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Abstract  

Background: Analytic approaches to clinical validation of results from preclinical models are 

important in assessment of their relevance to human disease. This systematic review examined 

consistency in reporting of glioblastoma cohorts from The Cancer Genome Atlas (TCGA) and 

assessed whether studies included patient characteristics in their survival analyses. 

Methods: We searched Embase and Medline on 02Feb21 for studies using preclinical models of 

glioblastoma published after Jan2008 that used data from TCGA to validate the association 

between at least one molecular marker and overall survival in adult patients with glioblastoma. 

Main data items included cohort characteristics, statistical significance of the survival analysis, and 

model covariates.  

Results: There were 58 eligible studies from 1,751 non-duplicate records investigating 126 

individual molecular markers. In 14 studies published between 2017 and 2020 using TCGA RNA 

microarray data that should have the same cohort, the median number of patients was 464.5 

(interquartile range 220.5-525). Of the 15 molecular markers that underwent more than one 

univariable or multivariable survival analyses, five had discrepancies between studies. Covariates 

used in the 17 studies that used multivariable survival analyses were age (76.5%), pre-operative 

functional status (35.3%), sex (29.4%) MGMT promoter methylation (29.4%), radiotherapy (23.5%), 

chemotherapy (17.6%), IDH mutation (17.6%) and extent of resection (5.9%). 

Conclusions: Preclinical glioblastoma studies that used TCGA for validation did not provide 

sufficient information about their cohort selection and there were inconsistent results. 

Transparency in reporting and the use of analytic approaches that adjust for clinical variables can 

improve the reproducibility between studies. 
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Introduction 

Glioblastoma, the most common primary brain tumour [1,2], is lethal and therapeutic options have 

only a modest and temporary impact on survival [3,4]. Discovery science has advanced our 

understanding of cancer cell biology and is a step towards developing novel therapies [5]. These 

discoveries are usually based on preclinical models, from which the relevance to human disease 

must be established. Demonstrating relevance requires quality clinical and biological data. The 

Cancer Genome Atlas (TCGA) [6] and the Chinese Glioma Genome Atlas (CGGA) [7] are two 

open-access resources from which laboratory scientists can interrogate human data to verify their 

findings in glioblastoma research. These resources are valuable for the molecular characterisation 

of glioblastoma and can also be used to examine the associations between molecular markers of 

interest and survival. An association with survival might implicate a molecular marker as a potential 

drug target.  

Isolated analyses of genomic data are unlikely to provide an adequate assessment of the role of 

molecular features in patient outcomes. Univariable survival analyses that take on only one 

molecular marker do not account for other markers or clinical features [8]. The resulting 

associations from such analyses are subjected to confounding effects, which may render them 

unreliable. Multivariable analyses are preferable and should be facilitated by open access policies 

that permit researchers to use the same set of data for different analyses [9]. This is crucial for 

replicability and comparison of analyses, and to ensure the science that progresses to clinical trials 

is well founded. 

Clinical validation of results from preclinical glioblastoma studies using TCGA or CGGA data is a 

common experimental step to substantiate research findings. This systematic review examined 

these studies for their consistency in reporting of cohorts from TCGA and CGGA and whether they 

included patient characteristics in their survival analyses. 

 

Methods 

Eligibility criteria 

This review included studies that used data from TCGA or CGGA to examine the association 

between at least one molecular marker and overall survival in adult patients aged ≥18 years 
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diagnosed with non-recurrent histopathologically confirmed glioblastoma. Studies using both TCGA 

and CGGA were eligible if results were stratified by the data resources. We only included studies 

that used cell or animal models to first identify molecular markers associated with tumour biology, 

then examined the association between these markers and overall survival in humans using TCGA 

or CGGA data. We excluded case reports, reviews, editorials and conference abstracts.  

 

Study selection 

We searched Embase and Medline on 02 February 2021 for potentially eligible studies published 

after January 2008 using search terms relating to “glioma”, “survival”, “TCGA” and “CGGA” 

(Supplementary Materials). The lower limit of the search period was set because data from TCGA 

first became available in 2008. After removing duplicate studies, two independent reviewers (B.F. 

and G.L.) performed screening using titles and abstracts followed by full-text eligibility assessment. 

Any disagreements at each stage were resolved through discussion with a third reviewer 

(M.T.C.P.).  

