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Abstract

Deep understanding of the SARS-CoV-2 effects on host molecular pathways is paramount
for the discovery of early biomarkers of outcome of coronavirus disease 2019 (COVID-19)
and the identification of novel therapeutic targets. In that light, we generated metabolomic
data  from  COVID-19  patient  blood  using  high-throughput  targeted  nuclear  magnetic
resonance (NMR) spectroscopy and high-dimensional flow cytometry. We find considerable
changes in serum metabolome composition of COVID-19 patients associated with disease
severity, and response to tocilizumab treatment. We built a clinically annotated, biologically-
interpretable  space  for  precise  time-resolved  disease  monitoring  and  characterize  the
temporal dynamics of metabolomic change along the clinical course of COVID-19 patients
and in response to therapy. Finally, we leverage joint immuno-metabolic measurements to
provide a novel approach for patient stratification and early prediction of severe disease. Our
results  show  that  high-dimensional  metabolomic  and  joint  immune-metabolic  readouts
provide  rich  information  content  for  elucidation  of  the  host’s  response  to  infection  and
empower  discovery  of  novel  metabolic-driven therapies,  as well  as  precise  and efficient
clinical action.

Introduction

The pandemic  caused by infection  with the severe acute  respiratory coronavirus  type 2
(SARS-CoV-2) has infected more than 218 million people worldwide as of August  2021,
caused more than 4.5 million  deaths1,  and strains  health systems on an unprecedented
scale. The most common manifestations of COVID-19 are fever, cough, and dyspnea2,3, but
thromboembolic  events  and  other  organ  involvement  are  also  common  in  patients  with
severe disease2,4,5. Molecularly, severe COVID-19 disease is characterized by uncontrolled
inflammatory syndrome caused by immune system hyperactivation6–11.  The most effective
treatments  are  thus  based  on  general  immunosuppression  with  glucocorticoids12 or
neutralization of the pro-inflammatory interleukin 6 (IL-6) with tocilizumab13.
Several laboratory tests such as albumin14, CRP15, lymphocyte abundance16–19, IL-620, and
the fibrin degradation product D-dimer21 have been used to monitor COVID-19, with their
levels variably associated with disease severity. While these routinely available assays may
have some clinical use in disease prognostication, they depict an incomplete landscape of
pathophysiological changes associated with COVID-19. However these tests are mostly a
readout of the inflammatory state and do not capture a wide but still interpretable view of the
physiological  state  of  COVID-19  patients.  One  possible  approach  is  to  increase  the
dimensionality of the system by the use of mixed-modality profiling such as the combination
of immune population quantification and circulating cytokine levels22,23. While much work has
been  done  on  the  characterization  of  the  host  immune  response  through  cytometric  or
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serological methods, characterization of the metabolic state of COVID-19 patients has just
begun24–26.
There are several lines of evidence demonstrating the importance of metabolic species - in
particular lipids - during viral infection. Lipids are structural components of the host’s cellular
and  organellar  membranes,  taking  an  active  role  in  crucial  cellular  functions  such  as
molecular  trafficking,  but  are  also  of  importance  during  viral  attachment,  internalization,
packaging and release27,28. In animal models, it has been shown that cholesterol composition
of  membrane lipid  rafts  underpins  the infectivity  of  SARS-CoV-229.  Beyond  its  structural
functions,  lipids  are  also  crucial  for  energy  supply  and  intracellular  signalling30,31.  It  is
plausible  that  viral-induced changes in  host  metabolism during COVID-19 in  metabolites
such as  glucose  and lipids32 may be beneficial  for  the  infection,  by altering  intracellular
signaling and conditioning immune response. The host metabolome - lipids in particular -
have therefore been proposed as potential biomarkers of COVID-19 disease severity33, and
as  therapeutic  targets  to  counteract  excessive  immune  activation.  Nuclear  magnetic
resonance (NMR) spectroscopy applied to the measurement of metabolites  provides a great
balance  between  precise  and  reproducible  measurements,  the  breadth  of  analytes
measured, and the logistical efforts necessary for data production34–36. Importantly, it is also
capable of discerning different lipid species in circulating lipoprotein particles.
In  this  work,  we  use  NMR  spectroscopy  to  identify  changes  in  serum  metabolome
composition of COVID-19 patients that are associated with disease severity and tocilizumab
treatment, and provide a method for precise disease monitoring, patient stratification, and
early prediction of severe disease based on joint immuno-metabolic measurements.

