Perceptions, views and practices regarding antibiotic prescribing and stewardship among hospital physicians in Jakarta, Indonesia

Authors

Ralalicia Limato^{1,2}, Erni J. Nelwan^{3,4,5,6}, Manzilina Mudia¹, Monik Alamanda¹, Elfrida R. Manurung⁷, Ifael Y. Mauleti⁸, Maria Mayasari⁹, Iman Firmansyah¹⁰, Roswin Djafar⁶, Huong Vu Thi Lan¹¹, H. Rogier van Doorn^{2,11}, Alex Broom¹², Raph L. Hamers^{1,2,4*}

Affiliations

- 1. Eijkman-Oxford Clinical Research Unit, Jakarta, Indonesia
- 2. Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- 3. Department of Internal Medicine, Division of Infectious Diseases, Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia
- 4. Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- 5. Infectious Disease and Immunology Research Cluster, Indonesian Medical Education and Research Institute, Jakarta, Indonesia
- 6. Metropolitan Medical Centre Hospital, Jakarta, Indonesia
- 7. Royal Taruma Hospital, Jakarta, Indonesia
- 8. Fatmawati General Hospital, Jakarta, Indonesia
- 9. St. Carolus Hospital, Jakarta, Indonesia
- 10. Prof. Dr. Sulianti Saroso Infectious Disease Hospital, Jakarta, Indonesia
- 11. Oxford University Clinical Research Unit, Hanoi, Vietnam
- 12. School of Social and Political Sciences, The University of Sydney, Sydney, Australia

*Corresponding author

Raph L. Hamers MD PhD Email : raph.hamers@ndm.ox.ac.uk Phone: +62 21 31900971 Fax : -

Inserts: Tables 4; Figures 1 Appendix: survey questionnaire Data supplement: Tables 3; Figures 2

Abstract

Objectives: Antibiotic overuse is one of the main drivers of antimicrobial resistance (AMR), especially in low and middle-income countries. This study aimed to gain an understanding of perceptions, views, and practices regarding AMR, antibiotic prescribing, and stewardship (AMS) among hospital physicians in Jakarta, Indonesia.

Design: cross-sectional, self-administered questionnaire-based survey, with descriptive statistics, exploratory factor analysis (EFA) to identify distinct underlying constructs in the dataset, and multivariable linear regression of factor scores to analyse physician subgroups. **Setting:** Six public and private general hospitals in Jakarta in 2019.

Participants: 1007 of 1896 (53.1% response rate) antibiotic prescribing physicians. **Results:** EFA identified six latent factors (overall Crohnbach's α=0.85): awareness of AMS activities; awareness of AMS purpose; views regarding rational antibiotic prescribing; confidence in antibiotic prescribing decisions; perception of AMR as a significant problem; and immediate actions to contain AMR. Physicians acknowledged the significance of AMR and contributing factors, rational antibiotic prescribing, and purpose and usefulness of AMS. However, this conflicted with reported suboptimal local hospital practices, such as room cleaning, hand hygiene and staff education, and views regarding antibiotic decision-making. These included insufficiently applying AMS principles and utilising microbiology, lack of confidence in prescribing decisions, and defensive prescribing due to pervasive diagnostic uncertainty, fear of patient deterioration or because patients insisted. Physicians' factor scores differed across hospitals, departments, work experience and medical hierarchy.

Conclusions: AMS implementation in Indonesian hospitals is challenged by institutional, contextual and diagnostic vulnerabilities, resulting in externalising AMR instead of recognising it as a local problem. Appropriate recognition of the contextual determinants of antibiotic prescribing decision-making will be critical to change physicians' attitudes and develop context-specific AMS interventions.

Keywords: perceptions; survey; antibiotic resistance; antibiotic prescribing; antibiotic stewardship; Indonesia

Strengths and limitations of this study

- The self-developed questionnaire in this study identified a relevant set of attributes through a factor analysis optimization process, with adequate content, face and construct validity and internal reliability. This study adds important value in the absence of adequately validated instruments regarding antimicrobial resistance and stewardship, with particular applicability for LMIC.
- This study had a large, varied respondent sample and high response rate among physicians at six public and private hospitals in Jakarta, Indonesia, and identified differences between physicians across hospitals, departments, work experience and medical hierarchy, which can guide priority-setting and tailoring of stewardship interventions.
- However, non-participation and the convenient hospital sample could have introduced selection bias, and the data are not necessarily representative for Jakarta or Indonesia.
- Factor analysis is based on using a "heuristic", which leaves room to more than one interpretation of the same data and cannot identify causality.

Introduction

The global rise in drug-resistant infections is one of the leading threats to public health globally, with increasing rates of morbidity, mortality and escalating healthcare costs¹. Misuse and overuse of antimicrobial drugs in human health care is one of the main drivers^{2,3} and also represents a key solution, i.e. judicious use of remaining antibiotics. Globally, use of antibiotics remains largely unrestrained and poorly governed, with large, unregulated healthcare systems representing an increasingly challenging area for achieving the goal of optimization. Substantial variations in contributing factors to inappropriate antibiotic prescribing exist across contexts, e.g. diagnostic uncertainty, pressure from pharmaceutical industry or patients^{4,5}, with the structure and funding of health systems inflecting enactment of optimization strategies, including antimicrobial stewardship (AMS)⁶.

AMS programs aim to control antimicrobial use, and have been associated with reducing hospital-acquired infections, unnecessary healthcare costs, and potentially drug-resistant infections^{7–9}. However, AMS programmes in turn may jar with local constraints and practices and have been shown to have limited traction when attempts to implement occur without adequate understanding of context¹⁰.

The global push to enact effective AMS requires detailed, context-specific data on physicians, given their central role in the complex process of antibiotic prescribing in hospitals, which can inform on how AMR is conceived, how current prescribing is rationalised, and how broad AMS principles may be experienced across contexts and nations^{11,12}. Few studies to date have been conducted on this topic in low and middleincome countries (LMIC), with insufficient evaluation of the psychometric properties of their measurement instruments to examine their suitability to the specific context^{4,5}. Indonesia, a diverse middle-income country in Southeast Asia with the world's fourth largest population (275 million), is particularly vulnerable for AMR, driven by dense urban populations combined with rising antibiotic consumption¹³, a decentralised health system¹⁴, and weakly enforced antibiotic policies¹⁵, hence promoting inappropriate prescribing and over-thecounter access without a prescription. Despite progress in government policies, AMS is generally in an early stage of implementation^{15,16}.

To identify context-specific opportunities for AMS interventions, we conducted a guestionnaire-based survey among antibiotic-prescribing physicians in hospitals in Jakarta. Indonesia, to evaluate their perceptions of AMR, accounts of antibiotic prescribing, and views on AMS. We performed exploratory factor analysis (EFA) to evaluate the construct

validity and psychometric properties of the questionnaire, identify distinct underlying constructs in the data, and explore differences between physician subgroups.

Methods

Study design and setting

We conducted a cross-sectional survey between March and August 2019 among all antimicrobial prescribing physicians at six public and private general hospitals in Jakarta, Indonesia, as part of a mixed-method study to identify targets for quality improvement in antibiotic prescribing practices (EXPLAIN study¹⁷). The hospitals included two tertiary-care government hospitals and four secondary hospitals, three of which were private hospitals. At the time of the survey, all six hospitals had an AMS programme, albeit at an early stage of implementation.

All qualified physicians prescribing antibiotics on a regular basis working across all clinical departments were eligible to participate, including interns/internship doctors *(magang/dokter internsip),* general practitioners (*dokter umum*) (GPs), residents (*residen*), specialist/consultant physicians (*dokter spesialis/konsultan*), and others.

Ethical considerations

The research ethics committee of the Faculty of Medicine University of Indonesia (1364/UN2.F1/ETIK/2018) and the Oxford Tropical Research Ethics Committee (559-18) approved the study, with additional permission from hospital management. As the survey was anonymous, participant consent was inferred when the doctor completed and returned the questionnaire, as explained in the survey introduction.

Patient and public involvement statement

Patients or the public were not involved in the design, conduct, or reporting of the research.

Survey questionnaire

We developed a two-page anonymous, self-administered, paper-based questionnaire, which was easy to complete and based on a conceptual framework that included attributes related to prescribers' perceptions, views and practices. Behavioural theories, good practice recommendations for questionnaire design and existing questionnaires in the literature were reviewed and discussed with several experts. The Clinician Pre/Post Perception Survey of the Greater New York Hospital Association United Hospital Fund¹⁸ constituted the initial set of items, supplemented with relevant items from other existing questionnaires^{19–25}. From a preliminary pool, we selected 69 items, of which 8 items were worded in the negative to

address the acquiescence effect. The instrument was translated from English to Indonesian, and back-translated by an independent translator. The questionnaire was pre-tested by a convenience panel of 18 physicians (2 GPs, 15 residents, and 1 consultant), and adjustments were made in accordance with their feedback, reducing the number of items to 40. The final version took about 10 minutes to complete.

The final questionnaire included an explanation of study purpose and completion instructions; 40 short statements (items) to which participants were asked to indicate the extent to which each reflected their own opinion on a 5-point Likert scale, divided into 3 sections: scope of the AMR problem and key contributors; antibiotic prescribing practices; AMS; and respondent socio-demographics (**Appendix**).

Respondent recruitment

The hospital management provided the total number of prescribing physicians for each department. The questionnaires were delivered to the head of each unit who then distributed the survey to all eligible staff. The study coordinator kept a record of numbers of physicians approached and participated. Upon survey completion, respondents could enter a raffle to win one of three gift cards in each hospital (US\$14 each); there were no other incentives for participation.

Ethical approval

The research ethics committee of the Faculty of Medicine University of Indonesia (1364/UN2.F1/ETIK/2018) and the Oxford Tropical Research Ethics Committee (559-18) approved the study, with additional permission from hospital management. As the survey was anonymous, consent was inferred when the participant completed and returned the questionnaire.

