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Abstract:  

Rationale: Breathing motion (respiratory kinematics) can be characterized by the interval and 

depth of each breath, and by magnitude-synchrony relationships between locations. Such 

characteristics and their breath-by-breath variability might be useful indicators of respiratory 

health.    

Objectives: To enable breath-by-breath characterization of respiratory kinematics, we 

developed a method to detect breaths using motion sensor signals.  

Methods: In 34 volunteers who underwent maximal exercise testing, we used 8 motion sensors 

to record upper rib, lower rib and abdominal kinematics at 3 exercise stages (rest, lactate 

threshold and exhaustion). We recorded volumetric air flow signals using clinical exercise 

laboratory equipment and synchronized them with kinematic signals. Using instantaneous 

phase landmarks from the analytic representation of kinematic and flow signals, we identified 

individual breaths and derived respiratory rate signals at 1Hz. To evaluate the fidelity of 

kinematics-derived respiratory rate signals, we calculated their cross-correlation with the flow-

derived respiratory rate signals. To identify coupling between kinematics and flow, we 

calculated the Shannon entropy of the relative frequency with which kinematic phase 

landmarks were distributed over the phase of the flow cycle.         

Measurements and Main Results: We found good agreement in the kinematics-derived and 

flow-derived respiratory rate signals, with cross-correlation coefficients as high as 0.94. In some 

individuals, the kinematics and flow were significantly coupled (Shannon entropy < 2) but the 

relationship varied within (by exercise stage) and between individuals. The final result was that 
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the phase landmarks from the kinematic signal were uniformly distributed over the phase of 

the air flow signals (Shannon entropy close to the theoretical maximum of 3.32).  

Conclusions: The Analysis of Respiratory Kinematics method can yield highly resolved 

respiratory rate signals by separating individual breaths. This method will facilitate 

characterization of clinically significant breathing motion patterns on a breath-by-breath basis. 

The relationship between respiratory kinematics and flow is much more complex than 

expected, varying between and within individuals.  

Abstract word count: 299 

MeSH terms: Diagnostic Techniques, Respiratory System; Monitoring, Physiologic; Respiratory 

Physiology; Medical Device Design; Work of Breathing
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1.0) Introduction:  

A clinician’s bedside physical examination is never complete without careful 

characterization of the breathing motion (respiratory kinematics) (1–3). Features of interest 

include breath intervals, overall depth of breathing and the magnitude-synchrony relationships 

between key anatomical locations (4). They contain information about the subject’s health 

which can be useful in wide range of respiratory and non-respiratory illnesses. Tachypnea (short 

breath interval) and hyperventilation (increased depth of breaths) in the setting of infection can 

herald the onset of sepsis (5). Abdominal paradox (inward abdominal motion, asynchronous 

with rib cage expansion), in the setting of pneumonia, suggests inspiratory muscle overload and 

is a risk marker for imminent acute respiratory failure (4,6).  

In many clinical scenarios, breath-to-breath variability of motion patterns is also an 

important feature. Respiratory alternans is a sign of inspiratory muscle overload where ribcage-

predominant breaths alternate irregularly with abdomen-predominant ones (4,6). Tidal volume 

variability (shallow breaths alternating with deep ones) precedes hypoventilation (consistently 

shallow breaths) in opiate-induced respiratory depression and can provide early warnings of an 

overdose (7–9).         

Despite well-established clinical significance, quantitative characterization of respiratory 

kinematics has proven elusive. Some methods use chest impedance or electrocardiograms to 

characterize respiratory rates and rhythms (10–12). These can be deployed in intensive care 

and other telemetry enabled units. Other methods like pneumography, inductance 

plethysmography, optoelectronic plethysmography, and magnetometry involve obtrusive 
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hardware and/or cumbersome calibration protocols (4,13). They remain limited largely to sleep, 

exercise and physiology laboratories. In most clinical settings (home, clinics, ambulances and 

low acuity wards), an experienced clinician’s visual examination remains the sole method to 

characterize breathing motion patterns.  