Results
Longitudinal NMR metabolomics of COVID-19 patient plasma
We conducted an observational study of 75 individuals with acute or convalescent COVID-
19 that were treated at New York Presbyterian Hospital and Lower Manhattan Hospitals,
Weill Cornell Medicine as in- or out-patients between April and July 2020. The disease was
categorized using World Health Organization disease severity scale for the prognostication
of COVID-19 patients37 (henceforth referred to as “WHO score”), which use clinical events
such  as  patient  admittance,  amount  of  supplemental  oxygen  needed,  or  the  need  for
mechanical ventilation (Figure 1A). Serum samples were collected at hospital admission,
when permissible approximately every 7 days thereafter, and for convalescent patients as
outpatients  at  least  90  days  from  symptom  onset  (109  samples  from  75  patients,  32
convalescent). Of all patients, 35 (47%) presented with low to mild disease severity, and 30
(40%) with moderate to severe disease. We also collected serum from healthy, COVID-19
negative donors (n = 9). The median age of COVID-19 patients was 53 years, which was
comparable with that of healthy donors (51 years) (Table S1).
We performed targeted high throughput NMR-based detection of metabolites in circulating
blood serum (Nightingale Health Ltd.) (Figure 1A, Table S2-3). The NMR assay detected
168 metabolite  species in  absolute molar quantities,  and 81 additional  measurements of
relative  proportions  covering  diverse  metabolic  species  such  as  lipids  and  fatty  acids,
apolipoproteins,  amino acids, ketone bodies,  and other molecules with known prognostic
value across various diseases such as albumin,  creatinine,  and apolipoprotein  levels38–40

(Figure  S1a-c).  The  panel  is  dominated  by  the  diversity  of  lipids  and  by  lipoprotein-
associated lipid species which were fractionated based on their relative density and size
(Figure S1d-f). Overall, measurements of the metabolic species had excellent reproducibility
and high signal-to-noise  ratio  (Figure S1g-h).  Upon relating  the abundance levels  of  all
metabolite species across all samples, we find that metabolites were heavily co-regulated
(Figure S1i).

Metabolic changes associated with COVID-19 severity and treatment
In order to identify the metabolic features associated with COVID-19 outcome, we leveraged
linear mixed effect models to explain COVID-19 disease severity as a function of metabolite 
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Figure 1: Discovery of metabolic biomarkers of COVID-19 severity and treatment.

a) Schematic description of the patients under study, data types collected and approaches for their analysis. b) 
Association of metabolite abundance with COVID-19 severity for all 248 metabolic species (upper panel). The 
lower panel illustrates the 10 metabolites most associated with disease severity for each direction. c) Distribution 
of metabolite abundance for the metabolites most associated with COVID-19 severity depending on the sample 
WHO score classification. The grey horizontal dashed line represents the mean abundance of the metabolite in 
over 150,000 individuals from the UK biobank cohort and grey bars represent the standard deviation from the 
mean. d) Enrichment analysis of metabolites changing with COVID-19 severity in functional terms. e) Association
of metabolite abundance with the time since tocilizumab treatment. The coefficient values refer to the change per
day in relation to the mean. f) Abundance of metabolites with discordant (left), concordant (center) or indifferent 
(right) change between COVID-19 severity and tocilizumab treatment for treated patients. g) Comparison of the 
coefficients of change in COVID-19 severity (x-axis) and effect of tocilizumab treatment over time (y-axis). Each 
point is a metabolite colored by its class identity as in b). The black regression line indicates the overall trend 
between all metabolites, while the colored regression lines indicate the trend for each group of metabolites as in 
panel b).