Statistical analysis

The percentage of respondents selecting each answer choice was calculated using the total number of responses as the denominator. For an EFA, a common lower bound for sample size is 10 cases per variable, suggesting a minimum sample size of 400; to allow for meaningful subgroup comparisons and minimize selection bias, we targeted a >50% response rate and a sample size of >1000 across the six hospitals. We performed EFA to identify underlying distinct constructs, using factor, pcf command in Stata with orthogonal (varimax) rotation. For this analysis, the eight items worded in the negative were reverse-coded, and missing data for categorical variables were treated as a separate category. The Kaiser-Meyer-Olkin (KMO) was calculated to ensure EFA requirements were met. Each item was assigned to a certain factor based on the highest absolute factor loading of the rotated

solution, and we then assigned an umbrella term to each factor. After the optimal factor solution had been achieved, we calculated factor scores using the regression scoring method, and Cronbach's α coefficient to test internal reliability. Using the factor scores (dependent variable), multivariable mixed-effects linear regression was used to analyze physician subgroups (independent variables i.e., hospital sector and care level, grouped departments, work experience and medical hierarchy), while adjusting for possible clustering within hospitals as well as relevant confounders. P-values<0.05 were considered statistically significant. All analyses were done with Stata/IC Version 16.1 (StataCorp, College Station, TX, US).

Results

Respondent characteristics

All 1896 antibiotic prescribing physicians at the six hospitals were approached, and 1007 (53.1%) participated in the survey. **Table 1** summarizes the participants' key characteristics. **Table S1** summarizes the response rates.

Exploratory factor analysis

The KMO was 0.8773 overall and >0.5 for all items, suggesting the data were suitable for EFA. Analysis of the scree plot (**Figure S1**) indicated a case for four factors, whereas the parallel analysis (**Figure S2**) indicated a case for seven factors. The four-factor solution yielded strong factors but explained only 39.9% of the variance and lacked a theoretical basis for one factor. The seven-factor solution contained one factor with only three items that was difficult to interpret; two of these items (Q9 and Q10) did not load well with any factor in various alternative factor solutions and were removed. Therefore, a six-factor model with a clear theoretical basis based on 38 items was deemed most suitable, explaining 47.4% of the variance, with KMO 0.8802 overall and >0.5 for each item (**Table 2**). The six latent factors are (**Table 3**, see **Table S2** for details): 1) Awareness of AMS activities; 2) Awareness of AMS purpose; 3) Views regarding rational antibiotic prescribing; 4) Confidence in antibiotic prescribing decisions; 5) Perception of AMR as a significant problem; and 6) Immediate actions to contain AMR. Internal reliability was excellent for the overall 38-item scale (α =0.85) and factor 1 (α =0.8734) and 2 (α =0.8334), good for factor 3, 4 and 5 (α =0.70 each), and acceptable for factor 6 (α =0.57).

Description of respondent responses

Figure 1 and Table S3 summarise the responses to all 40 items.

Scope of the AMR problem and key contributors Most respondents agreed that AMR is an important problem in Indonesia (93.8%; 944/1006) [Q2]; in communities outside of the hospital (83.6%; 838/1003) [Q6]; and at their hospital (80.4%; 808/1005) [Q1], with 30.9% (311/1005) agreeing that patients are likely to develop an infection with a multidrug-resistant infection [Q10]. Most acknowledged as key contributing factors: overuse of antimicrobial drugs (95.1%; 954/1003) [Q3], lack of hand hygiene (71.1%; 715/1005) [Q4], use of broad-spectrum antibiotics (80.5%; 808/1004) [Q5]. Current infection and prevention control (IPC) practices at their hospital were regarded as suboptimal: 64.8% (651/1004) thought that patient rooms are cleaned according to hospital protocol after discharge of a patient with a multidrug-resistant organism [Q7]; 56.9% (570/1002) thought adherence to hand-hygiene

protocols to be excellent [Q8]; and 22.5% (226/1005) felt that their hospital does not provide adequate staff education regarding multidrug-resistant organisms [Q9].

Antibiotic prescribing practices Whereas most respondents (85.7%: 861/1005) agreed that antibiotics are overused in Indonesia (Q11), only 35.5% (357/1005) acknowledged this to be case at their hospital [Q12]. Most agreed that more judicious antimicrobial prescribing practices would decrease AMR (94.8%; 953/1005) [Q17] and that following evidence-based antibiotic guidelines will help optimize treatment outcomes (95.3%; 958/1006) [Q18]. Most gave high priority to rational antibiotic prescribing to their patients (88.8%; 892/1005) [Q19], and considered developing hospital antibiotic guidelines more useful than applying international guidelines (78.4%; 787/1004) [Q20]. Nearly a guarter of respondents indicated to be often unsure if a patient needs an antibiotic or not (23.6%; 237/1006) [Q21] or which antibiotic to prescribe (21.3%; 215/1006) [Q22]. A small but considerable fraction expressed lack of confidence in prescribing decisions, i.e. 12.2% (123/1005) prescribed in patients with just a high fever (≥39°C) [Q24], 36.6% (368/1005) when they felt uncertain about the diagnosis of infection [Q25], 35.0% (352/1006) prescribed more freely because of fear of clinical failure [Q26], and 9.8% (98/1005) frequently prescribed antibiotics because patients or their relatives insist [Q27]. Just more than half of the respondents reported that microbiology laboratory results are efficiently communicated to the treating physician (57.3%; 576/1005) [Q13], considered the hospital antibiogram when empirically prescribing antibiotics (54.5%; 548/1005) [Q14], and would stop antibiotics that others have prescribed in the absence of an appropriate indication (57.0%; 571/1002) [Q23]. Most (72.7%; 731/1006) agreed that, if medically appropriate, intravenous antibiotics should be stepped down to an oral alternative after three days [Q15]. Notably, 33.6% (338/1006) felt that restrictions on antibiotics impaired their ability to provide good patient care [Q16].

Antibiotic stewardship When asked about AMS in general, most respondents were aware that their hospital had an AMS programme (93.1%; 937/1006) [Q28], they reported they understood its purpose (92.1%; 927/1006) [Q29], and they agreed that AMS can improve patient care (88.6%; 891/1006) [Q30], reduce AMR (88.3%; 887/1005) [Q31] and hospital-acquired infections (76.7%; 770/1004) [Q32]. When asked about the usefulness of specific AMS activities, most respondents acknowledged that additional education on antibiotic prescribing was needed (88.4%; 888/1005) [Q33], regular audit and feedback encouraged them to prescribe antibiotics prudently (92.2%; 928/1006) [Q34], rapid and accurate diagnostic tests are useful for diagnosis of infectious diseases and guidance on antibiotic therapy (96.5%; 971/1006) [Q35], implementation of antibiotic restriction (e.g. antibiotic tiers) can reduce antibiotic overuse in hospitals (90.4%; 910/1007) [Q36], regular consultations or ward rounds with a clinical microbiologist or infectious disease physician can curb AMR

(85.4%; 859/1006) [Q37], timely access to microbiological test results is needed to guide antibiotic therapy (92.4%; 930/1006) [Q38], and IPC in the hospital can reduce AMR (95.3%; 959/1006) [Q40].

Physician subgroup analysis

Table 4 summarizes the results of the subgroup analysis.

Hospitals Statistically significant differences were identified between hospitals for awareness of AMS purposes (factor 2), views regarding rational antibiotic prescribing (factor 3), perception of AMR as a significant problem (factor 5) and immediate actions to contain AMR (factor 6), but not for awareness of AMS activities (factor 1) and confidence in antibiotic prescribing decisions (factor 4). None of the factor scores differed between prescribers in public versus private, or secondary versus tertiary hospitals.

Professional hierarchy For awareness of AMS activities (factor 1), consultants, GPs and residents scored higher than interns. For awareness of AMS purposes (factor 2), consultants scored lower than interns and residents. For views regarding rational antibiotic prescribing (factor 3), consultants scored higher than GPs. For confidence in antibiotic prescribing decisions (factor 4), consultants scored lower than residents, whereas for immediate actions to contain AMR (factor 6), consultants scored higher than group of the perception of AMR as a significant problem (factor 5).

Departments For awareness of AMS activities (factor 1) and purpose (factor 2), physicians in surgery and medicine scored higher than the acute specialties, whereas for awareness of AMS activities (factor 1), medicine scored higher than surgery. For views regarding rational antibiotic prescribing (factor 3), surgery scored higher than acute specialties. For confidence in antibiotic prescribing decisions (factor 4), medicine scored lower than surgery and other specialties. For perception of AMR as a significant problem (factor 5), surgery scored lower than medicine. For immediate actions to contain AMR (factor 6), surgery scored higher than surgery and other medicine and other specialties, and the acute specialties scored higher than surgery and medicine.

Work experience. Physicians with little (0-5 years) work experience scored lower than more experienced colleagues, for awareness of AMS purpose (factor 2); for perception of AMR as a significant problem (factor 5); and for immediate actions to contain AMR (factor 6). No differences were identified for factors 1, 3 and 4.

Discussion

This survey assessed the perceptions, views and practices regarding AMR, antibiotic prescribing and AMS among over 1000 physicians in Indonesian hospitals. Through an exploratory factor analysis we identified six distinct constructs in the dataset, i.e., 1) awareness of AMS activities; 2) awareness of AMS purposes; 3) views regarding rational antibiotic prescribing; 4) confidence in antibiotic prescribing decisions; 5) perception of AMR as a significant problem; and 6) immediate actions to contain AMR. The survey findings outline a series of dynamics around AMR and AMS in the Indonesian context. Spanning issues around visibility (diagnostics)²⁶, awareness (education)²⁷ and institutional form (governance)²⁸, the survey results tease out many of the core issues illustrated in other settings^{4,5}, but in turn, illustrate a specific mix of variables at play, i.e. uncertainty, risk, and lack of sense of responsibility. For instance, only about one-third of physicians recognised that antibiotic overuse was an issue at their own hospital, many physicians were hesitant to stop antibiotics that others had prescribed in the absence of an appropriate indication, and felt that antibiotic restrictions impaired their ability to provide good patient care. Lack of confidence in prescribing decisions and defensive prescribing were common due to diagnostic uncertainty, fear of patient deterioration or complications, or because patients or their relatives insisted. The study findings expand on our recently published paper on the patterns and quality indicators of antibiotic prescribing in the same hospitals, which identified several priority areas for stewardship¹⁷.