We have developed the Analysis of Respiratory Kinematics (ARK) system for quantitative 

characterization of breathing motion in an unobtrusive manner in any clinical setting. Signals 

are recorded using a network of microelectromechanical system inertial measurement units 

(MEMS-IMUs) placed on key anatomical landmarks of the chest and abdomen. To pave the way 

for characterization on a breath-by-breath basis, a method was needed to accurately detect 

individual breaths using ARK system signals. The aim of this study was to develop a reliable and 

reproducible method for breath separation that is based on fundamentally sound analytic 

principles. 

2.0) Methods:  

 We recruited 34 healthy volunteers for maximal oxygen consumption (VO2-Max) testing 

on a bicycle ergometer in the University of Virginia’s Exercise Physiology Core Laboratory. We 

placed 8 inertial sensors on key anatomical locations of the chest and abdomen (Figure 1a). 

Each motion sensor captured 9 streams of signals (3 orthogonal axes each from accelerometers, 

rate gyroscopes, and magnetometers). To identify breath intervals in this study, we used the 

linear acceleration signal that was normal to the body surface. We will refer to this signal as the 

accelerometer signal. To study the relationship of kinematic signals with the air flow cycle, we 
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recorded volumetric flow rate (“flow”) using the laboratory’s standard clinical equipment 

(Vyaire V-Mask 29-CE; Hans Rudolph metabolic masks).  

We used the Rated Perceived Exertion (RPE) scale to monitor the level of exertion (14),  

with lactate threshold defined as RPE of 13 (15) and exhaustion as RPE of 20 and/or failure to 

maintain a pedaling cadence of 60 revolutions per minute. We obtained 2-minute recordings of 

all signals at rest (pre-exercise), lactate threshold, and exhaustion (Figure 1b). During recording 

periods, volunteers assumed a supine position with 30o head elevation. 

2.1) Time synchronization 

Each of the eight sensors was connected via USB to a host application running on a 

computer.  Data collection on the sensors was stagger-started over eight consecutive ticks of a 

common 100Hz timer on the host machine. Once started, each sensor recorded signals at a 

sampling frequency of 100Hz based on a local timer on the sensor. Data were realigned to a 

common time frame using the initial host clock start time and the stagger order of the devices. 

Due to minor inconsistencies between local timers on the sensors, the data were interpolated 

to identical sampling times across all sensors. For interpolation, data were upsampled to a 

common 10μS clock by duplicating samples and filtering, then decimated to fall on hundredth-

second boundaries. 

2.2) Filtering 

We filtered the flow and accelerometer signals to preserve the respiratory content and 

to reduce the amplitude of the non-respiratory components. We used a Butterworth bandpass 

filter (fourth order low pass and sixth order high pass; zero-phase non-causal) with corner 
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frequencies of 0.05Hz and 1Hz. We based this choice on the fact that the frequency of human 

respirations can reasonably be expected to range between the corresponding rates of 3 and 60 

breaths per minute in most circumstances, including after maximal exercise. Since both flow 

and accelerometer measured the effects of the same underlying cyclical phenomenon – the 

subject’s respiration – we used the same filter specifications for both signals. 

2.3) Identifying breath intervals using the analytic representation of filtered signals   

From the filtered signals (both flow and acceleration), we generated the corresponding 

analytic representations. For any real valued signal 𝑢(𝑡), its analytic representation 𝑢𝑎(𝑡) is 

defined as: 

𝑢𝑎(𝑡) =
∆

𝑢(𝑡) +  𝑖 ∙ 𝐻(𝑢)(𝑡) 

Here, 𝐻(𝑢)(𝑡) is the Hilbert transform of 𝑢(𝑡), which shifts the phase of its components by 
𝜋

2
 

radians for negative frequencies and by −
𝜋

2
 radians for positive frequencies (16). In the analytic 

representation, the Hilbert transform is plotted on the imaginary y-axis [ 𝑖 ∙ 𝐻(𝑢)(𝑡)] as a 

function of the untransformed signal in the real x-axis of a complex plane. Multiplying by 𝑖 shifts 

all phases by an additional 
𝜋

2
 radians, restoring the phase of positive frequency components 

while negating the negative frequency components when added to the original, real signal.  