levels independently from patient age, gender, race, and body mass index (BMI) (Figure 1b,
Figure S2a-b). While most of the 249 metabolite species known prognostic value across
various diseases such as albumin, creatinine, and apolipoproteins showed no association
with disease severity as measured by the WHO score, we found significant associations for
56 metabolites (p < 0.05, adjusted for multiple testing with the Benjamini  Hochberg False
Discovery Rate (FDR) method), which were dominated by lipid and lipoprotein subclasses
(Table S4). Specifically,  we found that Albumin,  high-density lipoprotein (HDL) and small
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HDL particle species, as well as the cholesteryl-ester component of HDL and intermediate-
density  lipoproteins  (IDL)  declined  proportionally  with  the  increase  in  WHO  score,  with
steeper decline in the most severe cases (Figure 1c). On the other hand, extra small, very
low-density lipoprotein (VLDL) particles with increased phospholipids component and extra-
small VLDL, IDL, LDL and HDL with increased triglycerides were correlated with increased
severity.   Additional  variables  associated  with  increased  disease  severity  were  the
acetylated  glycoproteins  (GlycA)  -  a  spectroscopic  marker  of  systemic  inflammation41,
phenylalanine, and fraction of monounsaturated fatty acids (MUFA). We also observed a
significant association of acetoacetate, and the ratio of apolipoprotein B to A1 (ApoB/ApoA1)
to disease severity (Figure S2c). Of note, the levels of many of the mentioned metabolites in
severe COVID-19 (WHO score 4-7) were higher by more than three standard deviations
than the mean of a large non-COVID population from the UK Biobank (150,000 samples)42,43,
illustrating the degree of metabolic disarray in the serum of COVID-19 patients with severe
disease. These results are also in agreement with previous reports24,44.
Additionally, we performed enrichment of the changes associated with COVID-19 severity in
metabolite groups based on their biophysical properties and known physiological roles. This
analysis revealed increased levels of inflammation markers, amino acids and triglycerides,
but above all  confirmed the deep unbalance in lipoprotein composition, size, and density
(Figure 1d, S3a), where increased severity is associated with decreased lipoprotein density
and increased size, which are in line with the increased triglyceride content of the particles.
One exception is extra-small VLDL particles (3-6 nm) which are also increased in severe
disease. Taken together, the observed changes reveal considerable metabolic changes in
COVID-19 patients dependent on disease severity. As a comparison, we investigated the
association of routinely collected clinical biomarkers with COVID-19 severity in our cohort
and found that only lactate hydrogenase (LDH) was significantly associated with disease
severity  (Figure  S3b-c),  while  biomarkers  of  overall  metabolic  homeostasis  such  as
aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were not.
Among  the  therapeutic  options  for  COVID-19,  Tocilizumab,  an  inhibitor  of  the  pro-
inflammatory interleukin-6 (IL-6) was used in COVID-19 patients with elevated inflammatory
markers and rapidly escalating oxygen requirements. In our cohort, 10 (12%) patients were
treated  with  Tocilizumab.  To  assess  metabolic  changes  associated  with  tocilizumab
treatment, we fit a linear model on the time since treatment with age, gender, race, BMI, and
disease severity as covariates. Several metabolite species were significantly associated with
tocilizumab treatment (Figure 1e and Figure S4a-c, Table S5), in particular an increase in
VLDL particles but also in their cholesterol content (both free and esterified), reduction of
valine  levels,  triglyceride  content  of  VLDL,  and  ratio  of  the  polyunsaturated  fatty  acids
(PUFA) Omega 6 to 3 - a ratio associated with the pathogenesis of various diseases45,46

(Figure 1f). However, we also observed metabolite species that were significantly changed
with COVID-19 severity with no apparent change with tocilizumab treatment (Figure 1e-f,
and Figure S4e-g). Across all metabolite species, we observed a trend for patients treated
with Tociluzumab to have a metabolic state more similar to patients with milder disease over
time (Figure 1g), which suggests that the administration of Tociluzimab could contribute to a
partial  rescue of  some of  the effect  of  severe disease on the metabolism of  COVID-19
patients.

Precise monitoring of COVID-19 clinical trajectories by intra-patient metabolome dynamics
Given the sensitivity of targeted NMR metabolomics to detect changes of disease severity in
COVID-19 patients, we hypothesized that these data could be used as a rich, multivariate
measurement  of  disease  severity  grounded  in  metabolic  data.  First,  to  understand  the
temporal dynamics of the metabolism of COVID-19 patients, we created a two-dimensional
latent space using the abundance of the metabolites across all samples (Figure 2a). This
space was largely driven by the severity of disease and clinical outcomes associated with it
such as hospitalization, intubation and death, and the time since symptom onset (Figure 2a
and Figure S5a-b). This allowed us to use the distribution of clinical attributes on the space 
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Figure 2: Use of high-dimensional metabolic data for precise disease monitoring.
a) Latent representation of metabolic data for all samples in two dimensions using diffusion components. In the 
first two panel columns samples are colored by their value of WHO score, whether the patient was hospitalized, 
intubated and their survival. The rightmost column indicates the position of each sample within the inferred 
pseudotime and the relative risk for the whole two-dimensional space. b) Heatmap with relative abundance of 
metabolites for all the samples where both axes are sorted by their relative position along the inferred 
pseudotime. The lower part of the plot indicates the values of clinical parameters for every sample. c) Trajectory 
of each patient across the latent space during their clinical course. Patients with at least three samples are 
colored distinctly while the remaining are colored in gray. d) Particular trajectories for patients 23 and 24 as in c). 
The inset illustrates the stagnated course of patient 24. dN = n days since symptoms onset. e) Values of GlycA 
and the predicted risk for patients 23 and 24 along the clinical trajectories of each patient. The shaded area in the
GlycA plots represents the distribution of that metabolite in the UK biobank cohort, while the shaded area for 
predicted risk represents the distribution of the COVID-19 cohort. f) Vector field of velocities in the latent space 
interpolated from the observed velocity vectors for all patients (blue). g) Relationship between total distance 
moved per patient in the latent space over the whole clinical course and its length in days from symptom onset. 
h) Distribution of average velocities across the whole clinical timeline for every patient. i) Association analysis 
between clinical variables and the average velocity of each patient. p-values have been adjusted with the 
Benjamini-Hochberg FDR method. j) Illustration of differences between patient velocities and their hospitalization 
or overall disease severity across the whole clinical timeline.