The most significant factor in guiding the future agenda in Indonesia around effective AMS implementation, is the perceived "externality of AMR" as a problem²⁹. That is, physicians acknowledge its significance but do not take ownership or responsibility, thus reflecting a production of AMR as an externality, e.g. a result of irrational use elsewhere in communities or other hospitals. The lack of systematic surveillance of AMR and antibiotic use and the underutilisation of bacterial cultures, recognised by many of the respondents, also reproduces the perception of AMR as a "problem of elsewhere". This feeds a lack of engaging with AMS, as it is not recognised as a value-add for an already stretched institutional context, and in turn provides the context for continued defensive prescribing "to be on the safe side". Moreover, defensive prescribing practices somewhat offset (in the short term) problems around room cleaning, hand hygiene and staff education. In this way, AMR as an externality and the vulnerabilities of the institution, offer an environment conducive to the ongoing over-use of antimicrobials^{30,31}. The higher incidence of hospital-acquired infections in LMIC than in high-income countries could further promote defensive prescribing as a way to compensate for substandard IPC practices³². All in all, this supports the notion that physicians tend to prioritise managing immediate clinical risks, reputation and concordance with peer practice, vis-à-vis the long-term population consequences of AMR³³.

Work experience and medical hierarchy were found to influence the awareness of AMS purpose, AMR as a significant problem, and immediate actions to contain AMR. Interestingly, compared with junior physicians, specialists/consultants expressed lower confidence to make antibiotic decisions in uncertain situations while showing higher confidence in actions to contain AMR. Possible explanations include that specialists/consultants have a better recognition of the "unknowns" (e.g. lack of data on bacterial susceptibility patterns) and that they bear final patient responsibility, introducing the fear of losing a patient or legal consequences³⁴, whereas taking actions to curb AMR can be a remedy to compensate their fear. Conversely, residents' higher confidence in antibiotic prescribing may also relate to their contemporary medical training, which includes AMS, as opposed to late-career physicians³⁵. GPs had low scores on views regarding rational antibiotic prescribing compared with consultants which could reflect the GPs' limited responsibility in the antibiotic decision-making hierarchy, possibly leading to a lack of positive attitude towards guidelines and preference for complying with them^{36,37}.

The acute specialties (including emergency, ICU and anaesthesiology) had lower awareness of AMS activities and purposes, compared with surgery or medicine, but scored higher for immediate actions to contain AMR. Compared with surgeons, physicians in medicine had a greater awareness of AMS activities and recognition of AMR as a significant problem, but they had lower confidence in antibiotic prescribing decisions and immediate actions to contain AMR. These observations are in line with a UK study that found that emergency physicians experienced pressure for immediate action out of fear of losing a patient and a lack of ownership of antibiotic decision-making due to the patient transitioning to inpatient care, that medical doctors adopted a more policy-informed, interdisciplinary approach, and that senior surgeons left complex antibiotic decisions to junior staff, resulting in potential defensive and inappropriate antibiotic use³⁸. Variations in the social norms, values and behaviours between specialties should inform what is the best approach to antibiotic decision-making.

Our study had several strengths and weaknesses. First, based on our self-developed guestionnaire, we were able to identify a relevant set of attributes through a factor analysis optimization process, with adequate content, face and construct validity and internal reliability. In the absence of adequately validated instruments regarding AMR and AMS³⁹, this study adds important value to the field, with particular relevance and applicability for LMIC. Nonetheless, further questionnaire validation steps (such as criterion-related validity) are necessary to achieve a fully valid and reliable instrument. Second, the study had a large, varied respondent sample and high response rate. However, non-participation and the

convenient hospital sample could have introduced selection bias, and the data are not necessarily representative for Jakarta or Indonesia at large. The authenticity of the answers was maximised by protecting the respondents' identities, although reliance on self-report has potential for social desirability bias. Third, factor analysis is based on using a "heuristic", which leaves room to more than one interpretation of the same data and cannot identify causality.

Conclusion

AMS implementation in Indonesian hospitals is likely highly dependent on institutional, contextual and diagnostic vulnerabilities. These may result in the problem of AMR being externalised, instead of recognised as a local hospital problem. Current AMS strategies may be insufficiently successful in promoting prudent antibiotic use, due to lack of systematic engagement with and feedback to prescribers, aimed at building confidence in antibiotic decision-making and ownership of the AMR problem. Appropriate recognition of the contextual and social determinants of antibiotic prescribing decision-making, including hospital factors, dynamics in medical hierarchy and experience, among others, will be critical to design context-specific AMS interventions that are adopted by healthcare professionals and successfully influence behaviours¹².

Acknowledgements

The authors are grateful to the management, research/medical committees and clinicians of the participating hospitals for their support to the study.

EXPLAIN study group

Ralalicia Limato, Erni J. Nelwan, Manzilina Mudia, Monik Alamanda, Helio Guterres, Enty Enty, Elfrida R. Manurung, Ifael Y. Mauleti, Maria Mayasari, Iman Firmansyah, May Hizrani, Roswin Djafar, Raph L. Hamers, Anis Karuniawati, Prof Taralan Tambunan, Prof Amin Soebandrio, Decy Subekti, Iqbal Elyazar, Mutia Rahardjani, Fitria Wulandari, Prof Reinout van Crevel, H. Rogier van Doorn, Vu Thi Lan Huong, Nga Do Ti Thuy, Sonia Lewycka, Prof Alex Broom

Funding

This work was funded by the Wellcome Trust, UK (106680/Z/14/Z). RL is supported by an OUCRU Prize Studentship and a Nuffield Dept of Medicine Tropical Network Fund DPhil Bursary.

Conflicts of interest

The authors declare no competing interests.

Author contributions

EJN and RLH conceived the idea for the study and are the principal investigators. RLH and RL obtained the funding. RL, EJN, HVTL and RLH designed the study protocol and developed the study instrument. MM, ERM, IYM, MM, IF, and RD collected and verified the data, overseen by RL. RL, MM, MA created and curated the database. RLH and MA performed the analysis and had full access to all study data. RL, MA, and RLH drafted the paper, with critical inputs from EJN, HVTL, HRvD and AB. All authors critically revised the manuscript and gave approval for the final version to be published.

Data Availability Statement

De-identified data are available upon reasonable request via the corresponding author, after written permission has been obtained from the lead investigators.

References

- 1 O'Neill J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations. 2016.
- Klein EY, Van Boeckel TP, Martinez EM, *et al.* Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. *Proc Natl Acad Sci U S A* 2018; **115**: E3463–70.
- Goossens H, Ferech M, Vander Stichele R, Elseviers M. Outpatient antibiotic use in Europe and association with resistance: a cross-national database study. *Lancet* 2005; **365**: 579–87.
- 4 Chaw PS, Höpner J, Mikolajczyk R. The knowledge, attitude and practice of health practitioners towards antibiotic prescribing and resistance in developing countries—A systematic review. *J Clin Pharm Ther* 2018; **43**: 606–13.
- Md Rezal RS, Hassali MA, Alrasheedy AA, Saleem F, Md Yusof FA, Godman B.
 Physicians' knowledge, perceptions and behaviour towards antibiotic prescribing: A systematic review of the literature. *Expert Rev Anti Infect Ther* 2015; **13**: 665–80.
- 6 Do NTT, Vu HTL, Nguyen CTK, *et al.* Community-based antibiotic access and use in six low-income and middle-income countries: a mixed-method approach. *Lancet Glob Heal* 2021; published online April. DOI:10.1016/S2214-109X(21)00024-3.
- Laundy M, Gilchrist M, Whitney L. Antimicrobial Stewardship. Oxford, UK: Oxford University Press, 2016 DOI:10.1093/med/9780198758792.001.0001.
- 8 Schuts EC, Hulscher MEJL, Mouton JW, *et al.* Current evidence on hospital antimicrobial stewardship objectives: A systematic review and meta-analysis. *Lancet Infect Dis* 2016; **16**: 847–56.
- 9 Honda H, Ohmagari N, Tokuda Y, Mattar C, Warren DK. Antimicrobial stewardship in inpatient settings in the Asia pacific region: A systematic review and meta-analysis. *Clin Infect Dis* 2017; 64: S119–26.
- 10 Rolfe R, Kwobah C, Muro F, *et al.* Barriers to implementing antimicrobial stewardship programs in three low- and middle-income country tertiary care settings: findings from a multi-site qualitative study. *Antimicrob Resist Infect Control* 2021; **10**: 60.
- 11 Teixeira Rodrigues A, Roque F, Falcão A, Figueiras A, Herdeiro MT. Understanding physician antibiotic prescribing behaviour: a systematic review of qualitative studies. *Int J Antimicrob Agents* 2013; **41**: 203–12.
- 12 Aveling E-L, Martin G, Armstrong N, Banerjee J, Dixon-Woods M. Quality improvement through clinical communities: eight lessons for practice. *J Health Organ Manag* 2012; **26**: 158–74.
- 13 Sriram A, Kalanxhi E, Kapoor G, *et al.* Center for Disease Dynamics, Economics & Policy, Washington DC. State of the world's antibiotics 2021: A global analysis of

antimicrobial resistance and its drivers. 2021.

