality between an exposure and an 

outcome. In this case, we aimed to analyze the causal effects of traits and exposures on RBD using the 

RBD GWAS meta-analysis and vice-versa. Because this GWAS is not strongly powered for MR, we 

focused only on exposures previously linked to PD22 (Table 2) and variables investigated in the genetic 

correlation analyses (Supplementary Table 7). Similar to PD, body mass index (BMI) measurements such 

as arm, leg, and trunk measurements showed a potential inverse causal association (smaller 

measurements being potentially causal for RBD); however, significance was lost after multiple testing 

correction (Table 2). Other PD associations and traits from genetic correlation (e.g., Type II Diabetes and 

smoking) showed no causal association with RBD.  
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DISCUSSION 

In this first genome-wide study of RBD, we identified five RBD-associated loci: two novel loci near 

SCARB2 and INPP5F and three previously reported loci near SNCA, GBA and TMEM175. Two of the 

loci, SNCA and SCARB2, have different and independent variants associated with RBD than those 

associated with PD. Colocalization and eQTL analyses suggest that these variants are associated with 

differential expression of SNCA-AS1 and SCARB2 in different brain regions, tissues, and cell types. We 

further show that RBD-specific PRS has different effects in individuals with iRBD or PD+pRBD compared 

to those with PD-pRBD. A distinct genetic background for iRBD is also supported by the lack of genetic 

correlation between iRBD and the most recent PD GWAS, as well as the lack of RBD association with 

known PD loci LRRK2 and MAPT, despite sufficient power to detect them.   

The differential association at the SNCA locus, when comparing PD and RBD, may provide a 

mechanistic hypothesis for gene expression-dependent regional vulnerability of different brain areas. The 

eQTL analysis shows that the top variant associated with RBD in the current GWAS, rs3756059, is 

strongly associated with reduced expression of SNCA-AS1 in several cortical regions (Figure 2). The 

same risk variant has also been implicated in DLB8 and is in LD with a secondary PD hit in this locus 

which is linked to PD with dementia.23 When comparing PD+pRBD patients to PD-pRBD, frequency of 

this variant is significantly elevated in PD+pRBD.9 In contrast, the top variant in the recent PD GWAS, 

rs356182, is not associated with RBD. Additionally, we report high meta-analysis heterogeneity at this 

locus, which could implicate iRBD as the driver of this association. The PD+pRBD cohort, which is a 

mixture of PD patients who presented with RBD before PD diagnosis (iRBD) and those with symptomatic 

RBD later in PD progression, has a lower effect size (beta=0.15) than the iRBD cohort alone (beta=0.40). 

Since SNCA-AS1 is transcribed as an antisense RNA molecule, it may lead to reduced alpha-synuclein 

protein expression. If this hypothesis is correct, then levels of alpha-synuclein protein may be increased in 

the cortical regions associated with reduced SNCA-AS1 expression (Frontal Cortex), which could make 

these regions more vulnerable for neurodegeneration in carriers of the RBD-associated variant. This 

could explain the strong association of RBD with more rapid and more severe cognitive decline in PD,24,25 

since the cortical brain regions associated with cognition may be more susceptible for neurodegeneration 

by this mechanism. Interestingly, PD patients without RBD are similar to controls when assessing 

cognition,24,26 and this variant is not a strong risk locus in this population.9 This hypothesized role of 

SNCA-AS1 as an important, neuronally specific regulator of alpha-synuclein protein expression as a 

determinant of risk of alpha-synucleinopathies should be further studied.  

We found a similar phenomenon in the SCARB2 locus; rs7697073 is associated with RBD in the 

current GWAS, whereas in the recent PD GWAS there is an independent association at rs6825004. The 

PD-associated variant is possibly associated with SCARB2 expression in the substantia nigra, while the 

RBD-associated variant, rs7697073, is not. This difference in SCARB2 expression may cause an earlier 

degeneration of the nigrostriatal fibers in the PD cohort compared to the RBD cohort, thus explaining the 

earlier manifestation of motor symptoms in the former. In RBD, the top associated variant in this locus 
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(rs7697073), like the SNCA locus variant, is associated more with expression in cortical brain regions, 

providing additional support for our hypothesis. SCARB2, encoding the Scavenger Receptor Class B 

Member 2, is the transporter of glucocerebrosidase (encoded by GBA) from the endoplasmic reticulum to 

the lysosome.27 It is possible that in PD this transport is affected by the variant associated with SCARB2 

expression in the substantia nigra. In RBD, this transport may be more affected in cortical regions. This 

could lead to specific vulnerabilities of specific brain regions in PD and RBD. For example, PD patients 

with RBD show significant cortical thinning when compared both to controls and to PD without RBD.28     