to inform of the relative risk of adverse outcomes (including hospitalization, intubation and
death) for patients (Figure 2a, right and FigureS5c).  Importantly, this relationship is largely
independent of the statistical method used to construct a latent space (Figure S5d). Second,
we used pseudotime to derive a direction of progression through the latent space for each
patient over multiple timepoints. This allowed us to order samples based on their predicted
trajectory along the overall course of disease severity (Figure 2b). Finally, we were able to
observe the trajectory of each patient along the latent space, and by weighting the amount of
change by the time between timepoints we could derive a measure of speed of change of
metabolome for  each patient,  and an aggregate measure of  how much the metabolome
changed over time (Figure 2c-e). For example, patients 23 and 24 have similar trajectories
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at  start  -  starting at  an area of  intermediate risk and progressing to an area of  highest
severity -, but later move to an area occupied most by healthy and convalescent individuals
or remain in the area of highest risk, respectively (Figure 2d). These divergent trajectories
are apparent in the predicted relative risk from metabolic data, while a single marker such a
GlycA tends to inform only of one specific aspect of the metabolome (inflammation) (Figure
2e).
The longitudinal aspect of the data and its reduction to a single landscape further allowed us
to study the temporal kinetics of disease severity and recovery (Figure 2f). We hypothesized
that the overall speed of each patient along their timeline could be related to their clinical
status. We observed that different patients can have largely different speeds of metabolic
change during their clinical timeline (Figure 2g-h), and sought to identify a clinical parameter
that would be associated with that change (Figure 2i). We discovered that the overall speed
of  metabolic  change along the whole timeline of the patient  was related with the overall
disease severity of the patients and whether the patient was hospitalized (Figure 2j). This
observation suggests that higher rates of metabolic changes over time are an index of the
complex interactions between viral infection, treatment, and individual host response, and
may translate into (or reflect) a worse overall outcomes for the patients. Taken together,  our
pseudo-temporal analysis  of  the metabolomics dataset revealed a dynamic landscape of
metabolic  change  within  patients  over  time,   which  can  be  used  to  measure  disease
progression in near-real time.

Integration of immune and metabolic data for patient stratification

Since metabolic requirements underpin immune activation47,48 which is needed for response
to  infection49–51,  and  immune  effectors  are  known  to  regulate  key  enzymes  in  lipid
metabolism 52,53 we sought to uncover the relationship between metabolite abundance and
immune  system  composition  by  performing  regularized  regression  on  the  NMR
metabolomics and flow cytometry immune profiling datasets54 (Figure 3a and  Figure S6).
This  resulted in  a map of  interactions  between metabolites  and immune populations,  of
which  Figure  3a  illustrates  the  strongest.  Interactions  between  immune  and  metabolic
variables could be largely categorized in two groups: i) positive association (Figure 3a red in
the heatmap): immune variables changing in the same direction as metabolic variables; ii)
negative  association  (Figure  3a blue  in  the  heatmap):  increase  in  metabolic  variables
correlated with decrease in immune variables or vice-versa. For example, the decrease in
Albumin  levels  during  COVID-19  was  matched  with  the  increase  in  polymorphonuclear
myeloid-derived suppressor cells (PMN-MDSC); total T-cell abundance was related to the
fraction of medium size HDL, where both variables decrease with COVID-19 severity. The
immune checkpoint inhibitors Lag3 and Tim3 which we previously described increasing with
COVID-19  severity  showed interactions  with  the  fraction  of  cholesterol  in  LDL particles,
themselves decreasing with COVID-19 severity. While many of these potential interactions
are not  yet  described,  and many are indirect,  there are also specific  examples of  direct
interactions,  such  as  HDL  interference  with  the  potential  of  T  cells  to  produce  some
cytokines, through a proposed mechanism of direct binding55. The relationships between the
two datasets made us hypothesize that it  could be possible to establish a patient-centric
view of the immune-metabolic landscape during COVID-19. Towards that end, we employed
regularized Canonical Correlation Analysis (rCCA) to integrate both NMR and flow cytometry
datasets in a common latent space (Figure 3b). In this new space, samples clustered based
on disease severity and its associated clinical outcomes regardless of dataset origin (Figure
3b). This allowed us to build a novel way to stratify patients based on both immune and
metabolic data by hierarchical clustering of the pairwise similarity between patient samples
(Figure  3c).  In  this  classification  we  could  identify  six  groups:  one  with  predominantly
healthy samples (11%); two groups of patients with mild disease (10 and 12% respectively);
two groups mostly containing patients with severe disease (one with samples collected close
to symptom onset,  and the other later (11 and 24% respectively);  and finally a group of
samples  from  mostly  convalescent  patients  (32%)  (Figure  3c).  The  six  groups  were
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characterized by distinct clinical parameters and abundance of immuno-metabolic species
(Figure 3d). For example, the two groups of mild disease could be distinguished by distinct
BMI,  liver  enzyme levels,  and  triglyceride  content  of  lipoproteins.  Additionally,  the  “late”
severe disease group had creatinine levels markedly higher than the “earlier” severe group,
as opposed to B-cell expression of immunoglobulins G and M (IgG/IgM) which was highest
in “early” disease and later decreased (Figure 3d).