 

Data extraction and data items 

Two reviewers (B.F. and G.L.) independently collected data from each study using the online 

systematic review management software Covidence. Disagreements were resolved by discussion 

between the two reviewers or by involving a third reviewer (M.T.C.P.). Data items included study 

characteristics, TCGA cohort characteristics, CGGA cohort characteristics, genomic data used, 

molecular markers, and details of survival analysis. Molecular markers included expression, 

variants, or methylation of genes, RNAs and microRNAs. A set of molecular markers was defined 

by a grouping and analysis of >1 molecular markers together. We categorised survival analysis 

into univariable and multivariable analysis, and we collected the covariates entered into the 

multivariable analysis. To describe the association between molecular markers and survival, we 

considered the reported p value of <0.05 as statistical significance. If a study reported results from 

both TCGA and CGGA cohorts, we extracted the statistical significance of these results separately. 

Data on effect sizes and their corresponding 95% confidence intervals (CI) were not collected 
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because studies using log-rank (Mantel-Cox) tests to compare survival between study-specific 

groups do not provide these data and there was no plan for meta-analysis. 

 

Quality assessment 

There was no risk of bias assessment tool directly relevant to studies in this review. However, we 

assessed components of the study design relating to risk of bias. These measures of quality 

included types and size of cohorts used for survival analysis, types of genomic data used from 

TCGA or CGGA, and the criteria used to select patients for survival analysis.  

 

Summary statistics 

We presented study characteristics, results and quality measures using descriptive statistics with 

stratification by type of survival analysis, univariable and multivariable, where available. The 

availability of data in TCGA increased over time and there are different numbers of patients in 

whom various types of data are available. To assess the reproducibility of cohort selection from 

TCGA, we summarised the number of patients in studies published between 2017-2020 using 

TCGA RNA microarray data because these specifications identified studies that have used the 

same cohort of patients. There was no meta-analysis of any association between molecular 

markers and overall survival.  

 

Results 

Study characteristics 

This review included 58 eligible studies from 1,751 non-duplicate records retrieved from our 

systematic search. These studies investigated 126 individual molecular markers and 32 sets of 

molecular markers. Most (62.1%) studies were published in 2017-2020 and were from research 

teams based in the United States (34.5%), China (27.6%) and Europe (24.1%). The pre-clinical 

glioblastoma models used were cell lines and orthotopic mouse models in 51.7% and 48.3% 

studies, respectively. All studies used a form of data from TCGA with various combination with 

other data sources and two studies used data from CGGA (Table 1). RNA microarray data was the 

most common data type, used in 45 (77.6%) studies. When investigating the association between 
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their markers of interest from pre-clinical models and survival using genomic data, more studies 

used univariable survival analyses only (70.7%) compared to those that used multivariable 

analyses (29.3%). All univariable analyses used the non-parametric log-rank (Mantel-Cox) method 

and all multivariable analyses used the Cox proportional hazards regression. There were 16 

(27.6%) studies that described additional criteria for patient inclusion within the selected TCGA 

cohort. 

 

Reproducibility and survival analysis 

The date and requested data type of query in TCGA can result in a different number of patients 

available for survival analysis. To assess reproducibility of cohort selection from TCGA in the 

included studies, we summarised the numbers of patients in studies with similar data specifications. 

In 14 studies published between 2017 and 2020 using TCGA RNA microarray data without 

additional patient inclusion criteria, the median number of patients included was 464.5 (interquartile 

range [IQR] 220.5-525). Of these studies, 12 studies did not perform a multivariable survival 

analysis, therefore all should have the same number of patients included; the median number of 

patients included in the univariable survival analysis was 467 (IQR 196.75-528.75). 

 

Among the 126 distinct molecular markers investigated in the included studies, 15 markers 

underwent more than one univariable or multivariable survival analysis (Table 2). The association 

of these markers with outcomes were consistent between different analyses most of the time. 

However, there were discrepancies between results for C-X-C Motif Chemokine Ligan 14 

(CXCL14), epidermal growth factor receptor (EGFR), netrin 4 (NTN4), SRY-Box transcription factor 

2 (SOX2), serglycin (SRGN) and miRNA-17-5p microRNA (Table 2). These discrepancies appear 

to relate to the type of survival analysis used (CXCL14, SOX2, SRGN) or the data type (EGFR, 

NTN4). 