Despite the inclusion of PD patients with probable RBD in the current meta-analysis, notable PD 

and DLB GWAS loci are absent, including LRRK2, MAPT, BIN1, and APOE. Our sample size has >80% 

power to detect at GWAS level significance (p<5x10-8) the associations reported in PD and DLB GWASs 

in these loci (supplementary figure 8). The apparent lack of association with RBD in these three important 

regions, which we have previously reported in candidate gene studies in smaller cohorts,29-32 further 

supports RBD as a distinct subtype, genetically and clinically. These findings suggest that PD and DLB 

likely include different subgroups, some of which are associated with variants in LRRK2, MAPT and 

APOE, while the subgroup defined by having iRBD prior to the onset of PD or DLB is not. Figure 5.6 

details key overlap and distinctions between PD, DLB, and RBD GWAS loci. Additionally, we have 

previously shown that familial PD genes such as PRKN, VPS35, PINK1 and others seem to have no role 

in iRBD,32 supporting distinct genetic backgrounds for iRBD and PD. The presence of subgroups within 

PD is also evident by the PRS analyses, showing that RBD PRS better distinguished iRBD than 

PD+pRBD and has minimal effect on PD-pRBD.  

Previous studies have suggested that the genetic background of iRBD may affect the rate of 

conversion from iRBD to overt alpha-synucleinopathies. Variants in SNCA and GBA have been 

associated with more rapid conversion rates.9,10,33 However, these results were based on a relatively 

small portion of the iRBD cohort with available conversion data. Therefore, in the current study we opted 

not to analyze individual loci due to insufficient power. When examining the effect of PRS on iRBD 

conversion, we did not detect a statistically significant association. Yet, it is possible that we were also 

underpowered, and improved PRS in future studies combined with larger numbers of iRBD patients with 

conversion data will yield different results. 

RBD represents a distinct clinical subtype in synucleinopathies, associated with a more severe 

disease course in PD, DLB, and MSA, with more rapid deterioration and severe symptoms.1,6,34-36 

Additionally, RBD is the most robust predictor of dementia in PD25,36 and is associated with less frequent 

parkinsonism at MSA onset in patients who present with RBD first.7 Overall, it appears that RBD is linked 

more closely to cognitive decline than motor symptoms in alpha-synucleinopathies. These clinical 

observations, combined with our genetic findings, support the presence of distinct subgroups within PD, 

DLB and MSA and suggest a genetic component to these distinctions. Better identification of these 

subgroups will be essential towards better stratification in clinical trials, and will require comprehensive 

genetic, biomarker, and clinical marker studies.    
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When considering the five loci associated with RBD in the current study, the autophagy lysosomal 

pathway (ALP) seems to have a major role in RBD, similar to PD and DLB. However, uniquely to RBD, 

four of the five nominated genes in this GWAS directly converge to the glucocerebrosidase (GBA) 

pathway. On top of the GBA locus itself, alpha-synuclein has been shown to directly interact with 

glucocerebrosidase products and inhibit the transport of glucocerebrosidase to the lysosome.37,38 Variants 

in the SNCA locus also seem to be modifiers of GBA penetrance and the age at onset (AAO) among GBA 

variant carriers.39 SCARB2 is the transporter that carries glucocerebrosidase to the lysosome, and 

TMEM175 (encoding a lysosomal potassium channel) variants affect the activity of glucocerebrosidase in 

humans and in vitro.40 Furthermore, TMEM175 variants may affect the AAO of GBA-associated PD.39,41 

Taken together, these previous and current findings strongly highlight the role of the glucocerebrosidase 

pathway in RBD. Since iRBD may appear years before the onset of overt neurodegeneration, this 

population is especially attractive for clinical trials aimed to prevent neurodegeneration in alpha-

synucleinopathies. GBA targeting therapies could also be tested in this population, especially those who 

carry GBA variants.   

There are several limitations to this study. First, despite being the largest RBD cohort analyzed to 

date, this is still a relatively small GWAS, and future RBD GWASs will likely yield additional associations. 

Second, the meta-analysis is PD-skewed since over half of the GWAS case cohort consists of PD+pRBD 

patients, some of which had iRBD prior to PD and some had PD symptoms first and RBD developed later. 

It is therefore possible that some signals identified by the meta-analysis are PD-enriched, and that iRBD 

specific signals are diluted. However, the PD+pRBD cohort notably behaves differently (e.g., the LRRK2 

and MAPT loci) compared to the published PD GWAS,13 which includes both PD with and without RBD, 

suggesting the subset of PD patients who have RBD may be genetically distinct. Finally, this study only 

includes participants of European ancestry. Future studies in other populations are vital to characterize 

RBD genetic risk across all ancestries, so any clinical applications can be applied universally.   