- 14 Agustina R, Dartanto T, Sitompul R, *et al.* Universal health coverage in Indonesia: concept, progress, and challenges. *Lancet* 2019; **393**: 75–102.
- 15 Parathon H. Progress towards antimicrobial resistance containment and control in Indonesia. *Bmj* 2017; **358**.
- 16 Herawati F, Ananta SC, Parwitha IAA, *et al.* Interview-based cross-sectional needs assessment to advance the implementation of an effective antibiotic stewardship program in Indonesian hospitals. *Heal Policy OPEN* 2020; **1**: 100002.
- 17 Limato R, Nelwan EJ, Mudia M, *et al.* A multicentre point prevalence survey of patterns and quality of antibiotic prescribing in Indonesian hospitals. *JAC-Antimicrobial Resist* 2021; **3**. DOI:10.1093/jacamr/dlab047.
- Greater New York Hospital Association United Hospital Fund. Antimicrobial
 Stewardship Toolkit. Clinician Pre-/Post-Perception Survey (Appendix B). 2011.
- Chaw PS, Schlinkmann KM, Raupach-Rosin H, *et al.* Knowledge, attitude and practice of Gambian health practitioners towards antibiotic prescribing and microbiological testing: a cross-sectional survey. *Trans R Soc Trop Med Hyg* 2017;
 111: 117–24.
- 20 Asante KP, Boamah EA, Abdulai MA, *et al.* Knowledge of antibiotic resistance and antibiotic prescription practices among prescribers in the Brong Ahafo Region of Ghana; a cross-sectional study. *BMC Health Serv Res* 2017; **17**: 422.
- 21 Labi A-K, Obeng-Nkrumah N, Bjerrum S, *et al.* Physicians' knowledge, attitudes, and perceptions concerning antibiotic resistance: a survey in a Ghanaian tertiary care hospital. *BMC Health Serv Res* 2018; **18**: 126.
- Venugopalan V, Trustman N, Manning N, Hashem N, Berkowitz L, Hidayat L. Administration of a survey to evaluate the attitudes of house staff physicians towards antimicrobial resistance and the antimicrobial stewardship programme at a community teaching hospital. *J Glob Antimicrob Resist* 2016; **4**: 21–7.
- 23 García C, Llamocca LP, García K, *et al.* Knowledge, attitudes and practice survey about antimicrobial resistance and prescribing among physicians in a hospital setting in Lima, Peru. *BMC Clin Pharmacol* 2011; **11**: 18.
- Alumran A, Hou X-Y, Hurst C. Validity and reliability of instruments designed to measure factors influencing the overuse of antibiotics. *J Infect Public Health* 2012; 5: 221–32.
- Alothman A, Algwizani A, Alsulaiman M, Alalwan A, Binsalih S, Bosaeed M.
 Knowledge and Attitude of Physicians toward Prescribing Antibiotics and the Risk of Resistance in Two Reference Hospitals. *Infect Dis Res Treat* 2016; **9**: IDRT.S40047.
- 26 Chandler CI., Hutchinson E, Hutchison C. Addressing Antimicrobial Resistance Through Social Theory: An Anthropologically Oriented Report. London School of

Hygiene & Tropical Medicine. 2016.

- 27 Charoenboon N, Haenssgen MJ, Warapikuptanun P, Xayavong T, Khine Zaw Y. Translating antimicrobial resistance: a case study of context and consequences of antibiotic-related communication in three northern Thai villages. *Palgrave Commun* 2019; **5**: 23.
- 28 Broom A, Doron A. Antimicrobial Resistance, Politics, and Practice in India. *Qual Health Res* 2020; **30**: 1684–96.
- Broom A, Broom J, Kirby E, Gibson A, Davis M. Antibiotic optimisation in 'the bush': Local know-how and core-periphery relations. *Health Place* 2017; **48**: 56–62.
- Broom A, Kirby E, Gibson AF, Post JJ, Broom J. Myth, Manners, and Medical Ritual:
 Defensive Medicine and the Fetish of Antibiotics. *Qual Health Res* 2017; 27: 1994–2005.
- 31 Will CM. Editorial: Beyond behavior? Institutions, interactions and inequalities in the response to antimicrobial resistance. Sociol. Health Illn. 2018; **40**: E1–9.
- 32 Chandler CIR. Current accounts of antimicrobial resistance: stabilisation, individualisation and antibiotics as infrastructure. *Palgrave Commun* 2019; **5**: 53.
- 33 Broom A, Broom J, Kirby E. Cultures of resistance? A Bourdieusian analysis of doctors' antibiotic prescribing. *Soc Sci Med* 2014; **110**: 81–8.
- 34 Broom A, Broom J, Kirby E, Adams J. The social dynamics of antibiotic use in an Australian hospital. *J Sociol* 2015; **52**: 824–39.
- Fernandez-Lazaro CI, Brown KA, Langford BJ, Daneman N, Garber G, Schwartz KL.
 Late-career Physicians Prescribe Longer Courses of Antibiotics. *Clin Infect Dis* 2019;
 69: 1467–75.
- R Hansen C, Bradley CP, Sahm LJ. Factors Influencing Successful Prescribing by
 Intern Doctors: A Qualitative Systematic Review. *Pharm (Basel, Switzerland)* 2016; 4:
 24.
- 37 Roumie CL, Halasa NB, Edwards KM, Zhu Y, Dittus RS, Griffin MR. Differences in antibiotic prescribing among physicians, residents, and nonphysician clinicians. *Am J Med* 2005; **118**: 641–8.
- Charani E, Ahmad R, Rawson TM, Castro-Sanchèz E, Tarrant C, Holmes AH. The Differences in Antibiotic Decision-making Between Acute Surgical and Acute Medical Teams: An Ethnographic Study of Culture and Team Dynamics. *Clin Infect Dis* 2019; 69: 12–20.
- 39 DeVon HA, Block ME, Moyle-Wright P, et al. A psychometric toolbox for testing validity and reliability. J Nurs Scholarsh an Off Publ Sigma Theta Tau Int Honor Soc Nurs 2007; 39: 155–64.

Appendix: Survey questionnaire

We kindly request you to indicate your agreement with the following 40 statements using a five-point scale:

(1) Strongly Disagree (2) Disagree (3) Neutral or Don't Know (4) Agree (5) Strongly Agree

ANTIMICROBIAL RESISTANCE: SCOPE OF THE PROBLEM AND KEY CONTRIBUTORS

1.	Antimicrobial resistance is a significant problem in this hospital	1	2	3	4	(5)
2.	Antimicrobial resistance is a significant problem in Indonesia	1	2	3	4	(5)
3.	A cause of antimicrobial resistance is using too many antimicrobial drugs	1	2	3	4	(5)
4.	Lack of hand disinfection by healthcare workers causes spread of antimicrobial resistance	1	2	3	4	(5)
5.	Use of broad-spectrum antibiotics can increase antimicrobial resistance when narrower-spectrum antibiotics are available that are equally effective	1	2	3	4	5
6.	Antibiotic resistance is also a problem outside of the hospital, in communities	1	2	3	4	5
7.	In this hospital, patient rooms are cleaned according to hospital cleaning protocol once a patient with a multidrug-resistant organism (MDRO) has been discharged	1	2	3	4	5
8.	Adherence to hand-hygiene protocols is excellent at this hospital	1	2	3	4	(5)
9.	This hospital does NOT provide adequate staff education regarding multidrug-resistant organisms	1	2	3	4	(5)
10.	A patient is likely to develop an infection with a multidrug-resistant organism during their stay at this hospital	1	2	3	4	5
ANT	BIOTIC PRESCRIBING PRACTICES					
11.	Antibiotics are overused in Indonesia	1	2	3	4	(5)
12.	Antibiotics are overused in this hospital	1	2	3	4	(5)
13.	Microbiology laboratory results are efficiently communicated to the treating physician	1	2	3	4	5
14.	I regularly refer to/consider the antibiotic susceptibility patterns at this hospital/institution (i.e. the institutional antibiogram) when empirically prescribing antibiotics	1	2	3	4	5
15.	If medically appropriate, intravenous antibiotics should be stepped down to an oral alternative after three days	1	2	3	4	(5)
16.	Restrictions on antibiotics impair my ability to provide good patient care	1	2	3	4	5
17.	More judicious use of antibiotics would decrease antimicrobial resistance	1	2	3	4	5
18.	Following evidence-based antibiotic guidelines will help optimize treatment outcomes	1	2	3	4	(5)
19.	In general, rational antibiotic prescribing for my patients is high on my list of priorities	1	2	3	4	5
20.	Developing hospital antibiotic guidelines is more useful than applying international guidelines	1	2	3	4	5

21.	I am often unsure if a patient r	needs an antibiotic or not		1	2	3	4	(5)	
22.	I am often unsure which antibi	otic to prescribe		1	2	3	4	(5)	
23.	I will stop antibiotics that other appropriate indication	s have prescribed in the	absence of an	1	2	3	4	5	
24.	Patients with high fever (≥39°0	C) must be treated with a	ntibiotics	1	2	3	4	(5)	
25.	If I am uncertain about the dia possible, I feel safer prescribin	1	2	3	4	5			
26.	Fear of patient deterioration or antibiotics more freely	to prescribe	1	2	3	4	(5)		
27.	I frequently prescribe antibiotic insist on it	1	2	3	4	5			
	IMICROBIAL STEWARDSHIP rmal program formal that mor	of a	ntibi	otics					
28.	I am aware that my hospital hap program (ASP)	as an antimicrobial stewa	rdship	1	2	3	4	(5)	
29.	I understand what the purpose	e of ASP is		1	2	3	4	(5)	
30.	ASP improve patient care	1	2	3	4	(5)			
31.	ASP reduces the problem of a	1	2	3	4	(5)			
32.	ASP reduces this hospital's int	1	2	3	4	(5)			
33.	Additional staff education on a	ntimicrobial prescribing i	s needed	1	2	3	4	(5)	
34.	Regular audit and feedback er prudently	ncourage me to prescribe	antibiotics	1	2	3	4	5	
35.	Rapid and accurate diagnostic infectious diseases and guidar	-	nosis of	1	2	3	4	5	
36.	To reduce antibiotic overuse in restriction (e.g., antibiotic tiers		on of antibiotic	1	2	3	4	5	
37.	To curb antimicrobial resistant with a clinical microbiologist or			1	2	3	4	(5)	
38.	To curb antimicrobial resistant to microbiological test results t		•	1	2	3	4	(5)	
39.	Up-to-date information on hos important for developing hospi		nce patterns is	1	2	3	4	5	
40.	Effective infection prevention a antimicrobial resistance	and control in the hospita	l reduces	1	2	3	4	(5)	
BAC	KGROUND INFORMATION								
41.	What is your primary work unit	t in this hospital? Tick Ol	NE						
	○ Many different unit/not	O OBGYN	⊖ Eye		\circ R	ehab	oilitatio	on	
	specific	(Obstetrics/ Gynaecology)	O Dermato-		○ Pharmacy				
	 Emergency department 	○ Internal Medicine	venerology O Pulmonology	,					
	○ Surgery	 Neurology 		• • • • • • • •			-		
	 Anaesthesiology 		○ Orthopaedic	s					