The angle made between points on the analytic signal and the positive real axis, with the 

origin as the vertex, represents the time-varying phase of the wave. Since the analytic 

representation contains only positive frequencies, the resulting instantaneous phase angle (φ) 

of the wave monotonically increases to match the progression of the complex signal around the 
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origin. For quasi-cyclic processes with repetitive but not strictly periodic behavior, this 

instantaneous phase angle can be used to reliably detect consistent landmarks, where a given 

phase closely tracks the same point on the original signal (e.g. a specific peak or zero-crossing) 

across different cycles. We used this property to identify breath intervals on flow and 

accelerometer signals as the intervals between successive occurrences of a particular phase 

angle (Figure 2).  

2.4) Evaluating fidelity of accelerometer-derived breath intervals 

We derived respiratory rate signals from accelerometer and flow signals by adapting the 

method that was originally proposed by Berger and coworkers to derive heart rate signals from 

electrocardiograms (17). We used intervals between instantaneous phase landmarks on the 

accelerometer and flow signals in place of R-R intervals on electrocardiograms (Figure 4a). In 

this study, we chose the phase angle of π radians as our landmark for both flow and 

accelerometer signals, and we resampled the respiratory rate at 1Hz. To evaluate the fidelity of 

accelerometer-derived breath intervals, we calculated cross-correlation between 

accelerometer-derived and flow-derived respiratory rate time series. 

2.5) Relating the phase of flow and accelerometer signals 

We calculated the relative frequency with which kinematic phase landmarks were 

distributed over the phase of the air flow cycle. We split the air flow cycle into 10 bins (bin 

width of 
𝜋

5
 radians). Similar methods have been used in the past to create cardiorespiratory 

synchrograms (18). To quantify synchronization, we calculated the Shannon Entropy of the 

histograms: 
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𝑆(𝑥) = ∑ 𝑃(𝑥𝑗) ∙ log2 𝑃(𝑥𝑗)

10

𝑗=1

 

Here 𝑃(𝑥𝑗) is the probability (relative frequency) of a kinematic phase landmark occurring in 

the jth bin of air flow phase. The utility of this measure in quantifying cardiopulmonary coupling 

has been described (19). In our application, the Shannon entropy could range between a 

maximum of 3.32 bits (log210) signifying uniform distribution across 10 bins, and a minimum of 

0 bits signifying localization to a single bin (Figure 4b).    

  We used MATLAB version 2020b for signal processing (20). We used REDCap electronic 

data capture tools hosted at the University of Virginia (21,22). 

 

3.0) Results: 

 Of the 34 volunteers, five had no usable data and seven had only partial data. The final 

sample consisted of 22 healthy volunteers. The reasons for missing data were related to 

unanticipated hardware and software malfunction in our locally produced prototype. Our 

subjects, a third of whom were women, had a mean age of 47 (range: 21-71), a mean BMI of 25 

(range: 21-33) and a mean VO2-max of 42 ml/kg/min (range: 15-60). 

3.1) Illustrative examples of results  

Figure 2 shows examples of acceleration signals (Panels A and D), their analytic 

representations (Panels B and E), and time domain plots of instantaneous phase angles (Panels 

C and F). The color-coded dots demonstrate the property that each occurrence of a particular 
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phase angle is separated from the last by one respiratory cycle. We can also note that points of 

maxima and minima in the untransformed signal correspond with the phase angles of 0 and π 

on the analytic representation. Similarly, zero crossings on the untransformed signal 

correspond with phase angles of 
𝜋

2
 and −

𝜋

2
 on the analytic representation. For the flow signals, 

these points are clinically significant and represent onset of inhalation (
𝜋

2
), onset of exhalation 

(−
𝜋

2
), peak inspiratory flow rate (0), and peak expiratory flow rate (π) respectively.  

Figure 3 shows landmarks (phase angle of π) plotted as vertical lines on the signals from 

which they were derived. In all panels that capture a meaningful degree of respiratory motion, 

the interval between these landmarks was defined as the accelerometer-derived breath 

interval. These intervals were used to (a) derive a respiratory rate signal (Figure 4a) and (b) 

identify coupling between kinematics and flow (Figure 4b). 