In this study, we have identified novel RBD genetic loci and presented functional genomic 

evidence supporting regional brain vulnerability, which is dependent on differential expression of SNCA-

AS1 and SCARB2 in different brain regions in RBD and PD. The results show that the genetic 

background of RBD, PD and DLB only partially overlap, and larger RBD studies will be required to better 

elucidate the genetic background of RBD. The present study suggests that the lysosomal pathway, and 

more specifically the GBA pathway, could be a crucial target for therapeutic development targeting RBD 

and aimed to prevent neurodegeneration in this population.     
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METHODS 

Population 

We used two cohorts for the RBD GWAS meta-analysis. The first is an iRBD cohort (N cases=1,061, N 

controls=8,386). The second is a cohort of PD patients with probable RBD (pRBD, N cases=1,782 and N 

controls=131,250), genotyped and analyzed by 23andMe. The meta-analysis combines the two for a total 

of 2,843 cases and 139,636 controls. We did not select individuals with pRBD but without PD from 

23andMe, since a very small percentage of them will actually have iRBD; the questionnaire is not reliable 

for the general population but much more reliable for PD patients, albeit with false positives and false 

negatives. iRBD cases were collected by the International RBD Study Group and were genotyped and 

analyzed at McGill University. This iRBD cohort included large cohorts of French, French Canadian, 

Italian and British origins, and smaller cohorts from different European populations. Accordingly, for 

controls, we used genotype data obtained from (a) French and French-Canadian controls from McGill 

University (N=871); (b) the HYPERGENES Project42 (N=557 Italian samples); (c) the Wellcome Trust 

Case Control Consortium43 (N=5,516 British samples); (d) European control samples genotyped in the 

Laboratory of Neurogenetics (LNG), National Institute on Aging (NIA), National institutes of Health (NIH) 

(N=1,442). Principal components to adjust for population substructure were used as mentioned below. 

The cases were aged 68 +/- 9 years (standard deviation) on average and were 81% male, and the 

controls were aged 58.5 +/- 9 years on average, 68% male. 23andMe cases and controls were age- and 

sex-matched, with 83% over 60 years of age and 64.5% male. In the PRS analyses, we used an 

independent replication cohort of PD+/-RBD from McGill (N cases=502, N controls=907, average age 61 

+/- 8 years and 62% male). All cohorts used were confirmed European ancestry with principal component 

analysis using HapMap 3 as the reference population. 

iRBD, referring to those who were diagnosed with RBD before developing overt 

neurodegeneration, was diagnosed according to the International Classification of Sleep Disorders (2nd or 

3rd Edition), including video polysomnography. In the PD cohorts (except the 23andMe cohort, see 

below), PD was diagnosed by movement disorder specialists in accordance with the UK Brain Bank 

Criteria44 or International Parkinson Disease and Movement Disorders Society45 criteria. Within the PD 

cohorts, pRBD was identified using either the RBD single-question screen (RBD1Q)46 or the RBD 

screening questionnaire (RBDSQ),47 both with high sensitivity and specificity in PD.48 All study 

participants signed informed consent forms, and the study protocol was approved by the institutional 

review boards. 
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Power calculation 

To examine the power of our cohort to detect associations at GWAS significance level (p<5E-8), we used 

the Genetic Association Study (GAS) Power Calculator 

(http://csg.sph.umich.edu/abecasis/cats/gas_power_calculator/)49 with the following parameters: patients 

n=2,800, controls n=100,000, disease prevalence 0.01. We calculated the power to detect association of 

variants in all frequencies, with Ors of 1.2, 1.25, 1.3, 1.4 and 1.5 (Supplementary figure 8). With our 

sample size, we had less than 80% power to detect associations of variants at any frequency with an OR 

below 1.2.   

 

 

Genome-wide association study 

23andMe 

23andMe cohorts were collected, genotyped, and filtered as previously described.9 

All other cohorts 

All other cohorts were prepared and analyzed as follows. The different cohorts were genotyped on the 

OmniExpress GWAS chips (Illumina Inc.). We performed quality control according to a standardized 

GWAS pipeline created at the National Institutes of Health (NIH, https://github.com/neurogenetics/GWAS-

pipeline) as previously reported. To merge HYPERGENES, Wellcome Trust, and LNG controls with the 

McGill iRBD genotypes, we performed quality control on each cohort separately, then merged the cohorts 

using only variants common in all data sets. Following quality control, genotypes were filtered for minor 

allele frequency (MAF) > 0.01 to reduce imputation errors and imputed using Michigan Imputation Server 

and the Haplotype Reference Consortium50 r1.1 2016 reference panel (GRCh37/hg19). Only imputed 

genotypes with an R2 > 0.30 were kept for analysis, and imputed rare variants (MAF < 0.01) were 

excluded.  