	It is made av	perpetuity. ailable under a CC-BY 4.0 Int	ternational license .								
	○ Intensive Care Unit (ALL)	 Psychiatrics ENT (Ear Nose Throat) 	⊖ Radiology								
42.	How long have you worked in	this hospital? Tick ON	E								
	\odot Less than 1 year \bigcirc 1 – 5 years	○ 6 – 10 years ○ 11 – 15 years	16 - 20 yearsMore than 20 years								
43.	What is your position in this h	ospital? Tick ONE									
	O Internship doctorO General Practitioner	ResidentSpecialist	O Other								
44.	How long have you worked in your current specialty or profession? Tick ONE										
	\odot Less than 1 year \bigcirc 1 – 5 years		16 - 20 yearsMore than 20 years								
45.	Which of the following resources do you use to guide your antibiotic prescribing? Tick ALL that apply										
	 Consultation with senior colleague(s) Consultation with specialist in microbiology/ infectious disease Textbooks 	Guideline Internasional Nasional Hospital Departement/ division 	 Medical journal Phamaceutical representative 								
46.			ived training/teaching or attended ance and/or stewardship? times								
47.	What is your sex: \bigcirc Male	○ Female									
48.	I would like to take part in the	raffle: \bigcirc yes \bigcirc no If	yes, my email is:								

Table 1 Characteristics of respondents

Total	1007
Sex ^a	
Female	477 (47.4)
Male	524 (52.0)
Professional hierarchy	· · ·
Intern/Internship doctor	10 (1.0)
General practitioner	113 (11.2)
Resident	500 (49.7)
Specialist/consultant	358 (35.6)
Other	18 (1.8)
Professional experience (years) ^b	
<1	194 (19.3)
1-5	459 (45.6)
6-10	136 (13.5)
11-15	74 (7.4)
16-20	52 (5.2)
>20	81 (8.0)
Grouped departments ^{c,f}	
Surgery (including subspecialties)	371 (36.8)
Medicine (including subspecialties)	232 (23.0)
Acute specialties	156 (15.5)
Other departments	244 (24.2)
Information sources used to guide prescribing ^d	· · ·
Guidelines	
International	619 (61.5)
National	628 (62.4)
Hospital	656 (65.1)
Department/Division	405 (40.2)
Consultation with senior colleague(s)	472 (46.9)
Consultation with microbiologist/infectious disease physician	523 (51.9)
Textbooks	410 (40.7)
Medical journals	389 (38.6)
Pharmaceutical company representative	34 (3.4)
Internet	115 (11.4)
Other	13 (1.3)
Number of AMR/AMS trainings attended in the past year ^e	
0	396 (39.3)
1	342 (34.0)
≥2	168 (16.7)
Median (range)	1 (0, 10)

Abbreviations: AMR, antimicrobial resistance; AMS, antibiotic stewardship;

Data are reported as n (%) unless indicated otherwise.

Data missing for: ^a 6 (0.60%); ^b 11 (1.1%); ^c 4 (0.40%); ^d 2 (0.20%); ^e 101 (10.0%). ^f Surgery and surgical subspecialties includes obstetrics/gynaecology (146), surgery (122), orthopaedics (57), ENT (32), urology (14); medicine and medical subspecialties includes medicine (128), neurology (63), pulmonology (15), dermatology (14), cardiology (12); acute specialties includes anaesthesiology (72), emergency (57), ICU (27); other departments includes paediatrics (54), ophthalmology (39), multiple units (33), rehabilitation (32), psychiatry (30), dentist (27), other (29) and unspecified (4).

Table 2 Summary of the exploratory factor analysis of the six-factor solution (n=973)

Item #	Original item			Rotated fact	or loadings			Uniqueness
		Factor 1	Factor 2	Factor 3	Factor 4	Factor 5	Factor 6	
Q01	Antimicrobial resistance is a significant problem in this hospital	0.2159	0.04100	0.1389	0.0057	0.5701	0.0416	0.6056
Q02	Antimicrobial resistance is a significant problem in Indonesia	0.2433	0.10730	0.3295	0.0588	0.5742	0.0385	0.4861
Q03	A cause of antimicrobial resistance is using too many antimicrobial drugs	0.1641	0.20060	0.3993	0.0695	0.5361	-0.0462	0.4790
Q04	Lack of hand disinfection by healthcare workers causes spread of antimicrobial resistance	0.0640	0.09020	-0.2533	0.0152	0.5725	0.1179	0.5817
Q05	Use of broad-spectrum antibiotics can increase antimicrobial resistance when narrower-spectrum antibiotics are available that are equally effective	0.2150	0.05360	0.1482	0.0005	0.5480	0.1093	0.6167
Q06	Antibiotic resistance is also a problem outside of the hospital, in communities	0.2088	0.03180	0.2463	0.0632	0.4766	0.0432	0.6617
Q07	In this hospital, patient rooms are cleaned according to hospital cleaning protocol once a patient with a multidrug-resistant organism (MDRO) has been discharged	0.1038	0.07530	0.0868	0.0210	0.0378	0.6058	0.6071
Q08	Adherence to hand-hygiene protocols is excellent at this hospital	-0.0098	0.03640	0.0606	0.1099	-0.0830	0.6368	0.5705
Q11	Antibiotics are overused in Indonesia	0.1924	0.18310	0.5138	-0.0809	0.2489	-0.2318	0.5432
Q12	Antibiotics are overused in this hospital	0.0548	0.04170	0.2094	-0.4550	0.1635	-0.2381	0.6610
Q13	Microbiology laboratory results are efficiently communicated to the treating physician	0.1689	0.11740	-0.0915	0.0532	-0.0963	0.5116	0.6754
Q14	I regularly refer to/consider the antibiotic susceptibility patterns at this hospital/institution (i.e. the institutional antibiogram) when empirically prescribing antibiotics	0.0288	0.10700	-0.0292	-0.0237	0.2056	0.6115	0.5701
Q15	If medically appropriate, intravenous antibiotics should be stepped down to an oral alternative after three days	-0.0873	0.20850	0.1141	-0.0850	0.2311	0.3617	0.7444
Q16	Restrictions on antibiotics impair my ability to provide good patient care	0.0460	0.18390	0.0527	0.4031	0.0843	-0.0868	0.7842
Q17	More judicious use of antibiotics would decrease antimicrobial resistance	0.3010	0.07470	0.7362	0.0820	0.0892	0.0648	0.3429
Q18	Following evidence-based antibiotic guidelines will help optimize treatment outcomes	0.2274	0.19340	0.6565	0.1206	0.1256	0.1851	0.4153

Item #	Original item			Rotated facto	or loadings			Uniqueness
		Factor 1	Factor 2	Factor 3	Factor 4	Factor 5	Factor 6	
Q19	In general, rational antibiotic prescribing for my patients is high on my list of priorities	0.1845	0.18040	0.5246	0.1574	0.1184	0.3228	0.5151
Q20	Developing hospital antibiotic guidelines is more useful than applying international guidelines	0.1803	0.00750	0.3499	-0.1335	0.2631	0.0672	0.7534
Q21	I am often unsure if a patient needs an antibiotic or not	0.0489	0.02600	0.0497	0.5640	-0.3364	0.1021	0.5527
Q22	I am often unsure which antibiotic to prescribe	-0.0084	0.04570	0.1256	0.5670	-0.1938	0.0781	0.6170
Q23	I will stop antibiotics that others have prescribed in the absence of an appropriate indication	0.0016	-0.06200	0.1517	-0.1137	0.2090	0.3892	0.7650
Q24	Patients with high fever (≥39°C) must be treated with antibiotics	0.0077	0.13310	0.1695	0.4794	0.2095	-0.2351	0.6245
Q25	If I am uncertain about the diagnosis of infection, but think it is possible, I feel safer prescribing an antibiotic	0.0217	-0.04150	-0.0877	0.6741	0.1927	-0.0086	0.4985
Q26	Fear of patient deterioration or complications leads me to prescribe antibiotics more freely	0.0113	0.00390	-0.1459	0.7092	0.0883	0.0246	0.4672
Q27	I frequently prescribe antibiotics because patients or their relatives insist on it	0.1069	0.04740	0.2869	0.6318	0.0518	-0.0100	0.5021
Q28	I am aware that my hospital has an antimicrobial stewardship program (ASP)	0.2434	0.62240	0.2918	0.0866	0.0418	0.0110	0.4588
Q29	I understand what the purpose of ASP is	0.2217	0.69570	0.2635	0.1188	0.0092	0.0199	0.3828
Q30	ASP improve patient care	0.2364	0.77440	0.0873	0.0932	0.0852	0.1241	0.3055
Q31	ASP reduces the problem of antimicrobial resistance	0.2775	0.75320	0.0949	0.0172	0.0906	0.1753	0.3074
Q32	ASP reduces this hospital's infection rates	0.2045	0.66700	-0.1122	0.0569	0.1283	0.1799	0.4486
Q33	Additional staff education on antimicrobial prescribing is needed	0.5202	0.28160	0.0917	-0.0079	0.2203	-0.0284	0.5923
Q34	Regular audit and feedback encourage me to prescribe antibiotics prudently	0.6151	0.35810	0.0075	0.0064	0.1402	0.1117	0.4612
Q35	Rapid and accurate diagnostic tests are useful for diagnosis of infectious diseases and guidance on antibiotic therapy	0.6714	0.25760	0.1522	-0.0362	0.0386	0.0379	0.4555
Q36	To reduce antibiotic overuse in hospitals, implementation of antibiotic restriction (e.g. antibiotic tiers) is a useful measure	0.6428	0.26700	0.1088	-0.0335	0.2153	0.0013	0.4562
Q37	To curb antimicrobial resistance, regular consultations or ward rounds with a clinical microbiologist or infectious disease physician are useful	0.7046	0.07870	0.0061	0.0190	0.1881	0.0781	0.4555