 

There were 17 studies that investigated the association between their molecular markers of 

interest and overall survival using a multivariable survival analysis. All these studies used TCGA 

data, which have clinical data available. The most frequently included clinical variable in the 
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multivariable model was age (76.5%) (Figure 1). Other variables included pre-operative functional 

status (35.3%), sex (29.4%), MGMT promoter methylation (29.4%), radiotherapy (23.5%), 

chemotherapy (17.6%), IDH mutation (17.6%) and extent of resection (5.9%).  

 

Discussion 

There were studies in glioblastoma research that used data from publicly available genomic 

repositories to correlate pre-clinical experimental findings with clinical survival benefit in humans. 

These studies often had different numbers of patients included despite using the same data source 

and data type. Survival analyses often did not include other critical clinical variables associated 

with survival such as extent of resection [10], chemotherapy and radiotherapy [3,11]. In studies that 

performed a multivariable survival analysis, most clinical variables such as extent of resection and 

oncological treatment were not included. This yielded some inconsistent results between studies. 

Other results were subject to confounding effects by clinical variables that were not accounted for. 

 

Reproducibility 

Development of novel cancer therapies relies on reproducible results from preclinical research. 

The need for improving reproducibility is not new [12]. In cancer research, there is a heavy reliance 

on the preclinical literature for drug development [13]. However, issues with reporting bias, 

suboptimal reporting quality, varying reproducibility and preclinical model representation of disease 

impede the success in finding new therapies [14]. The availability of survival data in publicly 

available data from cancer genomics programmes presents an opportunity for researchers to 

assess the association between molecular markers and patient survival in a reproducible manner. 

These open access data sources provide data on the same cohort of patients, which encourages 

reproducibility between studies. However, our findings demonstrate that patient selection was not 

adequately described, resulting in different numbers of patients between studies that supposedly 

used the same dataset. There are reproducible ways of querying TCGA data, for example, using 

the ‘TCGABiolinks’ R/Bioconductor package [15] where code-based commands can be shared as 

supplementary materials. Adopting relevant aspects of reporting guidelines such as Strengthening 

the Reporting of Observational Studies in Epidemiology (STROBE) [16], Transparent reporting of a 
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multivariable prediction model for individual prognosis or diagnosis (TRIPOD) [17] and REporting 

recommendations for tumour MARKer prognostic studies (REMARK) [18] can further improve 

transparency in reporting. 

 

Confounding effects of clinical variables 

Most studies did not consider clinical variables as potential confounders to the association between 

the molecular marker of interest and survival. There are nevertheless examples of associations 

that no longer exhibit a statistical significance after adjustment to clinical variables in a 

multivariable analysis (Table 2). Therefore, it is important to explore and consider confounders 

when assessing the effect of molecular markers on survival [19]. This is not a simple task because 

of data missingness, relatively small numbers of patients available, as well as correlations between 

clinical variables. Both data driven and clinically informed choice of covariates would be a 

reasonable approach [20].  

 

Strengths and limitations 

This systematic review assessed all pre-clinical studies that used data from TCGA or CGGA to 

validate findings from their laboratory experiments. Our data collection allowed comparison of 

findings between and within studies, which allowed our evaluation of replicability.  

Clinical studies that examined associations of previously investigated molecular markers with 

survival were not included in this review. These studies may provide more detailed descriptions of 

cohort selection and may be more likely to consider confounding effects from clinical variables. 

This would mean an overestimation of inconsistencies and suboptimal analytic approaches in our 

review. However, any omission of consideration about patients being more than their tumours 

should be highlighted to re-orientate research focus to patient benefits. Collecting data on p values 

only to denote statistical significance was a pragmatic approach to describing associations 

reported in the included studies, since most studies did not report any effect sizes. This does not 

represent our views on the appropriate statistical approach and reporting of findings. We advocate 

reporting of effect sizes with their corresponding precision, adjusting for confounders. P values 

should not be used as a cut-off for the significance of an association [21]. There are other aspects 
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of survival analyses that we did not assess, such as whether included studies tested for the 

proportional hazard assumption when using a Cox regression [22]. While these analytic 

procedures are important, reporting of these would not affect our findings. 