GWAS was performed using rvtests (http://zhanxw.github.io/rvtests/) single Wald association test, 

including sex, age, and the appropriate ancestry principal components determined by scree plot for each 

cohort as covariates. We implemented METAL 

(https://genome.sph.umich.edu/wiki/METAL_Documentation) to perform fixed-effect meta-analysis and 

FUMA (https://fuma.ctglab.nl/) to identify top hits according to the standard GWAS p-value threshold of 

p<5E-08. FUMA implemented an R2 threshold of 0.6 to define independent SNPs, with a subsequent R2 

threshold of 0.1 to define lead SNPs within LD blocks. To determine whether secondary associations 

were present in the different loci, we used GCTA-COJO with default parameters 

(https://cnsgenomics.com/software/gcta/#COJO).  
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Polygenic risk score  

PRSice2 (https://www.prsice.info/)51 and PLINK52 1.9 (https://www.cog-genomics.org/plink/) were used to 

calculate polygenic risk scores (PRS). PRS is a summation of an individual’s genetic risk for a condition 

based on the effect sizes of the risk variants nominated by GWAS. To minimize overfitting, a portion of 

iRBD cases (N=212) and controls (N=1,265) were withheld as a testing set. The GWAS and meta-

analysis were redone excluding these samples. We then determined the optimal p-value threshold for 

PRS in the testing set, calculated by 10,000 permutations using PRSice2, with a cautious p-value ceiling 

at the GWAS FDR significance threshold (p<1E-05, which was then nominated). Independent variants 

according to the standard pruning parameters defined by PRSice2 (R2>0.1) passing this threshold (N=47, 

Supplementary Table 3) were used to calculate the PRS. Receiver operating characteristic and area 

under the curve (AUC) analysis, using R version 4.0.1, was used to determine the accuracy of this PRS in 

differentiating between cases and controls in iRBD (the withheld samples), an independent PD+pRBD 

cohort (N cases=285 and N controls=902), and a PD-pRBD cohort (N cases=217 and N controls=900). 

Additionally, we incorporated the RBD PRS into regression models to test whether polygenic risk for RBD 

is associated with RBD AAO, age at diagnosis (AAD), or rate of conversion from iRBD to overt 

neurodegeneration as defined by both AAO and AAD. PRS code can be found on 

https://github.com/lynnekrohn/RBD_GWAS/blob/main/1_PRS.md.  

 

 

Colocalization 

Coloc (version 4.0.1; https://github.com/chr1swallace/coloc)53 was used to evaluate the probability of RBD 

loci and expression quantitative trait loci (eQTLs) sharing a single causal variant. Cis-eQTLs were derived 

from eQTLGen (accessed 19/02/2020; https://www.eqtlgen.org/cis-eqtls.html)54 and PsychENCODE 

(accessed 20/02/2020; http://resource.psychencode.org/),55 which represent the largest human blood and 

brain expression datasets, respectively (eQTLGen, N=31,684 individuals; PyschENCODE, N=1,387 

individuals). For each locus, we examined all genes within 1Mb of a significant region of interest, as 

defined by RBD (p<5x10-8). Coloc was run using default p1=10-4 and p2=10-4 priors (p1 and p2 are the prior 

probability that any random SNP in the region is associated with trait 1 and 2, respectively). The p12 prior 

(the prior probability that any random SNP in the region is associated with both traits) was altered to 

p12=5x10-6, which has been shown to be a more robust choice than the default p12=10-5.56 Loci with a 

posterior probability of hypothesis 4 (PPH4) ≥ 0.8 were considered colocalized due to a single shared 

causal variant, as opposed to two distinct causal variants (PPH3). All colocalizations were subjected to 

sensitivity analyses using coloc’s sensitivity() function, which plots prior and posterior probabilities of each 

coloc hypothesis as a function of the p12 prior. This permits exploration of the robustness of our 

conclusions to changes in the p12 prior. Code for coloc analyses is openly available at 

https://github.com/RHReynolds/RBD-GWAS-analysis/. 

