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Abstract 20 

EEG signals of healthy individuals and epileptic patients, when treated as time series of  evolving 21 

dynamical systems, are found to display characteristic differences in the behavior of the unstable 22 

periodic orbits (UPO), marking the transition from regular periodic variations to self-similar 23 

dynamics. The UPO, manifesting as broad resonances in the Fourier power spectra, are quite 24 

prominent in their presence in the normal signals and are either absent or considerably weakened 25 

with a shift towards lower frequency in the epileptic condition. The weighted average and visibility 26 

power computed for the UPO region are found to distinguish epileptic seizure from healthy 27 

individuals’ EEG. Remarkably, the unstable periodic motion for healthy ones is well described by 28 

damped harmonic motion, the orbits displaying  smooth dynamics. In contrast, the epileptic cases 29 

show bi-stability and piecewise linear motion for the larger orbits, exhibiting large sudden jumps 30 

in the 'velocity’ (referred to the rate of change of the EEG potentials), characteristically different 31 

from the healthy cases, highlighting the efficacy of the UPO as biomarkers. For both the regions, 32 

8-14Hz UPO and 40-45Hz resonance, we used data driven analysis to derive the system dynamics 33 

in terms of sinusoidal functions, which reveal the presence of higher harmonics, confirming 34 

nonlinearity of the underlying system and leading to quantification of the discernible differences 35 

between the healthy and epileptic patients. The gamma wave region in the 40-45Hz range, 36 

connecting the conscious and the unconscious states of the brain, reveals well-structured coherence 37 

phenomena, in addition to the prominent resonance, which potentially can be used as a biomarker 38 

for the epileptic seizure. The wavelet scalogram analysis for both UPO and 40-45Hz region also 39 

clearly differentiates the healthy condition from epileptic seizure, confirming the above dynamical 40 
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picture, depicting the higher harmonic generation, and intermixing of different modes in these two 1 

regions of interest. 2 

 3 

Keywords: EEG signal; Nonlinear dynamics; Unstable periodic orbits; Phase space plots; Seizure 4 

and its biomarker 5 

 6 

Significance 7 

Unstable periodic orbits are demonstrated as faithful biomarkers for  detecting seizure, being 8 

prominently present in the Fourier power spectra of the EEG signals of the healthy individuals and 9 

either being absent or significantly suppressed for the epileptic cases, showing distinctly different 10 

behavior for the unstable orbits, in the two cases. A phase space study, with EEG potential and its 11 

rate of change as coordinate and corresponding velocity, clearly delineates the  dynamics in healthy 12 

and diseased individuals,  demonstrating the absence or weakening  of UPO, that can be a reliable 13 

bio-signature for the epileptic seizure. The phase-space analysis in the gamma region also shows 14 

specific signatures in the form of coherent oscillations and higher harmonic generation, further 15 

confirmed through wavelet analysis.  16 

 17 

1. Introduction  18 

 19 

Complex dynamical systems  in nature are often faithfully modelled by non-linear equations, 20 

characterized by stable and unstable periodic orbits, attractors, chaotic behavior, as well as bi-21 

stability, owing their  origin  to  nonlinearity. Human brain is a complex system consisting of 22 

billions of nerve cells (or neurons), which  help transmit signals from  the brain to the rest of the 23 

body [1-3]. A seizure is a paroxysmal alteration of neurologic function, arising from the excessive, 24 

hyper-synchronous discharge of neurons in the brain. Epilepsy is a serious condition of recurrent, 25 

unprovoked seizures. It  has numerous causes, each reflecting certain  underlying brain dysfunction 26 

[4]. Seizures can occur spontaneously as well as in a recurrent pattern, due to distorted neuronal 27 

interactions. Epilepsy, being  a neurological dysfunction, significantly affects the entire nervous 28 

system due to this  massive synchronous discharge of the brain cells [5]. Epileptic seizure causes 29 

loss of consciousness, sudden jerk movements, muscle spasms, fear, and anxiety, sometimes 30 

leading to the loss of life. It is a serious neuronal disorder, with about 1-2% of the global population 31 

affected by epilepsy, the most common neurological dysfunction. Epilepsy is not  a single disease, 32 

but a collection of symptoms that can range from a brief lapse of awareness to prolonged 33 