Figure 3: Joint immune-metabolic analysis of COVID-19 patients empowers novel patient stratification
strategies.

a) Heatmap of the relationship between metabolic (x-axis) and immune variables (y-axis). Only the 30 variables 
with most variance are shown per dataset. b) Integration of immune and metabolic data into a joint embedding. 
Each square panel demonstrates the distribution of samples dependent on clinical factors, and below the 
cumulative distribution function of each class along the first dimension. We provide silhouette scores (S) for how 
good the classes are separated and their significance through an ANOVA test (p). c) Pairwise correlation 
heatmap showing the similarity between samples based on immune-metabolic data. The hierarchical clustering 
dendrogram illustrates the newly discovered patient groups. Axis rows and columns are the same. Values of 
clinical parameters for every sample are illustrated above the heatmap. d) Association of sample groups with 
clinical (top) and immune-metabolic variables (bottom). Values have been row-wise Z-score transformed to 
account for the heterogeneous nature of the variables.
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Discussion

Here  we present  longitudinal  immuno-metabolic  data  on a  cohort  of  COVID-19  patients
representative of the whole range of  disease severity.  We show that  patient  metabolism
during disease is quite dynamic, reflecting disease progression and treatment. Consistent
with a previous report, increased markers of systemic inflammation correlated with COVID-
19 severity25.  More importantly, we identified a deep alteration of the lipoprotein particles
levels  and  composition:  increased  triglyceride  content  and  VLDL,  decrease  of  HDL,
percentage of cholesterol/cholesteryl esters in HDL, and IDL were associated with severe
disease.  Previous  studies  have  proposed  a  decrease  in  cholesterol  and  increase  in
triglycerides as markers of severe COVID-1924,44. In our study we confirm these findings and
further describe the deep modification in the lipid metabolism and composition of lipoprotein
and fatty acid associated with the disease. This is reminiscent of a metabolic state known to
predispose  to  cardiovascular  disease56–58 and  could  be  related  to  the  thrombotic  events
observed in COVID-19 patients with severe disease2,4,5,59,60. Furthermore, we develop tools to
precisely monitor patient trajectories using metabolic data, enabling risk assessment on a
continual  fashion,  and  a  novel  patient  stratification  strategy.  We  must  nonetheless
acknowledge the following limitations to our study: i) our cohort is relatively small especially
in comparison with large repositories such as the UK biobank; ii) our cohort is also skewed
to have more patients with longitudinal follow-up for patients with severe disease - this is at
least in part due to the natural dynamic severe disease having a longer recovery period; iii)
our  analysis  of  the  interaction  between  the  immune  system  and  metabolome  is  purely
correlational, as we can’t infer causality between the presence or activity of an immune cell
type with the abundance of a metabolite.