 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 13, 2021. ; https://doi.org/10.1101/2021.09.08.21254232doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.08.21254232
http://creativecommons.org/licenses/by/4.0/


 15

Cell-type and tissue specificity measures 

Specificity represents the proportion of a gene’s total expression attributable to one cell type/tissue, with a 

value of 0 meaning a gene is not expressed in that cell type/tissue and a value of 1 meaning that a gene 

is only expressed in that cell type/tissue. To determine specificity of a gene to a tissue or cell-type, 

specificity values from two independent gene expression datasets were generated, as described in Chia 

et al. 8. Briefly, these datasets included 1) bulk-tissue RNA-sequencing of 53 human tissues from the 

Genotype-Tissue Expression consortium (GTEx; version 8)17 and 2) human single-nucleus RNA-

sequencing of the middle temporal gyrus from the Allen Institute for Brain Science (AIBS; 

https://portal.brain-map.org/atlases-and-data/rnaseq/human-mtg-smart-seq).18 Specificity values for GTEx 

were generated using modified code from a previous publication 

(https://github.com/jbryois/scRNA_disease),57 and modified to reduce redundancy among brain regions 

and to include protein- and non-protein-coding genes. Expression of tissues was averaged by organ 

(except in the case of brain). Thus, specificity values were generated for a total of 35 tissues. Specificity 

values for the AIBS-derived dataset were generated using gene-level exonic reads and the 

‘generate.celltype.data’ function of the EWCE package (https://github.com/NathanSkene/EWCE).58 

Specificity values for both datasets and the code used to generate these values are openly available at: 

https://github.com/RHReynolds/MarkerGenes. 

 
 
Pathway Analysis 

Pathway analysis was performed using functional enrichment analysis, specifically gene set enrichment, 

using the publicly available online tool WebGestalt (http://www.webgestalt.org/).59 The gene set 

enrichment analysis examines the enrichment of a provided set of genes in predetermined lists of genes 

involved in various functional pathways, detailed in supplementary table 3. An enrichment score is 

calculated, representing the level to which these genes are over-expressed in the various pathways, and 

then statistical significance is calculated using permutation testing. RBD genes included were those 

closest to the most significant GWAS SNP. Multiple hypothesis adjustment is applied in accordance with 

the false-discovery rate (FDR). 

 

 

Heritability & Genetic Correlation 

The genetic contribution to RBD, known as heritability, was calculated in clinically confirmed cases of 

iRBD using linkage-disequilibrium (LD) score regression on the publicly available platform LD Hub 

(http://ldsc.broadinstitute.org/ldhub/).60 Shared heritability across traits, also known as genetic correlation, 

was calculated using the same method and platform.61 Traits for shared heritability tests were chosen 

based on previous association to a synucleinopathy (e.g. smoking behaviors, education levels) and 

relevance to RBD (e.g. sleep disorders). Summary statistics for the compared traits were accessed 
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through the LDHub platform or downloaded from publicly available sources, then formatted and analyzed 

using LDHub python v2.7 scripts. Bonferroni correction was calculated based on the number of traits 

tested (N=27, p<0.0019). LD score regression code is available on 

https://github.com/lynnekrohn/RBD_GWAS/blob/main/4_LD-regression.md.  

 

 

Mendelian randomization 

To assess causality, we examined traits or exposures that were nominally associated with RBD through 

LD-score regression (before FDR correction), as well as traits previously associated with 

synucleinopathies, using Mendelian Randomization (MR). In brief, MR examines the combined effect of 

GWAS-significant genetic loci from a trait or exposure in the summary statistics of the outcome (in this 

case, RBD). This approach mimics a randomized control trial since genetics are randomly assigned at 

birth and are largely unaffected by environmental factors. We conducted MR analyses, including 

sensitivity tests, heterogeneity and pleiotropy assessments, and the inverse variance weighted (IVW) 

method, using the TwoSampleMR R package (https://mrcieu.github.io/TwoSampleMR/)62 in R version 

4.0.1 according to protocol previously established.22 Summary statistics for exposures were either 

downloaded from the MRBase GWAS catalogue (http://www.mrbase.org/) or extracted from published 

reports. P values were adjusted for multiple testing using FDR. MR code is openly available on 

https://github.com/lynnekrohn/RBD_GWAS/blob/main/5_MR.md.  
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IRB STATEMENT 

Participants provided informed consent and participated in the research online, under a protocol approved 

by the external AAHRPP-accredited IRB, Ethical & Independent Review Services (E&I Review). 

Participants were included in the analysis on the basis of consent status as checked at the time data 

analyses were initiated.  

 

 

DATA AVAILABILITY 

Summary statistics for the iRBD data set are available for download at www.tinyurl.com/iRBDsumStats.  