convulsions, all caused by misfiring neurons in the brain. It can be brought on by illness or head 34 

trauma, although very often there is no clear precipitating event [6-7]. 35 

 36 

Electroencephalogram (EEG) recording is a key medical tool for studying the behavior of the 37 

seizure. It measures the electric potential of the brain and is capable of providing dynamical neural 38 

information, brain disorders, and cognitive processes, related to the brain state [8]. EEG is a non-39 

invasive process and therefore allows the  record to be taken  for a long period of time for a precise 40 
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observation of the dynamic behavior of epileptic seizure [9-10]. Brain cells communicate via the 1 

electrical impulses through a large number of neurons; its spatiotemporal behavior can be observed 2 

by placing about 20 small flat metal discs or electrodes attached to the scalp through wires. This 3 

test helps to diagnose medical conditions like epilepsy, head injuries, seizure, brain tumors, and 4 

other brain related problems. Sudden seizures due to epilepsy can lead to fatal falls for unattended 5 

patients, underscoring the importance of predicting seizure occurrence [11-14]. Difficulty in 6 

prediction arises from the lack of reliable biomarkers for detecting the onset of the epileptic seizure 7 

[15-17].  8 

 9 

The EEG signals have relatively low amplitude levels, from which  brain rhythms in the form of 10 

waves are well discernible. Commonly observed rhythms include alpha, beta, gamma and theta 11 

waves. Alpha waves fall within the range of 4-8 Hz and thus are considered as slow rhythms. These 12 

are normal in children up to 13 years and are found in sleeping or in the rest state of adults. Beta 13 

waves spike during emotional responses to frustrating events, lying in the range of 13-30 Hz and  14 

can be detected on both sides of the head. It is most evident in the frontal domain and gets reduced 15 

in case of cortical damage. It can occur during rapid eye movement (REM) sleep. Gamma waves 16 

lie within the range of 30-100 Hz and are considered as fast rhythms. These are present during 17 

mixed sensory processing such as combination of hearing and seeing. This connects the conscious 18 

state to the unconscious state of the brain and is often referred to as genius waves. A reduction in 19 

gamma wave activity might be associated with cognitive decline, especially when compared to 20 

theta wave activity levels [18-20]. 21 

 22 

It has been observed that for detecting the epileptic seizure from the EEG data of normal  and 23 

epileptic subjects, various schemes based on variational mode decomposition [21], wavelet and 24 

time frequency analysis [22-25], random matrix theory [26], fractal based analysis [27-29] and 25 

neural network and deep learning [30-33] analysis can be potentially used. Here, we report unstable 26 

periodic orbits (UPO) as a seizure biomarker from nonlinear dynamics-based analysis. We 27 

characterize  the complex behavior of this  dynamical system, taking recourse to the classical 28 

phase-space approach, routinely used in the analysis of electrical circuits, represented by damped 29 

driven oscillators. For this purpose, the potential is identified as displacement coordinate with its 30 

variation as velocity, whose phase space behavior brings out the characteristic differences. The 31 

much-used Fourier spectrum reveals the periodic waves as sharp peaks and self-similar behavior 32 

through its scale free power law behavior. These two regimes in the dynamics are often separated 33 

by unstable periodic orbits, which appear as broad resonances in the Fourier domain [34]. 34 

Remarkably, it is found that the healthy individuals’ EEG signals display well marked UPO, 35 

whereas these are absent or significantly reduced in case of the epileptic patients during seizure, 36 

signifying its use as a biomarker for the onset of the epileptic seizure. UPO can be regarded as a 37 

local signature in the frequency domain  for the onset of chaos. The chaotic systems consist of an 38 

infinite set of UPO, the trajectory of the system comes occasionally close to a relatively low 39 

periodic orbit, resulting in the system to behave visibly in an almost periodic manner for a short 40 
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time [35-37]. UPO are the "frame" of any dynamical system, which can discern the behavior of a 1 

given system. In a chaotic system, they can also take the form of an attractor, appearing  like a 2 

Lissajous figure. UPO are very sensitive to small  perturbations in the environment, as it is located 3 

between the boundary of regular and self-similar behavior, characterized respectively by the low-4 

frequency periodic dynamics and higher-frequency chaotic motion. It manifests as a broad 5 

resonance, with substantial increase in power in a small range of frequencies in the Fourier domain 6 