 

Conclusions 

Translational studies in glioblastoma research should increase their transparency to facilitate 

replicability. The validation of laboratory experimental findings using human data is important to 

demonstrate translational value; but this should be done with consideration of patient 

characteristics. Integration of expertise in pre-clinical, genomic and clinical studies may help to 

address the challenge of producing replicable and meaningful research through collaboration 

between scientists in different fields.  

 

References 

[1] Ostrom QT, Patil N, Cioffi G, Waite K, Kruchko C, Barnholtz-Sloan JS. CBTRUS Statistical 

Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United 

States in 2013-2017. Neuro Oncol 2020;22:iv1–96. https://doi.org/10.1093/neuonc/noaa200. 

[2] Poon MTC, Brennan PM, Jin K, Sudlow CLM, Figueroa JD. Might changes in diagnostic 

practice explain increasing incidence of brain and central nervous system tumors? A 

population-based study in Wales (United Kingdom) and the United States. Neuro Oncol 

2021;23:979–89. https://doi.org/10.1093/neuonc/noaa282. 

[3] Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJB, et al. 

Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 

2005;352:987–96. https://doi.org/10.1056/NEJMoa043330. 

[4] Poon MTC, Sudlow CLM, Figueroa JD, Brennan PM. Longer-term (≥�2 years) survival in 

patients with glioblastoma in population-based studies pre- and post-2005: a systematic 

review and meta-analysis. Sci Rep 2020;10:11622. https://doi.org/10.1038/s41598-020-

68011-4. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 8, 2021. ; https://doi.org/10.1101/2021.09.04.21263119doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.04.21263119
http://creativecommons.org/licenses/by-nc-nd/4.0/


[5] O’Duibhir E, Carragher NO, Pollard SM. Accelerating glioblastoma drug discovery: 

Convergence of patient-derived models, genome editing and phenotypic screening. Molecular 

and Cellular Neuroscience 2017;80:198–207. https://doi.org/10.1016/j.mcn.2016.11.001. 

[6] Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR, et al. The 

somatic genomic landscape of glioblastoma. Cell 2013;155:462–77. 

https://doi.org/10.1016/j.cell.2013.09.034. 

[7] Zhao Z, Zhang K-N, Wang Q, Li G, Zeng F, Zhang Y, et al. Chinese Glioma Genome Atlas 

(CGGA): A Comprehensive Resource with Functional Genomic Data from Chinese Glioma 

Patients. Genomics, Proteomics & Bioinformatics 2021:S1672022921000450. 

https://doi.org/10.1016/j.gpb.2020.10.005. 

[8] Bradburn MJ, Clark TG, Love SB, Altman DG. Survival Analysis Part II: Multivariate data 

analysis – an introduction to concepts and methods. Br J Cancer 2003;89:431–6. 

https://doi.org/10.1038/sj.bjc.6601119. 

[9] Wilkinson MD, Dumontier M, Aalbersberg IjJ, Appleton G, Axton M, Baak A, et al. The FAIR 

Guiding Principles for scientific data management and stewardship. Sci Data 2016;3:160018. 

https://doi.org/10.1038/sdata.2016.18. 

[10] Molinaro AM, Hervey-Jumper S, Morshed RA, Young J, Han SJ, Chunduru P, et al. 

Association of Maximal Extent of Resection of Contrast-Enhanced and Non–Contrast-

Enhanced Tumor With Survival Within Molecular Subgroups of Patients With Newly 

Diagnosed Glioblastoma. JAMA Oncol 2020;6:495. 

https://doi.org/10.1001/jamaoncol.2019.6143. 

[11] Perry JR, Laperriere N, O’Callaghan CJ, Brandes AA, Menten J, Phillips C, et al. Short-

Course Radiation plus Temozolomide in Elderly Patients with Glioblastoma. New England 

Journal of Medicine 2017. https://doi.org/10.1056/NEJMoa1611977. 

[12] Baker M. 1,500 scientists lift the lid on reproducibility. Nature 2016;533:452–4. 

https://doi.org/10.1038/533452a. 