The full GWAS summary statistics for the 23andMe discovery data set will be made available through 

23andMe to qualified researchers under an agreement with 23andMe that protects the privacy of the 

23andMe participants. Please visit https://research.23andme.com/collaborate/#dataset-access/ for more 

information and to apply to access the data.  
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FIGURE 1. Summary of GWAS findings in the RBD meta-analysis. Manhattan plot. (a) The 

Manhattan plot highlights the 6 GWAS-nominated loci after meta-analysis. Each point represents the log 

adjusted p-value at each genomic site. The points in red show the top variant at that particular locus, as 

well as any secondary associations identified by COJO. The GWAS-significant p-value threshold of 5E-08 

is visualized with the dashed line. Polygenic risk scores for RBD were calculated using FDR-corrected 

GWAS variants in 3 cohorts: idiopathic RBD, PD+pRBD, and PD-pRBD, each with controls. Predictive 

power of RBD polygenic risk score. (b) The predictive power of the PRS in each cohort was assessed 

with area under the curve (AUC) and 95% confidence intervals. (c) The PRS for each cohort were divided 

in quartiles and analyzed against case status with logistic regression. The odds ratios and 95% 

confidence intervals are visualized here as compared to the lowest quartile (lowest 25% of scores). (d) 

Pathways associated with genes nominated by RBD meta-analysis. Bars represent the unadjusted p-

values for pathways nominated by functional enrichment analysis in cellular component (blue) and 

biological processes (red). All pictured pathways are significant after FDR multiple testing correction.  
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FIGURE 2. Expression data from GTEx version 8 for RBD and PD top variants in differing loci. All 

data was extracted from the GTEx online portal (https://www.gtexportal.org/). Nominal associations are 

indicated with * (p<0.05) while Bonferroni-corrected significant associations are indicated with **. Dark 

grey indicates missing data in these tissues.  
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FIGURE 3. Regional association plots for eQTL and RBD GWAS colocalizations and tissue and 

cell-type specificity of MMRN1 and SNCA-AS1. Regional association plots for eQTL (upper pane) and 

RBD GWAS association signals (lower pane) in the regions surrounding (a) SNCA-AS1 (PPH4 = 0.89) 

and (b) MMRN1 (PPH4 = 0.86). eQTLs are derived from (a) PsychENCODE's analysis of adult brain 

tissue from 1387 individuals or (b) the eQTLGen meta-analysis of 31,684 blood samples from 37 cohorts. 

In (a) and (b), the x-axis denotes chromosomal position in hg19, and the y-axis indicates association p-

values on a -log10 scale. Plot of SNCA-AS1 and MMRN1 specificity in (c) 35 human tissues (GTEx 

dataset) and (d) 7 broad categories of cell type derived from human middle temporal gyrus (AIBS 

dataset). Specificity represents the proportion of a gene’s total expression attributable to one cell 

type/tissue, with a value of 0 meaning a gene is not expressed in that cell type/tissue and a value of 1 

meaning that a gene is only expressed in that cell type/tissue. In (c) tissues are colored by whether they 

belong to the brain. In (c) and (d), tissues and cell types have been ordered by specificity from high to 

low. 
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FIGURE 4. Beta-beta plots comparing synucleinopathy GWAS summary statistics to the latest PD 

GWAS. Colored points indicate variants with the same (blue) or opposite (red) direction of effect in both 

studies, with a nominally significant p-value (p<0.05). Grey points are those with undetermined direction 

(p>0.05 and confidence intervals cross 0). Gene names indicate the closest gene to the represented 

variant. 
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FIGURE 5. Genetic correlation results. Genetic correlation was calculated using LD-score regression 

for (a) the RBD meta-analysis, (b) isolated RBD (iRBD) alone, and (c) PD+pRBD alone. The traits tested 

are organized in their general categories as labeled by LD Hub. The error bars represent the standard 

error for the genetic correlation coefficient. 
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FIGURE 6. Key GWAS significant loci across three synucleinopathies. It has been shown that the 

genetic risk for PD and DLB do not overlap completely, and we show that the same is true for RBD and 

the other two synucleinopathies. Here we demonstrate key genetic risk loci for the three 

synucleinopathies. Only GBA and TMEM175 are shared between all three, both of which play a role in 

the autophagy lysosomal pathway. SNCA plays a role in PD, DLB, and RBD risk, yet the strongest risk 

locus for PD is at the 3’ end of the gene while RBD and DLB share a risk locus at the 5’ end. Similarly, 

SCARB2 is a risk factor for PD as well as RBD, however the RBD locus is independent of the variant 

identified for PD risk (as indicated by the asterisk in the figure).  
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TABLES 

 