Item #	Original item			Rotated fact	or loadings			Uniqueness
		Factor 1	Factor 2	Factor 3	Factor 4	Factor 5	Factor 6	
Q38	To curb antimicrobial resistance, doctors need to have timely access to microbiological test results to guide antibiotic therapy	0.7197	0.08350	0.2786	0.0985	0.0670	0.0820	0.3765
Q39	Up-to-date information on hospital antimicrobial resistance patterns is important for developing hospital antibiotic guidelines	0.7374	0.08540	0.3223	0.1088	0.1739	0.0348	0.3018
Q40	Effective infection prevention and control in the hospital reduces antimicrobial resistance	0.7067	0.16900	0.2876	0.0950	0.1798	0.0533	0.3452
	Eigenvalues	4.39	3.19	2.82	2.78	2.65	2.17	
	% of variance explained	11.56%	8.40%	7.43%	7.32%	6.98%	5.72%	Overall 47.4%

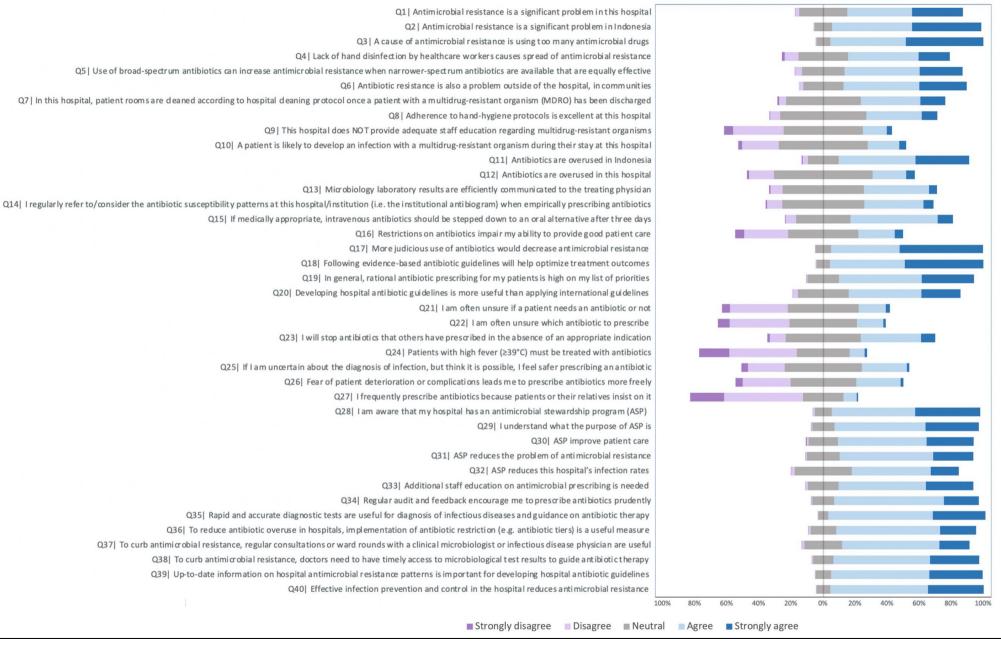
Table shows the results of the exploratory factor analysis (principal axis factoring) with orthogonal varimax rotation of the six-factor solution using the factor, pcf command in Stata. Rotated factor loadings: a measure of how much each item contributes to the factor. Loadings close to -1 or 1 indicate that the factor strongly affects the item and loadings close to 0 indicate that the factor has a weak effect on the item.

Uniqueness: shows the proportion of the item's variance that is not explained by the factors. Item #9 and 10 were excluded from the analysis as explained in Results.

Table 3 The latent factors of antibiotic prescribing

Factor	Factor label	Number of items	Original item #	Loadings range	Reliability (Cronbach's α)
1	Awareness of AMS activities	8	33-40	0.5202, 0.7374	0.8734
2	Awareness of AMS purposes	5	28-32	0.6224, 0.7744	0.8334
3	Views regarding rational antibiotic prescribing	5	11, 17-20	0.3499, 0.7362	0.6961
4	Confidence in antibiotic prescribing decisions	8	12, 16, 21, 22, 24-27	0.4031, 0.7092	0.6997
5	Perception of AMR as a significant problem	6	1-6	0.4766, 0.5742	0.6967
6	Immediate actions to contain AMR	6	7, 8, 13-15, 23	0.3617, 0.6368	0.5695

Abbreviations: AMR, antimicrobial resistance; AMS, antibiotic stewardship. Item #9 and 10 were excluded from the analysis, as explained in Results. The full table is included in Table S2.


Table 4 Physician subgroup analysis

		Factor 1			Factor 2			Factor 3			Factor 4			Factor 5			Factor 6	
	Coeff	95% CI	Р	Coeff	95% CI	Р												
Hospital				1			1											
05	Ref			Ref														
01	0.194	-0.089, 0.477	0.179	-0.422	-0.701, -0.142	0.003	0.244	-0.039, 0.527	0.091	-0.167	-0.451, 0.117	0.248	-0.430	-0.716, -0.145	0.003	-0.504	-0.778, -0.23	0.000
02	0.064	-0.13, 0.258	0.518	-0.352	-0.543, -0.161	0.000	0.134	-0.06, 0.328	0.174	-0.180	-0.375, 0.014	0.069	-0.095	-0.29, 0.101	0.342	-0.087	-0.274, 0.101	0.366
03	0.164	-0.116, 0.444	0.252	-0.066	-0.343, 0.211	0.641	0.387	0.107, 0.668	0.007	0.131	-0.151, 0.412	0.363	-0.044	-0.327, 0.238	0.758	0.092	-0.18, 0.364	0.507
04	0.117	-0.218, 0.453	0.494	0.116	-0.215, 0.448	0.492	0.096	-0.239, 0.432	0.573	0.249	-0.088, 0.586	0.148	-0.081	-0.419, 0.257	0.638	0.361	0.035, 0.686	0.030
06	0.196	-0.153, 0.544	0.271	0.106	-0.239, 0.45	0.548	0.419	0.07, 0.768	0.019	0.013	-0.338, 0.363	0.944	-0.432	-0.783, -0.08	0.016	0.479	0.141, 0.817	0.005
Departments			1															
Surgical	Ref			Ref														
Medical	0.239	0.073, 0.405	0.005	0.150	-0.014, 0.314	0.073	-0.120	-0.286, 0.046	0.156	0.307	0.140, 0.473	0.000	0.221	0.054, 0.389	0.009	-0.398	-0.559, -0.237	0.000
Acute	-0.275	-0.488, -0.062	0.011	-0.214	-0.425, -0.004	0.046	-0.273	-0.486, -0.06	0.012	0.169	-0.045, 0.382	0.122	0.124	-0.091, 0.338	0.258	0.242	0.036, 0.449	0.021
Other	-0.081	-0.253, 0.092	0.358	-0.027	-0.197, 0.144	0.760	-0.086	-0.259, 0.086	0.326	0.046	-0.127, 0.219	0.603	0.119	-0.055, 0.292	0.181	-0.302	-0.469, -0.135	0.000
Medical	Ref			Ref														
Acute	-0.514	-0.745, -0.283	0.000	-0.364	-0.593, -0.136	0.002	-0.153	-0.384, 0.078	0.194	-0.138	-0.370, 0.094	0.243	-0.098	-0.330, 0.135	0.411	0.640	0.417, 0.864	0.000
Other	-0.320	-0.507, -0.133	0.001	-0.177	-0.361, 0.0083	0.061	0.034	-0.154, 0.221	0.724	-0.261	-0.449, 0.073	0.006	-0.103	-0.291, 0.086	0.285	0.096	-0.085, 0.277	0.298
Medical																		
Hierarchy																		
Consultant	Ref			Ref														
Intern	-0.744	-1.374, -0.115	0.020	0.637	0.015, 1.259	0.045	0.443	-0.187, 1.074	0.168	0.067	-0.565, 0.699	0.836	0.495	-0.14, 1.129	0.126	0.003	-0.607, 0.613	0.993
GP	0.168	-0.096, 0.432	0.212	0.153	-0.108, 0.413	0.251	-0.397	-0.661, -0.133	0.003	-0.169	-0.434, 0.095	0.210	-0.011	-0.276, 0.255	0.938	-0.024	-0.279, 0.232	0.857
Resident	-0.091	-0.287, 0.105	0.363	0.297	0.104, 0.490	0.003	0.004	-0.192, 0.199	0.971	-0.271	-0.468, -0.075	0.007	0.058	-0.139, 0.255	0.563	-0.202	-0.391, -0.012	0.037
Other	-0.013	-0.491, 0.466	0.958	0.148	-0.325, 0.620	0.541	0.252	-0.227, 0.731	0.303	-0.172	-0.653, 0.308	0.482	-0.013	-0.495, 0.469	0.959	0.304	-0.159, 0.768	0.198
Intern	Ref			Ref														
GP	0.912	0.245, 1.579	0.007	-0.485	-1.144, 0.175	0.150	-0.840	-1.508, -0.172	0.014	-0.236	-0.906, 0.434	0.489	-0.505	-1.18, 0.167	0.141	-0.0263	-0.673, 0.620	0.936
Resident	0.653	0.0458, 1.261	0.035	-0.340	-0.941, -0.260	0.267	-0.440	-1.048, 0.169	0.157	-0.338	-0.948, 0.272	0.278	-0.436	-1.049, 0.176	0.162	-0.205	-0.793, 0.384	0.496
Other	0.732	-0.457, 1.509	0.065	-0.490	-1.258, 0.279	0.212	-0.191	-0.970, 0.587	0.630	-0.239	-1.020, 0.542	0.548	-0.507	-1.291, 0.276	0.204	0.302	-0.452, 1.055	0.433
Resident	Ref			Ref														
GP	0.259	-0.037, 0.555	0.086	-0.145	-0.437, 0.148	0.333	-0.400	-0.696, -0.104	0.008	0.102	-0.196, 0.399	0.503	-0.069	-0.367, 0.229	0.651	0.178	-0.108, 0.465	0.223
Other	0.0781	-0.417, 0.574	0.757	-0.150	-0.639, 0.340	0.550	0.248	-0.248, 0.744	0.326	0.099	-0.399, 0.596	0.697	-0.710	-0.570, 0.428	0.780	0.506	-0.163, 1.29	0.039
Years in current profession																		
0-5	Ref			Ref														
6-10	0.089	-0.122, 0.299	0.410	0.225	0.017, 0.434	0.034	-0.089	-0.300, 0.122	0.410	0.094	-0.118, 0.305	0.385	0.290	0.077, 0.502	0.008	0.053	-0.151, 0.258	0.608
11-15	0.087	-0.185, 0.358	0.532	-0.015	-0.283, 0.254	0.915	-0.066	-0.338, 0.207	0.637	0.271	-0.002, 0.544	0.052	0.156	-0.118, 0.43	0.265	-0.095	-0.358, 0.169	0.481