[38]. Dynamical systems generically possess UPO regions, representing higher frequency periodic 7 

motion, that  are extremely sensitive to perturbations, making them ideal for the investigation of 8 

the characteristically different behavior of the healthy and diseased conditions. 9 

 10 

We have observed occurrences of coherent dynamics and also broad UPO, manifesting as 11 

resonances, both of which display characteristic differences in normal and epileptic conditions that 12 

can act as a biomarker for the onset of epileptic seizure. Focusing on the 40-45Hz gamma region 13 

in the Fourier domain, one can identify the differences in the neocortical oscillations, involving 14 

most of the cognitive functions in healthy and disease conditions. In the following  section 2, the 15 

data description is presented along with our analysis methods. Section 3 discusses the results and 16 

highlights the UPO biomarkers, with their characteristic differences. Section 4 concludes the study 17 

with our inferences and possible future investigations.  18 

 19 

2. Materials and Methods 20 

 21 

This section is devoted to the details of the data that have been used for the subsequent analysis. 22 

Methods like the Fourier power spectrum analysis, unstable periodic orbit, phase space plots, and 23 

data driven governing system equation derivation are used in this analysis. The measured data is 24 

from the extra cranial and intracranial EEG recordings and are used for clinical and research 25 

purposes. The data for this work has been taken from the publicly available data of the Department 26 

of Clinical Epileptology, University Hospital of Bonn, Germany [39]. The time series data consists 27 

of five sets of recordings A, B, C, D, and E, each having 100 channels of 23.6 sec duration, 28 

consisting of 4097 recordings. The first and second set measures the extra cranial data of a healthy 29 

volunteer in their eyes open and close. The third and fourth set are composed of intracranial 30 

recording from hippocampal formation of the opposite hemisphere of the brain of patients and 31 

from within the epileptogenic zone during the interictal period, respectively. The data in the last 32 

set (E) was recorded during seizure activity (ictal periods) using depth electrodes placed within 33 

the epileptogenic zone of the epileptic patients’ brain. The sampling frequency of each data is 34 

173.61Hz. Analysis has been done by subtracting the mean from each single channel initially for 35 

each different set and then normalizing it by factoring the standard deviation. 36 

 37 

For our analysis, we primarily focused on Set B, the healthy subjects in eye closed condition and 38 

Set E, the epilepsy patients during seizure. Analysis for other datasets have been provided in the 39 

supplementary material of this manuscript. The Fourier power spectrum is the assignment of power 40 
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into the frequency components of the signal. It is important in signal processing studies, as it 1 

transparently brings out the nature of the different constituents of the time series. The Fourier 2 

power spectrum clearly identifies the unstable periodic orbits as broad resonances, as will be 3 

shown in  our following analysis in the region between 8-14Hz, for the healthy cases. Here the 4 

UPO region 8-14 Hz has been taken for the analysis as it possesses the biomarker characteristics 5 

because of its sensitive behavior to minute perturbations [34]. The 40-45Hz region has also been 6 

taken for consideration as it shows the transition region of higher and lower modulation kind of 7 

behavior displaying coherence, as well as a broad resonance. 8 

 9 

Data Call 

Type 

Subject’s State Electrode 

Type 

Electrode Placement 

A Healthy person with eyes open Scalp International 20 electrode 

system 

B Healthy person with eyes 

closed 

Scalp International 20 electrode 

system 

C Epilepsy patient during 

seizure free interval 

Intracranial 20 electrodes from 

hippocampal formation of 

the opposite hemisphere 

D Epilepsy patient during 

seizure free interval 

Intracranial 20 electrodes within the 

epileptogenic zone 

E Epilepsy patient during 

seizure 

Intracranial 20 electrodes from patients 

during the seizure activity 

 10 

Table-1: EEG data in brief 11 

 12 

In our analysis, the phase space trajectories have been generated by plotting the potential values 13 

from the recording in the x-axis and the corresponding derivatives in the y-axis. Phase space 14 

plotting is a novel way for the study of the EEG data, with the trajectories revealing periodic 15 

motion, UPO and sudden changes quite transparently [40]. From the existence of distinct 16 

oscillatory patterns of the recorded EEG data, the different brain states can be clearly distinguished 17 

