Abstract
Background Analytic approaches to clinical validation of results from preclinical models are important in assessment of their relevance to human disease. This systematic review examined consistency in reporting of glioblastoma cohorts from The Cancer Genome Atlas (TCGA) and assessed whether studies included patient characteristics in their survival analyses.
Methods We searched Embase and Medline on 02Feb21 for studies using preclinical models of glioblastoma published after Jan2008 that used data from TCGA to validate the association between at least one molecular marker and overall survival in adult patients with glioblastoma. Main data items included cohort characteristics, statistical significance of the survival analysis, and model covariates.
Results There were 58 eligible studies from 1,751 non-duplicate records investigating 126 individual molecular markers. In 14 studies published between 2017 and 2020 using TCGA RNA microarray data that should have the same cohort, the median number of patients was 464.5 (interquartile range 220.5-525). Of the 15 molecular markers that underwent more than one univariable or multivariable survival analyses, five had discrepancies between studies. Covariates used in the 17 studies that used multivariable survival analyses were age (76.5%), pre-operative functional status (35.3%), sex (29.4%) MGMT promoter methylation (29.4%), radiotherapy (23.5%), chemotherapy (17.6%), IDH mutation (17.6%) and extent of resection (5.9%).
Conclusions Preclinical glioblastoma studies that used TCGA for validation did not provide sufficient information about their cohort selection and there were inconsistent results. Transparency in reporting and the use of analytic approaches that adjust for clinical variables can improve the reproducibility between studies.
Importance of the Study
Despite using the same data from The Cancer Genome Atlas, translational preclinical studies in glioblastoma research included different numbers of patients into their analyses and their results were inconsistent.
Fewer than a third of the studies used multivariable survival analysis to adjust for clinical variables but most did not take treatment factors into account.
Greater transparency in cohort selection from open access data and integration of clinical variables into analyses will help improve reproducibility in glioblastoma research.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
MTCP is funded by Cancer Research UK Brain Tumour Centre of Excellence Award (C157/A27589)
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
This is a systematic review therefore does not require IRB approval.
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Footnotes
↵* Co-first authors listed in alphabetical order
Data Availability
All data are publicly available through the cited papers and our supplementary materials.