It is plausible that cytokine modulation of key metabolic enzymes or energy usage by the
immune  system  during  acute  infection  are  a  major  source  of  the  metabolic  changes
associated with COVID-19 progression61. It has been shown for COVID-19 specifically that in
T-cells  cholesterol  interacts  with  sphingolipids  in  membrane  rafts  in  a  manner  that  is
dependent  on the saturation state of  the fatty  acids29,  and more generally  that  lipid  raft
formation has a  crucial  role  in  the  cytotoxic  activity  of  CD8 T-cells62–64.  The increase in
triglyceride composition of lipoprotein particles and their saturation state we observed with
increased disease severity could result in altered immune function. Evidence for that has
been seen in the regulation of immune checkpoint proteins such as CTLA4 in MDSCs by
intracellular PUFA levels in cancer models65. Another example is the shift between energy
sources in T effector cells from glucose to aminoacids which is required for proliferation and
cytotoxic activity49–51. 

Additional  evidence  of  immune  influence  on  metabolism  in  our  data  is  the  fact  that
tocilizumab - a neutralizing antibody of the pro-inflammatory IL-6 - partially rescues the effect
of disease severity at the metabolic level (Figure 1g). This reinforces the idea that metabolic
changes during COVID-19 are likely to be at least partially driven by the immune system
either  directly  through  regulation  of  key  metabolic  enzymes  by  cytokines,  energy
consumption of cytokine-secreting cells, or by the effect of immune cells on other tissues. At
the same time, in our study BMI had a negligible influence on disease severity (Figure S2a),
and  that  biomarkers  for  liver  function  such  as  AST  and  ALT  did  not  show  significant
association  with  disease  severity  (Figure  S3b-c),  making  nutrition,  obesity  and  liver
dysfunction unlikely candidates to explain metabolic change during COVID-19. Nonetheless,
the contribution of these and other factors should be further explored in future studies with
larger sample sizes.

The immune-metabolic crosstalk taking place during COVID-19 progression suggests the
future potential use of metabolites to control disease through direct modulation of specific
steps of  lipid  metabolism at  the immune level.  In  that  light,  having precise  methods for
disease  monitoring  that  capture  both  metabolism  and  immune  system  states  would  be
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extremely  useful.  In  this  study  we  develop  a  method  for  patient  monitoring  using  NMR
spectroscopy of metabolites from blood sera (Figure 2) that is quantitative, does not rely on
thresholds,  and can be interpreted in  terms of  patient  risk at  any given time during the
patient’s clinical trajectory. Further development of our approach of joint immuno-metabolic
classification of overall patient trajectories (Figure 3) could be used early in the course to
tailor patient care and maximize allocation of medical resources.

Collectively,  our  study  unveils  the  considerable  metabolic  disarray  during  COVID-19
progression which could open avenues for the development of metabolic-based therapies.
Further, by leveraging immuno-metabolic high-dimensional data, we provide novel methods
for precise disease monitoring and stratification in order to effectively tailor clinical care to
COVID-19 patients.

Methods

Human studies

Blood serum samples were collected at the New York Presbyterian Hospital/Weill  Cornell
Medicine. Experiments using samples from human subjects were conducted in accordance
with local regulations and with the approval of the IRB at the Weill  Cornell Medicine. No
statistical methods were used to pre-determine sample size.

Targeted metabolomics with nuclear magnetic resonance

Analytes  were  quantified  from  plasma  samples  using  targeted  high-throughput  NMR
metabolomics (Nightingale Health Ltd.). 249 measures are produced, with 148 in absolute
molar  quantification.  These  include  lipids,  lipoprotein  subclasses,  fatty  acids  and  their
saturation,  several  low-molecular  weight  metabolites  (amino  acids,  ketone  bodies  and
glycolysis metabolites), as well as a set of clinically validated biomarkers associated with
different metabolic pathways relevant to human physiology.

Analysis of nuclear magnetic resonance data

In  order  to  categorize  the  NMR  analytes  biophysically  and  functionally,  we  used  data
distributed by the  ggforestplot package34 (https://github.com/NightingaleHealth/ggforestplot)
and complemented them with variables representing lipoprotein particle  size and density
according to the variable  names.  Values of  replicability  per  analyte were extracted from
measurements of technical replicates performed by Nightingale Health Ltd. publicly available
at:  https://biobank.ndph.ox.ac.uk/showcase/showcase/docs/nmrm_app2.pdf.  Summary
statistics  for  metabolite  species  abundance  at  population  scale  were  obtained  from the
publicly  available  resource  showcase  of  the  UK  biobank42

(https://biobank.ndph.ox.ac.uk/ukb/) by querying field IDs 23400 to 23578. In order to build
data-driven groups of variables, we used a standardized and centered matrix of features with
absolute measurements only, and computed a nearest neighbor graph using 15 neighbors
as the size of the local neighborhood (scanpy.pp.neighbors). These were used as input for
UMAP (scanpy.tl.umap)  and clustered using the Leiden algorithm (scanpy.tl.leiden),  both
with default parameters using Scanpy66.