[19-20]. Akin to the observations in well studied electrical potential generating circuits, harmonic  18 

motion characterized by the following ordinary differential equation, is clearly discernible in 19 

phase-space dynamics:                            20 

                                         𝑥′′ = −𝜔2𝑥, 𝑤ℎ𝑒𝑟𝑒 𝑥′′ =
𝑑2𝑥 

𝑑𝑡2  𝑎𝑛𝑑 𝜔2 = 𝑘/𝑚 … (1) 21 

The above is augmented with damping and driving terms, as also non-linear anharmonic terms for 22 

appropriate descriptions of diverse physical systems. Our analysis shows some of the trajectories, 23 

after following simple harmonic motion, tend to show nonlinear motion like bi-stability and 24 

unbounded motion [41]. To ascertain the nature of the nonlinearity affecting the phase space 25 

trajectories, we have computed the system behavior in terms of sinusoidal functions and higher 26 

harmonics in a data driven approach, which clearly reveals significant presence of higher 27 

harmonics, indicative of  nonlinearity in the dynamics. One can characterize the different brain 28 
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waves, alpha, beta, gamma, delta by the occurrence of particular oscillatory patterns from the EEG 1 

recordings in different frequency bands. For a time-frequency localization of the bifurcation 2 

behavior, as well as intermixing of different modes, we made use of the continuous Morlet wavelet 3 

to bring out the transient time varying dynamics in those specific regions of interest: 8-14Hz and 4 

40-45Hz. The oscillatory behavior is analogous to that of harmonic oscillator patterns, originating 5 

from Hooke's law.                 6 

                                           𝐹 = −𝑘𝑥 … (2) 7 

where k is the spring constant, F is the force acting on the oscillator, with x in the form, 8 

                                           𝑥(𝑡) = 𝐴𝑐𝑜𝑠(𝜔𝑡 + 𝜑) … (3),  9 

the amplitude A is controlled by the energy of the oscillations, 𝐸 =
1

2
𝑘𝐴2 . 10 

In physical scenarios, the dynamical behaviors are of two types namely, wave dynamics and 11 

particle dynamics. The classical particle dynamics is described by  Newtonian mechanics in terms  12 

of phase space by considering the coordinate and their instantaneous changes. The wave behavior 13 

manifests through coherence effects leading to collapse and revival [19-20]. In the present case, 14 

this may arise due to synchronization amongst the neuronal firings. The nonlinear time series from 15 

the EEG recordings, when treated as a general dynamical system, can be represented by a general 16 

equation of the type. 17 

                                            
𝑑𝑥(𝑡)

𝑑𝑡
 = f(x(t)) …(4) 18 

As EEG is recorded during synchronous discharge of electrical activity from the human brain, it 19 

is characterized by large fluctuations. The Weierstrass function, 20 

                                             𝑓(𝑥) = ∑ 𝑎𝑛 𝑐𝑜𝑠 (𝑏𝑛𝜋𝑥)∞
𝑛=0  …(5) 21 

with 0< 𝑎 < 1 , b a positive odd integer, is a real valued function known for its continuity 22 

everywhere and also is an example of fractal curve, that has been effectively used to characterize 23 

biomedical waveforms and complex signals. Fractal geometry has manifested in diverse biological 24 

signals and can be potentially useful for the study of the epileptic seizure [28] and can help one to 25 

classify and describe the signal at all scales. The nonlinear time series-based investigations have 26 

shown positive results in detection and identification of epileptic seizure from EEG recordings. 27 

Some of these nonlinear parameters are: Lyapunov exponent [31-32], correlation dimension [31], 28 

fractional dimension parameter [28] and approximate entropy (ApEn) [7]. Empirical mode 29 

decomposition (EMD) is also a promising method, which helps to develop feature space using 30 

ellipse area parameters of two intrinsic mode functions as it is suitable in processing a non-linear 31 

time series. The ellipse area parameters of first and second intrinsic mode functions (IMFs) have 32 

provided better classification accuracy for classifying ictal and seizure-free EEG signals. EMD 33 

method-based decomposition does not require any conditions about the stationarity and linearity 34 

of the signal [27]. For identifying a reliable biomarker for the onset of the epileptic seizure, 35 

complex behavior of the nonlinear series has been characterized by state of the motion and 36 

observed unstable periodic orbits: 37 
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                                                𝑃 ⊂ 𝑅𝑁 , 𝑁 ∈ 𝑁 𝑎𝑛𝑑 𝑥 = 𝑥1, 𝑥2, … 𝑥𝑁𝜖𝑃, 𝑛𝜖𝑍 … (6) 1 