		Factor 1			Factor 2			Factor 3			Factor 4			Factor 5			Factor 6		
	Coeff	95% CI	Р	Coeff	95% CI	Р	Coeff	95% CI	Р										
>15	0.117	-0.118, 0.353	0.328	0.194	-0.039, 0.427	0.102	-0.044	-0.279, 0.192	0.715	-0.057	-0.293, 0.179	0.637	0.333	0.096, 0.57	0.006	0.366	0.138, 0.594	0.002	
Public sector*	-0.064	-0.4, 0.273	0.710	0.264	-0.207, 0.736	0.272	-0.238	-0.575, 0.100	0.167	0.256	-0.835, 0.595	0.140	0.192	-0.148, 0.533	0.268	0.362	0.273, 0.996	0.264	
Tertiary level*	-0.093	-0.42, 0.234	0.577	-0.289	-0.767, 0.190	0.237	-0.047	-0.375, 0.281	0.779	-0.317	-0.647, 0.012	0.059	0.052	-0.279, 0.383	0.758	-0.407	-1.065, 0.25	0.225	

Abbreviations: GP, general practitioner. The table summarizes the results of the multivariable mixed-effect linear regression models to assess the associations between independent variables and each of the factor scores (dependent variable), while adjusting for the possible interdependence of observations clustered within hospitals as well as confounders (sex, AMS training). * This model did not include hospital as an independent variable due to collinearity.

Figure 1. Five-point Likert scale responses for the 40-item questionnaire

Acronyms: ASP, antibiotic stewardship program. Data (n, %) are summarized in Table S3.

	Total physicians invited 1896 101 (5.3%) 255 (13.4%) 143 (7.5%) 55 (2.9%) 1240 (65.4%) 102 (5.4%) 102 (5.4%) 346 1550 43 255 229 210 72 74 43 456 261 74 21 77 23	Total	Response rate		Respond	ents per physic	ian type	
		physicians responded	(%)	Specialist/ Consultant	Resident	General practitioner	Intern/Internship doctor	Other
Total	1896	1007	53.1%	358 (35.6%)	500 (49.7%)	113 (11.2%)	10 (1.0%)	18 (1.8%)
Hospital ^a								
01	101 (5.3%)	70 (7.0%)	69.3%	39 (10.9%)	0 (0.0%)	27 (23.9%)	0 (0.0%)	4 (22.2%)
02	255 (13.4%)	155 (15.4%)	60.8%	70 (19.6%)	52 (10.4%)	26 (23.0%)	0 (0.0%)	5 (27.8%)
03	143 (7.5%)	77 (7.7%)	53.9%	41 (11.5%)	0 (0.0%)	35 (31.0%)	0 (0.0%)	1 (5.6%)
04	55 (2.9%)	44 (4.4%)	80.0%	29 (8.1%)	0 (0.0%)	11 (9.7%)	0 (0.0%)	1 (5.6%)
05	1240 (65.4%)	622 (61.8%)	50.2%	152 (42.5%)	448 (89.6%)	4 (3.5%)	10 (100.0%)	5 (27.8%)
06	102 (5.4%)	39 (3.9%)	38.2%	27 (7.5%)	0 (0.0%)	10 (8.9%)	0 (0.0%)	2 (11.1%)
Sector ^b								
Private	346	186 (18.5%)	53.8%	107 (29.9%)	0 (0.0%)	0 (0.0%)	72 (63.7%)	7 (38.9%)
Public	1550	821 (81.5%)	53.0%	251 (70.1%)	500 (100.0%)	41 (36.3%)	10 (100.0%)	11 (61.1%)
Level of care ^c								
Secondary	1499	777 (77.2%)	51.8%	136 (38.0%)	0 (0.0%)	83 (73.5%)	0 (0.0%)	8 (44.4%)
Tertiary	397	230 (22.8%)	57.9%	222 (62.0%)	500 (100.0%)	30 (26.6%)	10 (100.0%)	10 (55.6%)
Department ^d								
Surgery and surgical subspecialties	628	371 (36.8)	59.1%	91 (24.5%)	226 (60.9%)	1 (0.27%)	4 (1.1%)	0 (0.0%)
Obstetrics/gynaecology	229	146 (14.5%)	63.8%	51 (14.3%)	91 (18.2%)	1 (0.88%)	1 (10.0%)	0 (0.0%)
Surgery	210	122 (12.1%)	58.1%	2 (11.1%)	74 (14.8%)	0 (0.0%)	3 (30.0%)	0 (0.0%)
Orthopaedics	72	57 (5.7%)	44.4%	25 (7.0%)	32 (6.4%)	0 (0.0%)	0 (0.0%)	0 (0.0%)
Ear-nose-throat	74	32 (3.2%)	77.0%	12 (3.4%)	19 (3.8%)	0 (0.0%)	0 (0.0%)	0 (0.0%)
Urology	43	14 (1.4%)	32.6%	1 (1.1%)	10 (2.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)
Medicine and medical subspecialties	456	232 (23.0%)	50.9%	115 (49.6%)	109 (47.0%)	0 (0.0%)	3 (1.3%)	5 (2.2%)
Internal medicine	261	128 (12.7%)	49.0%	59 (16.5%)	67 (13.4%)	0 (0.0%)	0 (0.0%)	2 (11.1%)
Neurology	74	63 (6.3%)	85.1%	17 (4.8%)	40 (8.0%)	0 (0.0%)	3 (30.0%)	3 (16.7%)
Pulmonology	21	15 (1.5%)	71.4%	15 (4.2%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)
Dermato-venerology	77	14 (1.4%)	18.2%	12 (0.0%)	2 (3.4%)	0 (0.0%)	0 (0.0%)	0 (0.0%)
Cardiology	23	12 (1.2%)	52.2%	12 (3.4%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)
Acute specialties ^e	96	156 (15.5)	162.5%	28 (17.9%)	67 (42.9%)	68 (43.6%)	2 (1.3%)	1 (0.64%)
Anaesthesiology	96	72 (7.2%)	75.0%	4 (1.1%)	66 (13.2%)	0 (0.0%)	2 (20.0%)	0 (0.0%)

Table S1 Survey response rate, overall and by hospital, department and professional hierarchy

	Total	Total	Response rate		Respond	lents per physic	ian type	
	physicians invited	physicians responded	(%)	Specialist/ Consultant	Resident	General practitioner	Intern/Internship doctor	Other
Emergency dept ^e	-	57 (5.7%)	-	0 (0.0%)	0 (0.0%)	57 (50.4%)	0 (0.0%)	0 (0.0%)
Intensive Care Unit ^e	-	27 (2.7%)	-	14 (3.9%)	1 (0.2%)	11 (9.7%)	0 (0.0%)	1 (5.6%)
Other departments	539	244 (24.2)	45.2%	90 (36.9%)	98 (40.2%)	24 (9.8%)	1 (0.41%)	10 (4.1%)
Paediatrics	202	54 (5.4%)	26.7%	28 (7.8%)	25 (5.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)
Ophthalmology	102	39 (3.9%)	38.2%	22 (6.2%)	17 (3.4%)	0 (0.0%)	0 (0.0%)	0 (0.0%)
Multiple/unspecified units ^e	-	33 (3.3%)	-	5 (1.4%)	5 (1.0%)	21 (18.6%)	1 (10.0%)	0 (0.0%)
Rehabilitation	70	32 (3.2%)	45.7%	4 (1.1%)	28 (5.6%)	0 (0.0%)	0 (0.0%)	0 (0.0%)
Psychiatry	54	30 (3.0%)	55.6%	11 (3.1%)	19 (3.8%)	0 (0.0%)	0 (0.0%)	0 (0.0%)
Dentist	49	27 (2.7%)	55.1%	11 (3.1%)	1 (0.20%)	3 (2.7%)	0 (0.0%)	10 (55.6%)
Other	39	25 (2.5%)	64.1%	4 (1.1%)	1 (0.20%)	20 (17.7%)	0 (0.0%)	0 (0.0%)
Microbiology	4	3 (0.30%)	75.0%	2 (0.56%)	1 (0.20%)	0 (0.0%)	0 (0.0%)	0 (0.0%)
Laboratory	19	1 (0.10%)	5.3%	1 (0.28%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)
Missing	-	4 (0.40%)	-	2 (0.56%)	1 (0.20%)	0 (0.0%)	0 (0.0%)	0 (0.0%)

Data are reported as n (%).

Doctor type was missing for 8 respondents, across ^a hospitals (02 (2), 03 (3), and 05 (3)); ^b sector (public 8, private 0); ^c level of care (secondary 3, tertiary 5); and ^d departments (obstetrics/gynaecology 2; ENT 1; paediatrics 1; multiple units 1; dental/oral surgery 2; missing dept 1).

^e Invitations to participate in the survey were sent out according to primary work units; the discrepancies reported for the acute and other departments result from the fact that n=177 respondents who worked across multiple units (mostly GPs and internship doctors) indicated a different primary department on their questionnaire.