Position (hg19) SNP Closest 

gene 

Eff 

Allele 

Ref 

Allele 

MAF Beta SE P-value Het I2 (%)  

4:90757272 rs3756059 SNCA A G 0.50 0.23 0.03 3.02E-16 94.4 

1:155205378 rs12752133 GBA T C 0.01 0.74 0.10 4.87E-14 0 

1:155205634 rs76763715 GBA T C 0.99 -1.04 0.16 1.68E-10 0 

4:951947 rs34311866 TMEM175 T C 0.81 -0.20 0.04 4.41E-09 0 

10:121536327 rs117896735 INPP5F A G 0.01 0.59 0.10 4.70E-09 0.60 

4:77132634 rs7697073 SCARB2 T C 0.34 0.16 0.03 2.21E-08 0 

 

TABLE 1. Independent RBD risk loci nominated by GWAS meta-analysis. SNP: single nucleotide 

polymorphism; Eff: effect; Ref: reference; MAF: minor allele frequency; SE: standard error; Het: 

heterogeneity. We identified 6 independent variants significantly associated with RBD according to the 

standard GWAS multiple testing correction (p<5E-08). The high heterogeneity found in the SNCA locus 

could be attributed to the stronger effect size in iRBD (beta=0.40) compared to PD+pRBD (beta=0.15).  
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  IVW MR Egger Weighted median 

Exposure No. of 
SNPs 

beta se p FDR beta se p beta se p 
 

Arm fat mass 
(left) 

260 -0.14 0.12 0.25 0.45 -0.30 0.35 0.39 -0.05 0.17 0.78 

Arm fat mass 
(right) 

261 -0.13 0.12 0.25 0.45 -0.37 0.35 0.29 -0.08 0.17 0.64 

Arm fat 
percentage 
(left) 

247 -0.43 0.16 0.005 0.09 -0.35 0.51 0.48 -0.48 0.23 0.03 

Arm fat 
percentage 
(right) 

228 -0.43 0.16 0.009 0.10 -0.23 0.53 0.66 -0.44 0.22 0.05 

Leg fat 
percentage 
(right) 

237 -0.36 0.19 0.07 0.20 -0.64 0.73 0.38 -0.52 0.28 0.06 

Trunk fat 
mass 

276 -0.22 0.11 0.04 0.19 -0.48 0.33 0.15 -0.24 0.16 0.13 

Trunk fat 
percentage 

230 -0.31 0.13 0.02 0.18 -1.00 0.47 0.03 -0.41 0.18 0.02 

Whole fat 
body mass 

269 -0.13 0.11 0.24 0.45 -0.46 0.34 0.18 -0.20 0.16 0.23 

Type II 
Diabetes 

25 0.11 0.05 0.03 0.15 -0.15 0.12 0.21 0.06 0.07 0.43 

Uric acid 30 0.07 0.10 0.51 0.66 -0.02 0.16 0.87 0.04 0.12 0.76 

Ever smoked 76 0.38 0.51 0.45 0.61 2.16 2.45 0.38 0.92 0.75 0.22 

Cigarettes per 
day 

20 0.09 0.11 0.43 0.61 0.12 0.19 0.53 0.12 0.15 0.39 

Current 
tobacco 
smoking 

13 -0.09 1.22 0.94 0.97 -7.67 4.48 0.12 -0.63 1.37 0.65 

Past tobacco 
smoking 

91 0.17 0.17 0.31 0.51 -0.18 0.75 0.81 0.01 0.24 0.96 
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TABLE 2. RBD MR results for traits previously linked to PD. SNPs: single nucleotide polymorphisms; 

se: standard error; IVW: inverse variance weighted; MR: mendelian randomization. Mendelian 

Randomization (MR) was performed to determine causal relationships between RBD and traits previously 

found to be associated with PD. At this sample size, no causal relationships were identified, however BMI 

measurements show the same direction of effect in RBD as they do in PD (lower BMI, higher risk for PD).  
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SUPPLEMENTARY  

Supplementary figure legends 

 

SUPPLEMENTARY FIGURE 1. LocusZoom regional Manhattan plots for GWAS nominated RBD 

risk loci. Plots were generated using LocusZoom (http://locuszoom.org/). The x-axis indicates the 

genomic region defined by the top hit +/- 400kb, while the y axis represents the log-adjusted p values.  

 

SUPPLEMENTARY FIGURE 2. Sensitivity analysis of MMRN1 colocalization. Sensitivity analysis of 

colocalization between eQTLGen-derived eQTLs regulating MMRN1 expression and RBD GWAS signals. 