To identify variables associated with COVID-19 severity,  we performed linear  regression
using a mixed effect model. The model used age, gender, and body mass index (BMI) as
covariates, with the WHO score per sample as the dependent variable, and fixed effects for
each  patient.  To  identify  variables  associated  with  tocilizumab  treatment,  we  performed
linear regression with a generalized linear model. The dependent variable was the time in
days since treatment began, and only samples of patients which received treatment were
included.  Covariates  of  age,  gender,  and  body  mass  index  (BMI)  were  also  used.  We
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ensured there was no collinearity between predictors by measuring their variance inflation
factor using statsmodels. We fit  the models for all  variables, inspected the distribution of
residuals  and for  the  mixed effect  model  also  compared the estimated coefficients  to  a
generalized linear model with no blocking on patient, and to models not incorporating the
covariates. We found that the estimated effect of COVID-19 severity between these models
was  highly  similar  (r2 =  0.985).  p-values  were  corrected  for  multiple  testing  using  the
Benjamini-Hochberg FDR method.  To assess whether  the group of  features significantly
associated with COVID-19 severity or tocilizumab treatment were enriched in any particular
biophysical  and  functional  classes,  we  performed  enrichment  analysis  using  parametric
analysis  of  gene  set  enrichment67 (PAGE)  as  implemented  in
https://github.com/afrendeiro/page-enrichment.

Generation of a latent space for precision disease monitoring

To establish a latent space embedding using the metabolomics data, we performed spectral
embedding  of  the  metabolomics  data  (sklearn.manifold.SpectralEmbedding).  We  also
compared the results of this method to the following methods for dimensionality reduction:
principal  component  analysis  (PCA),  non-negative  matrix  factorization  (NMF),
multidimensional  scaling  (MDS),  non-linear  dimensionality  reduction  through  isometric
mapping (Isomap), t-distributed stochastic neighbor embedding68 (t-SNE), uniform manifold
approximation  and  projection  (UMAP),  as  implemented  in  scikit-learn,  diffusion  maps
(DiffMap) as implemented in Scanpy66, and minimum-distortion embedding66,69 (MDE) from
the  PyMDE package. Spectral embedding produces exactly the same results as diffusion
maps (DiffMap) with default parameters if the input matrix is standardized and centered. To
order variables along a gradient within the derived latent space across its two dimensions,
we correlated the original features with each latent vector, scaled each to the unit range and
multiplied the values of dimension 1 and 2. Then, to order samples along this gradient, we
simply computed the correlation of each sample with the previously derived vector.

Inference of clinical parameters distribution within the latent space was done as previously70:
two  bivariate  gaussian  kernel  density  estimators  were  fitted  on  the  coordinates  of  the
samples with the difference being that one was weighted by the respective value of  the
sample in the clinical parameter. The final values are given by the difference between the
two estimators. The compound measure of relative risk is the average of these estimations
for the WHO score, hospitalization, intubation, and death.

To  generate  a  vector  field  of  patient  movement  through  the latent  space,  we  extracted
vectors  representing  the  movement  of  each  sample  at  each  timepoint  by  dividing  the
euclidean distance between points by the time between each two consecutive timepoints.
Then,  we  interpolated  these  values  across  the  two-dimensional  latent  space
(scipy.interpolate.griddata). The total velocity of each patient in the space was calculated as
the total distance over the length of the timeline (first to last NMR sample). To derive a score
of COVID-19 severity for each sample, we also separated features dependent on the sign of
the coefficients of the mixed effects model and calculated the difference in the mean of up-
regulated features and mean down-regulated features scaled by their relative size.

Joint analysis of nuclear magnetic resonance and flow cytometry datasets

In  order  to  understand  the  relationship  between  metabolic  variables  and  immune
populations, we performed Ridge regression between the NMR and flow cytometry datasets
with  hyperparameter  optimization  using  random  search  cross-validation
(sklearn.model_selection.RandomizedSearchCV)  for the alpha parameter sampled from a
log-uniform distribution  with  parameters  a  =  1e-20,  and  b  =  1  for  1000  iterations.  The
coefficients of the best model were highly regularized (alpha = 0.979196) and were used to
represent the relationship between metabolic and immune population variables.
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To produce a joint embedding of metabolic and immune data for each patient timepoint, we
employed regularized canonical correlation analysis71 (RCCA) in the Python implementation
pyrcca. We performed hyperparameter optimization with grid search cross validation using a
number of canonical components between 4 and 8, and a regularization parameter between
1e-3 and 1e3.  The best  number  of  canonical  components  was 6 and the regularization
parameter was 90. The separation of groups of samples dependent on clinical parameters
was assessed with a silhouette score and an analysis of variance (ANOVA) test on the first 2
canonical components only.