Table S2 The latent factors of antibiotic prescribing (full table)

Factor	Factor label	actor label Survey questions included in the factor loading		Reliability (Cronbach's α)	
1	Awareness of AMS activities	Q33: Additional staff education on antimicrobial prescribing is needed	0.5202	0.8734	
		Q34: Regular audit and feedback encourage me to prescribe antibiotics prudently	0.6151		
		Q35: Rapid and accurate diagnostic tests are useful for diagnosis of infectious diseases and guidance on antibiotic therapy	0.6714		
		Q36: To reduce antibiotic overuse in hospitals, implementation of antibiotic restriction (e.g. antibiotic tiers) is a useful measure	0.6428		
		Q37: To curb antimicrobial resistance, regular consultations or ward rounds with a clinical microbiologist or infectious disease physician are useful	0.7046		
		Q38: To curb antimicrobial resistance, doctors need to have timely access to microbiological test results to guide antibiotic therapy	0.7197		
		Q39: Up-to-date information on hospital antimicrobial resistance patterns is important for developing hospital antibiotic guidelines	0.7374		
		Q40: Effective infection prevention and control in the hospital reduces antimicrobial resistance			
2	Awareness of AMS purposes	Q28: I am aware that my hospital has an antimicrobial stewardship program (ASP)	0.6224	0.8334	
		Q29: I understand what the purpose of ASP is	0.6957		
		Q30: ASP improve patient care			
		Q31: ASP reduces the problem of antimicrobial resistance	0.7532		
		Q32: ASP reduces this hospital's infection rates	0.6670		
3	Views regarding rational antibiotic prescribing	arding rational Q11: Antibiotics are overused in Indonesia			
		Q17: More judicious use of antibiotics would decrease antimicrobial resistance	0.7362		
		Q18: Following evidence-based antibiotic guidelines will help optimize treatment outcomes	0.6565		
		Q19: In general, rational antibiotic prescribing for my patients is high on my list of priorities	0.5246		
		Q20: Developing hospital antibiotic guidelines is more useful than applying international guidelines	lying 0.3499		
4	Confidence in antibiotic prescribing decisions	Q12: Antibiotics are overused in this hospital	-0.4550	0.6997	
		ng decisionsQ16: Restrictions on antibiotics impair my ability to provide good patient careQ21: I am often unsure if a patient needs an antibiotic or not			
		Q22: I am often unsure which antibiotic to prescribe	0.5670		
		Q24: Patients with high fever (≥39°C) must be treated with antibiotics	0.4794		

Factor	Factor label	Survey questions included in the factor loading	Loadings	Reliability (Cronbach's α)			
		Q25: If I am uncertain about the diagnosis of infection, but think it is possible, I feel safer prescribing an antibiotic	0.6741				
		Q26: Fear of patient deterioration or complications leads me to prescribe antibiotics more freely	0.7092				
		Q27: I frequently prescribe antibiotics because patients or their relatives insist on it	0.6318				
5	Perception of AMR as a significant problem	Q1: Antimicrobial resistance is a significant problem in this hospital	0.5701	0.6967			
		Q2: Antimicrobial resistance is a significant problem in Indonesia	0.5742				
		Q3: A cause of antimicrobial resistance is using too many antimicrobial drugs	0.5361				
		Q4: Lack of hand disinfection by healthcare workers causes spread of antimicrobial resistance	0.5725				
		Q5: Use of broad-spectrum antibiotics can increase antimicrobial resistance when narrower-spectrum antibiotics are available that are equally effective	0.5480				
		Q6: Antibiotic resistance is also a problem outside of the hospital, in communities	0.4766				
6	Immediate actions to contain AMR	 Q7: In this hospital, patient rooms are cleaned according to hospital cleaning protocol once a patient with a multidrug-resistant organism (MDRO) has been discharged Q8: Adherence to hand-hygiene protocols is excellent at this hospital Q13: Microbiology laboratory results are efficiently communicated to the treating physician Q14: I regularly refer to/consider the antibiotic susceptibility patterns at this hospital/institution (i.e. the institutional antibiogram) when empirically prescribing antibiotics 		0.5695			
					Q15: If medically appropriate, intravenous antibiotics should be stepped down to an oral alternative after three days	0.3617	
						Q23: I will stop antibiotics that others have prescribed in the absence of an appropriate indication	

Abbreviations: AMS, antibiotic stewardship; ASP, antibiotic stewardship programme; IPC, infection prevention and control Data are summarised in Table 3

Item #9 and 10 were excluded from the analysis, as explained in Results.

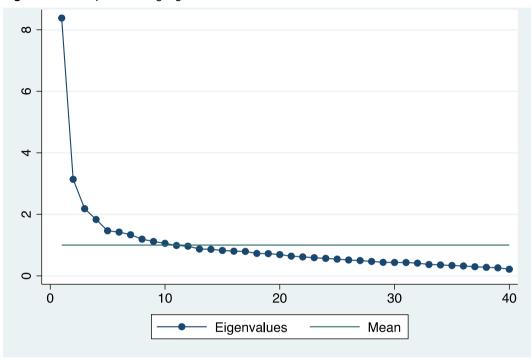

Item #	No of respondents	Strongly disagree (1)	Disagree (2)	Neutral (3)	Agree (4)	Strongly agree (5)
Q1	1005	3 (0.30)	26 (2.6)	168 (16.7)	452 (45.0)	356 (35.4)
Q2	1006	0 (0.0)	7 (0.70)	55 (5.5)	505 (50.2)	439 (43.6)
Q3	1003	0 (0.0)	6 (0.60)	43 (4.3)	472 (47.1)	482 (48.1)
Q4	1005	19 (1.9)	98 (9.8)	173 (17.2)	497 (49.5)	218 (21.7)
Q5	1004	2 (0.20)	49 (4.9)	145 (14.4)	514 (51.2)	294 (29.3)
Q6	1003	0 (0.0)	29 (2.9)	136 (13.6)	516 (51.5)	322 (32.1)
Q7	1004	12 (1.2)	53 (5.3)	288 (28.7)	460 (45.8)	191 (19.0)
Q8	1002	6 (0.60)	81 (8.1)	345 (34.4)	444 (44.3)	126 (12.6)
Q9	1005	71 (7.1)	397 (39.5)	311 (31.0)	188 (18.7)	38 (3.8)
Q10	1005	32 (3.2)	299 (29.8)	363 (36.1)	256 (25.5)	55 (5.5)
Q11	1005	8 (0.80)	34 (3.4)	102 (10.2)	506 (50.4)	355 (35.3)
Q12	1005	18 (1.8)	213 (21.2)	448 (44.5)	286 (28.5)	71 (7.1)
Q13	1005	11 (1.1)	97 (9.7)	321 (31.9)	515 (51.2)	61 (6.1)
Q14	1005	12 (1.2)	121 (12.0)	324 (32.2)	468 (46.6)	80 (8.0)
Q15	1006	7 (0.70)	73 (7.3)	195 (19.4)	623 (61.9)	108 (10.7)
Q16	1006	67 (6.7)	334 (33.2)	267 (26.5)	276 (27.4)	62 (6.2)
Q17	1005	2 (0.20)	2 (0.20)	48 (4.8)	431 (42.9)	522 (51.9)
Q18	1006	0 (0.0)	6 (0.60)	42 (4.2)	467 (46.4)	491 (48.8)
Q19	1005	1 (0.10)	7 (0.70)	105 (10.5)	545 (54.3)	347 (34.5)
Q20	1004	3 (0.30)	34 (3.4)	180 (17.9)	511 (50.9)	276 (27.5)
Q21	1006	60 (6.0)	440 (43.7)	269 (26.7)	204 (20.3)	33 (3.3)
Q22	1006	89 (8.9)	448 (44.5)	254 (25.3)	196 (19.5)	19 (1.9)
Q23	1002	19 (1.9)	124 (12.4)	288 (28.7)	464 (46.3)	107 (10.7)
Q24	1005	213 (21.2)	480 (47.8)	189 (18.8)	104 (10.4)	19 (1.9)
Q25	1005	51 (5.1)	285 (28.4)	301 (30.0)	348 (34.6)	20 (2.0)
Q26	1006	55 (5.5)	354 (35.2)	245 (24.4)	330 (32.8)	22 (2.2)
Q27	1005	231 (22.3)	538 (53.5)	138 (13.7)	90 (9.0)	8 (0.80)
Q28	1006	0 (0.0)	15 (1.5)	54 (5.4)	526 (52.3)	411 (40.9)
Q29	1006	2 (0.20)	6 (0.60)	71 (7.1)	585 (58.2)	342 (34.0)
Q30	1006	7 (0.70)	11 (1.1)	97 (9.6)	582 (57.9)	309 (30.7)
Q31	1005	2 (0.20)	7 (0.70)	109 (10.89)	620 (61.7)	267 (26.6)

Table S3. Five-point Likert scale responses for the 40-item questionnaire

Item #	No of respondents	Strongly disagree (1)	Disagree (2)	Neutral (3)	Agree (4)	Strongly agree (5)
Q32	1004	3 (0.30)	25 (2.5)	206 (20.5)	568 (56.6)	202 (20.1)
Q33	1005	2 (0.20)	14 (1.4)	101 (10.1)	574 (57.1)	314 (31.2)
Q34	1006	1 (0.10)	7 (0.70)	70 (7.0)	702 (69.8)	226 (22.5)
Q35	1006	0 (0.0)	4 (0.40)	31 (3.1)	646 (64.2)	325 (32.3)
Q36	1007	1 (0.10)	13 (1.3)	83 (8.2)	675 (67.0)	235 (23.3)
Q37	1006	2 (0.20)	17 (1.7)	128 (12.7)	657 (65.3)	202 (20.1)
Q38	1006	0 (0.0)	10 (0.99)	66 (6.6)	616 (61.2)	314 (31.2)
Q39	1006	0 (0.0)	4 (0.40)	49 (4.9)	617 (61.3)	336 (33.4)
Q40	1006	0 (0.0)	4 (0.40)	43 (4.3)	612 (60.8)	347 (34.5)

Data are also shown in Figure 1.

Figure S1 Scree plot showing eigenvalues for the 40 factors

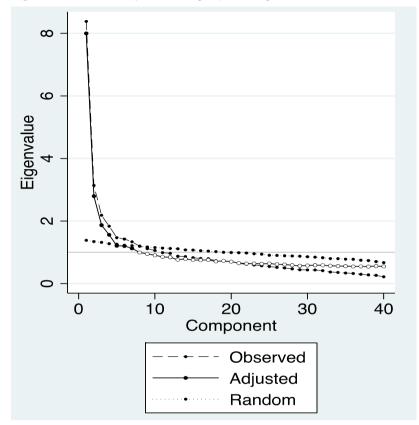


Figure S2 Parallel analysis showing adjusted eigenvalues for the 40 factors.

Parallel analysis adjusted the original eigenvalues for sampling error-induced collinearity among the variables to arrive at the adjusted eigenvalues.