  2 

Here P is any number and x is the set of the measurement of a system. 3 

                                            𝑀: 𝑃 → 𝑃, 𝑥n+1 = M(x n) ...(7) 4 

Equation (7) can be, generically, considered as the equation of motion of a dynamical system, 5 

where x is the set of measurements of the system, and M is the manifold of the dynamical system. 6 

 7 

To understand the dynamics of the phase space structure of the UPO and 40-45Hz region and 8 

further corroborate our understanding with the dynamical system’s motion, we make use of a data 9 

driven governing system equation derivation approach to derive the system equation. The data 10 

used for phase space displacement and velocity plots for the UPO and 40-45 Hz regions are 11 

considered for this analysis. Deriving governing equations identifies the physical systems’ linear 12 

and nonlinear behavior and hence aids in developing models that can be generalized to predict the 13 

future state of the system, the previously unseen behaviors. This is useful in many systems of 14 

interest across disciplines where underlying governing equations remain unknown even though a 15 

large amount of data is available. It is well known that most physical systems define their dynamics 16 

with only a few relevant terms, hence the governing system equations are sparse in a high-17 

dimensional nonlinear function space. So, with use of sparse regression [42-44] and compressed 18 

sensing [45-48] combined approach, the dynamical system equation is discovered. The novel 19 

approach of combining sparsity methods in dynamical systems brings out system information from 20 

data. Here we employed SINDy model [49-51] that considers data x(t) Є ℝn to discover a best fit 21 

dynamical system [52], derived from sparse regression represented by a few possible terms in the 22 

form of:                                                 
𝑑

𝑑𝑡
𝑥(𝑡) = 𝑓(𝑥(𝑡))  …(8)      23 

Here the state of the system x evolves with time t with the dynamics being constrained by the 24 

function f. To determine the function f from the data, its derivative is either measured or 25 

numerically approximated and stacked to form data matrices. 26 

                          X=[x1 x2 x3 …. xm]T and 𝑋̇=[𝑥̇1 𝑥̇2 𝑥̇3 … . 𝑥̇𝑚]T   X, 𝑋̇ Є ℝmxn …(9) 27 

Next, we construct a library consisting of p candidate nonlinear functions from columns of X where 28 

ϴj is a candidate model term and m>>p.  29 

                                Θ(X) = [ϴ1(X) ϴ2(X) …. ϴp(X)] Є ℝmxp …(10) 30 

The choice of basis function Θ(X) may consist of constant, polynomial, Fourier and trigonometric 31 

terms. Each column of Θ(X) is a candidate function for the right-hand side of Eq. 8. As 32 

polynomials are elements of many canonical models hence are most used. 33 

                                𝑋̇ = Θ(X) Ξ , where Ξ =(ξ1 ξ2 ξ3 …. ξn) Є ℝpxn …(11)   34 

Here matrix Ξ is set of the coefficients which gets the active terms from Θ(X) in the dynamics f. 35 

With the use of sparse regression in solving Ξ, each obtained ξj is sparse with only a few columns 36 

selected from Θ(X).   37 
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3. Results and discussion 1 

 2 

The normalized, cumulative sum time series data was considered in Fourier power spectral 3 

analysis where the Fourier power is plotted as a function of frequency, in a log-log scale to 4 

distinguish the domains of high frequency self-similar behavior from the low frequency periodic 5 

ones, with the UPO marking the boundary of these two domains. Comparing the behavior of Set 6 

B and Set E, the distinct differences can be ascertained, between the healthy individuals and 7 

epileptic patients. Fig 1 represents the Fourier power spectrum (FPS) of the Set B and E, showing 8 

the UPO range around 8-14Hz section, centered at 10 Hz. These plots show clear indication that 9 