 Figure 5 shows four examples where flow-derived respiratory rate (solid black line) is 

plotted alongside accelerometer-derived respiratory rate signal. Panel A is a resting series with 

a very stable respiratory rate. The other panels show diverse patterns of recovery from 

exhaustion – a smooth downward trend in Panel B; a cyclical fluctuation superimposed on a 

downward trend in Panel C; and a slow recovery interrupted by a sharp transient deceleration 

in Panel D. Each of these patterns were reproduced with high fidelity in the accelerometer-

derived respiratory rate signal.  

Figure 6 shows examples of the complexity and diversity that we observed in the 

coupling between kinematics and flow. Panel A shows the results for an individual where the 

kinematics and flow were significantly coupled in all states of exercise – Shannon entropies of 
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1.87, 1.55 and 1.24. Interestingly, the point of localization varied by exercise stage - occurring in 

mid exhalation, at peak inspiratory flow, and at onset of inhalation during rest, lactate 

threshold and maximal exercise respectively. The overall localization was poor (Shannon 

entropy of 2.83) when all breaths were considered without regard to exercise state. In some 

other individuals, we found no localization even within a stage (Panel B).      

3.2) Summary Results 

We found a strong relationship between respiratory rate time series derived from 

accelerometer and flow signals. In light of the variability we observed in the kinematic-flow 

cycle synchronicity, we quantified the degree of agreement using the maximal cross-correlation 

value without regard for lag. We observed cross-correlation coefficients as high as 0.94. Of 

note, the strength of this relationship was preserved despite trends, cyclical fluctuations or 

transient disturbances in true respiratory rate (Figure 5). 

When analyzed across individuals and exercise states, landmarks from the phase of 

kinematic signals were uniformly distributed across the phase of the air flow cycle (Figure 6). 

The average Shannon entropy across the lower rib and abdominal sensors was 3.31, which is 

comparable to the entropy limit of 3.32 for a completely uniform distribution.  

.      

Discussion: 

 The clinical significance of breathing motion patterns is well established, but there are 

no unobtrusive methods to quantitatively characterize such patterns at the bedside. Clinicians 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 12, 2021. ; https://doi.org/10.1101/2021.09.06.21263179doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.06.21263179
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

11 
 

must rely on visual inspection to assess breathing motion, and qualitatively describe their 

findings in notes. This is problematic for several reasons. First, there is considerable inaccuracy 

in manual recordings of even the simplest kinematic feature, the respiratory rate (23,24).  For 

more complex features, even highly trained physicians achieved only moderate inter-rater 

reliability (25). Less experienced clinicians may simply miss red-flag signs or fail to recognize the 

risk they portend (26). Second, attempts to standardize terminology in narrative descriptions 

have not achieved wide adoption (27). Such an approach would require large scale continuous 

training of staff at every level of care. Finally, only a small proportion of variance in respiratory 

kinematic features is explained by conventionally monitored vital signs (28). Timely detection of 

respiratory kinematic aberrations, therefore, depends on frequent bedside assessments by 

experienced clinicians. This is not possible in most settings due to resource and/or staffing 

constraints. Patient isolation requirements in illnesses like COVID-19 further reduce the 

frequency of bedside assessment (29–31). Visualizations like the ones in Figure 3 or 6 can 

facilitate in-depth inspection of kinematic features by clinicians. They can be reviewed remotely 

and stored as a reference to ascertain the trajectory of respiratory kinematics over time. 

Quantitative characterization of the signals will yield novel features which may prove useful in 

predictive modelling of respiratory failure. We foresee considerable clinical utility in such 

remote, quantitative assessments of respiratory effort. 

 We found that the relationship between kinematic and air flow cycles was rich with 

complexity – varying between and within individuals. For practical breath-detection 

applications, this finding has an important implication – no landmark point is superior to any 

other in terms of optimizing alignment between the kinematic and air flow cycles. We selected 
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the phase angle of π radians to identify each nadir in the accelerometer signals. Any other 

landmark (like the phase angle of 0 radians to identify each peak of the accelerometer signal) 

might be selected.  