[13] Rubin EH, Gilliland DG. Drug development and clinical trials—the path to an approved cancer 

drug. Nat Rev Clin Oncol 2012;9:215–22. https://doi.org/10.1038/nrclinonc.2012.22. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 8, 2021. ; https://doi.org/10.1101/2021.09.04.21263119doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.04.21263119
http://creativecommons.org/licenses/by-nc-nd/4.0/


[14] Begley CG, Ellis LM. Raise standards for preclinical cancer research. Nature 2012;483:531–3. 

https://doi.org/10.1038/483531a. 

[15] Colaprico A, Silva TC, Olsen C, Garofano L, Cava C, Garolini D, et al. TCGAbiolinks: an 

R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Research 

2016;44:e71–e71. https://doi.org/10.1093/nar/gkv1507. 

[16] von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP. The 

Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: 

guidelines for reporting observational studies. The Lancet 2007;370:1453–7. 

https://doi.org/10.1016/S0140-6736(07)61602-X. 

[17] Collins GS, Reitsma JB, Altman DG, Moons KGM. Transparent reporting of a multivariable 

prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMJ 

2015;350:g7594–g7594. https://doi.org/10.1136/bmj.g7594. 

[18] Sauerbrei W, Taube SE, McShane LM, Cavenagh MM, Altman DG. Reporting 

Recommendations for Tumor Marker Prognostic Studies (REMARK): An Abridged 

Explanation and Elaboration. JNCI: Journal of the National Cancer Institute 2018;110:803–11. 

https://doi.org/10.1093/jnci/djy088. 

[19] Wang X, Lin Y, Song C, Sibille E, Tseng GC. Detecting disease-associated genes with 

confounding variable adjustment and the impact on genomic meta-analysis: With application 

to major depressive disorder. BMC Bioinformatics 2012;13:52. https://doi.org/10.1186/1471-

2105-13-52. 

[20] Bradburn MJ, Clark TG, Love SB, Altman DG. Survival Analysis Part III: Multivariate data 

analysis – choosing a model and assessing its adequacy and fit. Br J Cancer 2003;89:605–11. 

https://doi.org/10.1038/sj.bjc.6601120. 

[21] Greenland S, Senn SJ, Rothman KJ, Carlin JB, Poole C, Goodman SN, et al. Statistical tests, 

P values, confidence intervals, and power: a guide to misinterpretations. Eur J Epidemiol 

2016;31:337–50. https://doi.org/10.1007/s10654-016-0149-3. 

[22] Austin PC. Statistical power to detect violation of the proportional hazards assumption when 

using the Cox regression model. Journal of Statistical Computation and Simulation 

2018;88:533–52. https://doi.org/10.1080/00949655.2017.1397151.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 8, 2021. ; https://doi.org/10.1101/2021.09.04.21263119doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.04.21263119
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 1. Characteristics of 58 included studies that used TCGA or CGGA data to validate findings 
from experiments using pre-clinical models of glioblastoma 
 
  Survival analysis type 

 Overall 
N = 58 

Univariable 
N=41 

Multivariable 
N=17 

Year of publication    
2009-2012 4 (6.9%) 2 (4.9%) 2 (11.8%) 
2013-2016 18 (31.0%) 13 (31.7%) 5 (29.4%) 
2017-2020 36 (62.1%) 26 (63.4%) 10 (58.8%) 

Country / region    
United States 20 (34.5%) 13 (31.7%) 7 (41.2%) 
Europe (inc. UK) 14 (24.1%) 9 (22.0%) 5 (29.4%) 
China 16 (27.6%) 13 (31.7%) 3 (17.6%) 
Other countries* 8 (13.8%) 6 (14.6%) 2 (11.8%) 

Pre-clinical model    
Cell lines 30 (51.7%) 24 (58.5%) 6 (35.3%) 
Orthotopic mouse models 28 (48.3%) 17 (41.5%) 11 (64.7%) 

Data source    
TCGA only 34 (58.6%) 26 (63.4%) 8 (47.1%) 
TCGA & CGGA 1 (1.7%) 0 (0.0%) 1 (5.9%) 
TCGA and other public sources 9 (15.5%) 6 (14.6%) 3 (17.6%) 
TCGA and own patients 13 (22.4%) 8 (19.5%) 5 (29.4%) 
TCGA, CGGA and other public sources 1 (1.7%) 1 (2.4%) 0 (0.0%) 