To produce a stratification of patients based on the joint projection of the two datasets in the
RCCA space by correlating samples in a pairwise fashion and extracting the first 6 splits of a
dendrogram  derived  from  hierarchical  clustering  of  the  correlation  coefficients.  The
association of clinical or immune-metabolic variables with the derived patient groups was
performed by fitting a linear model explaining those variables using the patient groups. In the
case  of  immune-metabolic  data,  only  the  top  3  variables  per  group  were  chosen  for
visualization.

Software used:  Python version 3.8.2, numpy72 1.21.0, scipy73 1.7.0, statsmodels74 0.12.2,
scikit-learn75 0.24.2, scanpy66 1.8.0, pymde69 0.1.12, pingouin76 0.3.12, and pyrcca71 0.1.

Data availability

Clinical and demographic annotation of the samples is provided as Table S1. The full NMR
metabolomics  dataset  is  provided  as  Table  S2  and  Table  S3.
Previously  published  flow  cytometry  data54 are  available  at  the  following  URL:
https://github.com/ElementoLab/covid-flowcyto

Code availability

Source  code  for  the  full  data  analysis  of  the  study  is  available  at  the  following  URL:
https://github.com/ElementoLab/covid-metabolomics
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Supplementary figures

Figure S1: Characterization of the NMR metabolomics panel.

a-c) Composition of the panel dependent on the biophysical characteristics of the analytes from a) to c) with
increased granularity.  d-e)  Composition of  the lipoprotein  particle  variables  in  the panel  depending  on their
density d) and size e). f) Absolute abundance of metabolites depending on their density or size. g) Measures of
reproducibility and signal-to-noise for all metabolites in the panel. h) Relationship between mean and variance for
all variables in the panel. i) Pair-wise correlation of metabolite abundance.
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Figure S2: Metabolic changes associated with COVID-19 severity.

a) Number of significant (p < 0.05 FDR) variables for a joint model of COVID-19 severity, patient age, BMI, and
race.  b)  Volcano plot  of  changes in  metabolites associated with  COVID-19 severity.  c)  Heatmap of  relative
metabolite abundance for all samples where the axes have been sorted by the amount of change. d) Abundance
of metabolites with significant association with COVID-19 severity depending on WHO score.
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Figure S3: Metabolic and clinical association of disease severity.

a)  Distribution of  log fold-changes in  lipoprotein  particle  metabolites depending on their  size (upper  row) or
density (lower row). The coefficients represent the change associated with hospitalization, death and disease
severity. b) Volcano plot of clinical variables associated with COVID-19 severity in our cohort. c) Distribution of
clinical  parameters  in  the samples dependent  of  COVID-19 severity.  The horizontal  grey areas represent  a
healthy range for each parameter.
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Figure S4: Metabolic changes associated with tocilizumab treatment in COVID-19.

a) Association of metabolite abundance with the time of tocilizumab treatment for all metabolic species (upper
panel).  The  lower  panel  illustrates  the  10  metabolites  most  associated  in  each  direction.  b)  Heatmap  of
metabolites significantly associated with tocilizumab treatment for samples of patients that have been treated.
Volcano plot of clinical variables associated with COVID-19 severity in our cohort.  c) Enrichment of metabolite
classes in the change with tocilizumab treatment. d-f) Abundance of metabolites with discordant d), concordant
e) or indifferent d) change between COVID-19 severity and tocilizumab treatment for treated patients.
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Figure S5: Metabolic and clinical association of disease severity.

a)  Latent  space as in  Figure 2a,  but  illustrating the  distribution  of  additional  clinical  factors.  b)  Association
analysis  of  clinical  variables  with  the  latent  space  axes.  p-values  have been  adjusted  with  the  Benjamini-
Hochberg FDR method. c) Difference between bivariate kernel density estimates that have been weighted with
the clinical parameters of the samples. The overall risk is the mean of the four clinical parameters in the first row
of plots.  d-f) Latent space embeddings of  metabolomic data using alternative methods. Samples have been
colored by the WHO score scale.
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Figure S6: Interactions between immune and metabolic variables during COVID-19.

Heatmap of the relationship between all immune (x-axis) and metabolic variables (y-axis). The change of each
feature in relation to COVID-19 severity is displayed in a purple-to-gold heatmap.
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