 We demonstrated that the ARK signals can yield highly resolved respiratory rate time 

series from kinematic signals. This finding paves way for two types of analyses in the future. 

First, a large number of well-established mathematical operations can be used to characterize 

respiratory rate time series in any clinical setting (32). The regular sampling on a real-time axis 

also allows for meaningful analysis in the frequency domain. Second, well-defined breath 

intervals will allow breath-by-breath characterization of signal features, i.e., comparing 

magnitude-synchrony relationships between different sensor locations within a single kinematic 

cycle. This is important to quantify patterns like respiratory alternans or opiate-induced ataxic 

breathing, where the breathing pattern varies from one breath to the next. Our future work will 

build on this breath detection method to describe the clinical significance of a large and diverse 

set of metrics. The overarching vision is to create a set of novel respiratory vital signs that can 

be conveniently measured in any setting and improve medical decision making in common 

clinical scenarios.  

 A strength of this work is that it is grounded in fundamentally sound analytic methods 

like the Hilbert transform, the analytic representation of a signal, Shannon entropy, and 

Berger’s interpolation algorithm. We do not rely on any arbitrary assumptions, decisions, 

thresholds or models. This enhances the reliability, reproducibility of our method and its 

generalizability to other signals that record respiratory motion (impedance, inductance 

plethysmography etc.). Another strength is the unique data set. To our knowledge, this is the 
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first instance where multi-focal kinematic signals are compared to synchronously-recorded 

volumetric air flow signals in varying states of respiratory physiology. This is, therefore, among 

the first descriptions of the enormous variability encountered in the flow-kinematics 

relationship.  

The small size and inclusion of only healthy individuals are limitations and further 

development in larger and more clinically diverse samples will be needed. The results at this 

stage serve as demonstration of feasibility of our breath detection method and lays the 

groundwork for detailed breath characterization in the future.      

Conclusion: 

We describe a reliable and reproducible method to detect individual breath cycles from 

respiratory kinematic signals. Despite a complex relationship between respiratory kinematics 

and air flow, our method resulted in highly resolved respiratory rate time series. This will 

facilitate quantitative characterization of clinically significant breathing motion patterns in any 

care setting.
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Figure 1. Panel A shows the position of our sensors. The topmost sensors were placed at the insertion of sternocleidomastoid, near 

the sternoclavicular joint. The second rib sensors were placed in the mid-clavicular line and the eighth rib sensors were placed in the 

anterior axillary line.  The abdominal sensor was placed in the midline abdomen, at that spot above the umbilicus where respiratory 

motion was most prominently visible to the technician. A sensor was also placed at the base of the neck in the posterior midline (not 

shown in the figure) to capture non-respiratory motions of the torso. The schematic in Panel B depicts our data acquisition process. 
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We obtained 2-minute recordings of all signals at rest (pre-exercise), lactate threshold, and exhaustion with volunteers in a supine 

position with 30o head elevation. 
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Figure 2. Selecting landmark points using the phase angle from its analytic representation. Panels A, B and C show resting signals 

and panels D, E, F show signals at exhaustion from the same subject. Panels A and D show the acceleration signal in time domain; 

panels B and E show the corresponding analytic representations. In an analytic representation of a signal, the Hilbert transform of 

the signal is plotted, on an imaginary y-axis of a complex plane, as a function of the untransformed signal. In this complex plane, the 
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phase angle for any number is defined as angle between the positive real axis and the line joining the origin and that number. Panel 