Plot of prior (left) and posterior (right) probabilities for H0-H4 across varying p12 priors. Dashed vertical 

line indicates the value of p12 used in the initial analysis (p12 = 5 x 10−6), The green region in these plots 

show the region for which PPH4 ≥ 0.75 would still be supported. 

 

SUPPLEMENTARY FIGURE 3. Sensitivity analysis of SNCA-AS1 colocalization. Sensitivity analysis 

of colocalization between PscyhENCODE-derived eQTLs regulating SNCA-AS1 expression and RBD 

GWAS signals. Plot of prior (left) and posterior (right) probabilities for H0-H4 across varying p12 priors. 

Dashed vertical line indicates the value of p12 used in the initial analysis (p12 = 5 x 10−6). The green 

region in these plots show the region for which PPH4 ≥ 0.75 would still be supported. 

 

SUPPLEMENTARY FIGURE 4. Association of RBD risk with SNCA-AS1 expression. Scatterplot of 

beta coefficients for SNPs shared between the RBD GWAS and PsychENCODE eQTLs regulating 

SNCA-AS1 expression. SNPs passing genome-wide significance (p = 5 x 10−8) in the RBD GWAS and/or 

PyschENCODE are indicated in red. The black line represents a linear model fitted for the beta 

coefficients from either dataset, with the 99% confidence interval indicated with a red fill. 

 

SUPPLEMENTARY FIGURE 5. Regional association plot for eQTL and RBD GWAS colocalization 

in the region surrounding SCARB2. Regional association plots for eQTL (upper pane) and RBD GWAS 

association signals (lower pane) in the region surrounding SCARB2, using eQTLs derived from (a) the 

eQTLGen meta-analysis of 31,684 blood samples from 37 cohorts (PPH3 = 0.99; PPH4 = 0.01) or (b) 

PsychENCODE's analysis of adult brain tissue from 1387 individuals (PPH3 = 0.66; PPH4 = 0.33). The x-

axis denotes chromosomal position in hg19, and the y-axis indicates association p-values on a -log10 

scale. 
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SUPPLEMENTARY FIGURE 6. Sensitivity analysis of SCARB2 colocalization using eQTLGen-

derived eQTLs. Sensitivity analysis of colocalization between eQTLGen-derived eQTLs regulating 

SCARB2 expression and RBD GWAS signals. Plot of prior (left) and posterior (right) probabilities for H0-

H4 across varying p12 priors. Dashed vertical line indicates the value of p12 used in the initial analysis 

(p12 = 5 x 10−6). The green region in these plots show the region for which PPH4 ≥ 0.75 would still be 

supported.  

 

SUPPLEMENTARY FIGURE 7. Sensitivity analysis of SCARB2 colocalization using 

PsychENCODE-derived eQTLs. Sensitivity analysis of colocalization between PsychENCODE-derived 

eQTLs regulating SCARB2 expression and RBD GWAS signals. Plot of prior (left) and posterior (right) 

probabilities for H0-H4 across varying p12 priors. Dashed vertical line indicates the value of p12 used in 

the initial analysis (p12 = 5 x 10−6). The green region in these plots show the region for which PPH4 ≥ 

0.75 would still be supported.  

 

SUPPLEMENTARY FIGURE 8. Power calculations by effect size and allele frequency. The figure 

shows the power of our cohort to detect associations at GWAS significance level (p<5E-8) according to 

the Genetic Association Study (GAS) Power Calculator.  
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Supplementary tables 

SUPPLEMENTARY TABLE 1. Results of colocalization analysis using the RBD GWAS and eQTLs 

derived from eQTLGen and PsychENCODE. 

SUPPLEMENTARY TABLE 2. Specificity values of MMRN1 and SNCA-AS1 in GTEx and AIBS datasets. 

SUPPLEMENTARY TABLE 3. Polygenic risk profile for RBD, comprised of 47 independents SNPs 

passing GWAS FDR correction (p<1E-05).  

SUPPLEMENTARY TABLE 4. Detailed significant results from pathway analysis with WebGestalt.  

SUPPLEMENTARY TABLE 5. GWAS summary statistics for all GWAS nominated PD loci in PD, iRBD, 

PD+pRBD, and DLB.  

SUPPLEMENTARY TABLE 6. LD-score regression genetic correlation results for iRBD, PD+pRBD, and 

the RBD GWAS meta-analysis. 

SUPPLEMENTARY TABLE 7. Mendelian Randomization results and sensitivity analyses for all studied 

traits and exposures in the RBD meta-analysis.  

 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 13, 2021. ; https://doi.org/10.1101/2021.09.08.21254232doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.08.21254232
http://creativecommons.org/licenses/by/4.0/