Experimental strategy     
RNA microarray only 27 (46.6%) 24 (58.5%) 3 (17.6%) 
RNA sequencing only 7 (12.1%) 4 (9.8%) 3 (17.6%) 
miRNA microarray only 2 (3.4%) 1 (2.4%) 1 (5.9%) 
RNA microarray and RNA sequencing 4 (6.9%) 3 (7.3%) 1 (5.9%) 
RNA microarray and miRNA microarray 10 (17.2%) 6 (14.6%) 4 (23.5%) 
RNA sequencing and miRNA microarray 1 (1.7%) 0 (0.0%) 1 (5.9%) 
RNA microarray and DNA methylation 1 (1.7%) 0 (0.0%) 1 (5.9%) 
RNA sequencing, RNA microarray and miRNA microarray 2 (3.4%) 0 (0.0%) 2 (11.8%) 
RNA sequencing, RNA microarray and DNA methylation 1 (1.7%) 0 (0.0%) 1 (5.9%) 
Unspecified 3 (5.2%) 3 (7.3%) 0 (0.0%) 

Prognostic marker of interest    
One marker only 21 (36.2%) 20 (48.8%) 1 (5.9%) 
>1 individual markers 13 (22.4%) 10 (24.4%) 3 (17.6%) 
Set(s) of markers only 7 (12.1%) 4 (9.8%) 3 (17.6%) 
One marker and set(s) of markers 2 (3.4%) 2 (4.9%) 0 (0.0%) 
>1 individual markers and set(s) of markers 10 (17.2%) 4 (9.8%) 6 (35.3%) 
One marker and sets of markers with clinical variable(s) 4 (6.9%) 1 (2.4%) 3 (17.6%) 
Sets of markers and markers with clinical variable(s) 1 (1.7%) 0 (0.0%) 1 (5.9%) 

 
*Other countries included Brazil, Canada, India, Israel, Republic of Korea and Taiwan. UK = United Kingdom; 
TCGA = The Cancer Genome Atlas; CGGA = Chinese Glioma Genome Atlas; miRNA = micro-RNA. 
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Table 2. Results of molecular markers that were reported in two or more separate survival analyses 
 
Molecular marker Consistency Author Data type Analysis type Association 

CXCL14 � Zeng 2018 RNA-Seq, RNA microarray and miRNA microarray 
U ■ 
M □ 

EGFR � Kuang 2018 RNA microarray only U ■ 
Li 2018 RNA-Seq only U □ 

HOTAIR � Xavier-Magalhaes 2018 RNA-Seq, RNA microarray and DNA methylation 
U ■ 
M ■ 

IDO1 � Zhai 2017 RNA microarray and RNA-Seq 
U ■ 
M ■ 

IL-8 � Hasan 2019 RNA microarray only 
U ■ 
M ■ 

MARCKS � Jarboe 2012 RNA microarray and DNA methylation 
U ■ 
M ■ 

miR-17-5p � Zeng 2018 RNA-Seq, RNA microarray and miRNA microarray 
U ■ 
M □ 

miR-181d � Genovese 2012 RNA microarray and miRNA microarray U □ 
Ho 2017 RNA-Seq, RNA microarray and miRNA microarray U □ 

miR-34a � Genovese 2012 RNA microarray and miRNA microarray 
U ■ 
M ■ 

NTN4 � Hu 2012 RNA microarray only U ■ 
Li 2018 RNA-Seq only U □ 

PD-L1 � Nduom 2016 RNA-Seq only 
U ■ 
M ■ 

POSTN � 
Mega 2020 RNA microarray only U ■ 

Liu 2019 RNA microarray and miRNA microarray U ■ 
Mega 2020 RNA microarray only M ■ 

SFRP1 � Delic 2014 RNA microarray and miRNA microarray 
U ■ 
M ■ 

Sox2 � Sathyan 2015 RNA microarray and miRNA microarray 
U ■ 
M □ 

SRGN � Mega 2020 RNA microarray only 
U ■ 
M □ 

 
Molecular markers ordered alphabetically. Consistency refers to the association between a molecular marker and survival being statistically significant in different 
analyses. RNA-Seq = RNA sequencing; � = not consistent between different analyses; � = consistent between different analyses; U = univariable survival analysis; 
M = multivariable survival analysis; □ = statistical significance not demonstrated (p≥0.05); ■ = statistical significance demonstrated (p<0.05) 
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