C shows a time domain plot of the phase angle. Across all panels, the points with phase angles of 0, 0.5π, π and -0.5π radians are 

colored black, blue, red, and green respectively. 
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Figure 3. Visualizing respiratory kinematics: This figure shows 30 second strips of accelerometer signals obtained at rest (left) and 

after maximal exercise (right) by the same individual. The top four panels are organized by kinematic sensor location: 
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sternocleidomastoid insertion (SCM), 2nd rib, 8th ribs & midline abdomen respectively. For bilateral sensors, color encodes laterality - 

blue is right and red is left. The bottom panel shows air flow signals recorded using exercise laboratory equipment. The vertical lines 

mark the location of landmark points selected using a phase angle of π radians. The intervals between these landmarks decrease 

sharply, reflecting tachypnea after exertion. Additionally, significant changes can be noted in magnitude and synchrony of motion at 

various sensor locations. Most prominently, thorax predominant breathing at rest changes to a mixed thoraco-abdominal breathing 

at exhaustion (comparing signals at 8th rib and abdomen). Upper thoracic motion (SCM and 2nd rib), which likely reflects accessory 

respiratory muscle recruitment, rises from being negligible to being comparable to lower thoracic signals at exhaustion
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Figure 4. (A) Respiratory rate sampling: The top two curves show a segment of the acceleration signal and its instantaneous phase. 

The respiratory rate samples derived from these intervals are shown at the bottom.  First, breath intervals (labelled as I1 to I4) are 

determined using consecutive occurrences of a phase angle (π radians, in this case). Next, a sampling rate for the respiratory rate (fr) 

signal is chosen as desired (1 Hz in our case), without regard to mean respiratory rate or sampling frequency of the acceleration 

signal.  For each sampling point, we count the number of breath intervals (ni), including fractions, that occur in the time window 

extending from the previous sample to the next. For example, at time t1, 𝑛𝑡1
= [

𝑎
𝐼2

] and at time t2, 𝑛𝑡2
= [

𝑏
𝐼3

+ 𝑐
𝐼4

]. The respiratory 
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rate (ri) at each sampling point is calculated as 𝑟𝑖 =
𝑓𝑟 × 𝑛𝑖

2
. (B) Kinematics-flow coupling: Here, we illustrate our method to measure 

coupling between signals using one example each of strong (top) and weak (bottom) coupling. When coupling is strong, landmarks 

from the phase of the acceleration signals (phase of 0 radians, in this case) are strongly localized to a particular portion of the phase 

of the flow cycle (mid-exhalation, in this case), resulting in low entropy (0.35 bits in this case). When coupling is weak, landmarks are 

uniformly distributed over the phase of the flow phase, resulting in high entropy (2.86 bits in this case).  

[PIF: Peak Inspiratory Flow; OE: Onset of Exhalation; PEF: Peak Expiratory Flow; OI: Onset of Inhalation; φ = Phase angle]    
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Figure 5: Respiratory rate signals. This figure highlights the diversity of respiratory rate signals 

that we observed in our small sample. The rate signals plotted in the solid black line were 

derived from air flow signals whereas dotted lines are rate signals sampled from 8th rib (red and 

green) and abdominal (blue) acceleration signals. Panel A is a resting series with a very stable 

respiratory rate. Panels B, C and D are all series obtained at exhaustion and show a variable 

recovery pattern. In panel B, there is a smooth recovery in respiratory rate. Panel C shows a 

cyclical fluctuation of respiratory rate in addition to a downward trend. In Panel D, we see very 

gradual recovery that is interrupted with a transient slow-down. In each of these instances, 

respiratory rate signals were reproduced with high fidelity using the ARK method. 
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Figure 6: Kinematics-Flow Coupling: This figure illustrates the observation that kinematics and flow have a complex relationship 

which varies between and within individuals. Panel A shows findings from an individual whose kinematics were strongly coupled 

with flow within a stage. In each stage, however, the kinematic phase landmarks localized to different areas of the air flow phase. As 
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a result, the overall Shannon entropy for that individual was higher (2.83) than their stage-specific Shannon Entropy (1.87, 1.55, 

1.24). Panel B shows findings from an individual whose kinematics weakly coupled with flow even within a stage. Across individuals 

and exercises stages, therefore, the overall Shannon entropy (3.31) was very close to the maximal possible value of 3.32 (panel C). 

This figure displays results obtained from a lower rib sensor. Similar results were noted at all sensor locations.   

[PIF: Peak Inspiratory Flow; OE: Onset of Exhalation; PEF: Peak Expiratory Flow; OI: Onset of Inhalation; φ = Phase angle] 
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Footnotes: 

None
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Tables: 

None 
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