UPO can be considered as a biomarker as here it can be observed that in Set B there is a clear UPO 10 

peak  whereas it is prominently reduced in case of Set E. Due to the sensitivity of UPO to minor 11 

perturbations, it can be considered as a bio-alarm of the onset of the epileptic seizure. In the 12 

Supplementary material of the manuscript, we have shown the FPS for Set A. The UPO peaks of 13 

Sets A and B are similar, though Set A has recordings with the eyes open, where the role of external 14 

stimuli can be important, in contrast to the case of eyes closed, where the healthy volunteer is in a 15 

restful state of cognition. Generally, white noise in signal analysis is referred to as a signal with 16 

equal intensity at different values of frequencies, resulting in a constant power spectral density. In 17 

Fig 1, it can be noticed that the white noise is more prominent in 1(b) than in 1(a), which shows 18 

the agitation occurred during the recordings as visible in the FPS analysis.                                                                      19 

 20 
 21 

Fig.1(a)-Fourier power spectrum analysis of the healthy individual (Set B, eyes closed) showing a prominent UPO 22 

peak centered at 10Hz.                                                                 23 
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                   1 
 2 

Fig.1(b)-Fourier power spectrum of the patient during seizure (Set E), a clear diminishing of the UPO peak can be 3 

observed. 4 

Fig 1: Fourier Power Spectrum for Sets B & E. 5 

 6 

We observe dominant UPO regions with gradual increase in power centered around 10-11Hz for 7 

healthy subjects, finding diminished power for seizure during the 10-11Hz at ictal activities. 8 

Therefore, the quantification of UPO power is a potential biomarker for the seizure activity in 9 

epilepsy patients. The UPO region power for set E shows lower power, as compared to healthy 10 

subjects, with the power values being random unlike peaks for healthy cases, showing a 11 

distinguishing non-harmonic behavior of the  EEG waves during seizure activity. 12 

 13 

Set B Set E 

Channel 

Name 

Frequency 

(f) 

Fourier 

Power (Py) 

Channel 

Name 

Frequency 

(f) 

Fourier 

Power (Py) 

O018 

8 11.06 

S028 

8 1.876 

9 14.76 8.687 81.37 

10 16.88 10 15.89 

11.1 766 11 51.9 

12 62.5 12 23.56 

13 13.18 13 5.422 

14 4.383 14 8.781 

 14 

Table 2: Sample Fourier Power data table for the UPO range of randomly selected channel of 15 

Set B (O018) and Set E (S028) 16 

 17 

To quantify the UPO power from the FPS for different frequencies from this segment of interest, 18 

we have tabulated various data points for both the analyzed datasets. Table 2 depicts the Fourier 19 
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power for the UPO region of one channel of set B and E to reveal the significant peak power 1 

differences. We computed weighted average power for the UPO region to quantify it by calculating 2 

the sum product between the frequency and power and then dividing it with the sum of the total 3 

frequency. Also, as an additional measure the visibility is computed by subtracting the average of 4 

the two neighboring points of the UPO range from the highest power peak value. It is observed 5 

from both plots in Fig 2, the quantitative measure of weighted average power and visibility power 6 

from the UPO region clearly distinguish healthy individuals from the patients during seizure, 7 

reaffirming UPO as potential biomarker. We randomly chose five channels for Set B and E for the 8 

representation purpose and verified the features of almost all channels showing a uniform 9 

characteristic from UPO. In Set B, all channels the highest peak power is observed at the middle 10 

i.e., in and around 11Hz of the UPO region (8-14Hz) with higher power value compared to Set E, 11 

where it is at either side of the extreme points of the UPO region with very small or diminishing 12 

power. Hence, a one-sided lobe type structure for UPO, with diminishing peaks is observed in case 13 

of the epileptic patients during seizure. Also, it is observed that, for both sets E and B, there is 14 

oscillatory behavior in the UPO region, both before and after the peak power. Generally, the UPO 15 

region from the Fourier power spectrum is detected through measuring the rate of change. 16 

 17 
Fig. 2(a)-Weighted average power for the UPO regions for randomly selected channels of healthy eye closed (set B) 18 

and a patient during seizure (set E) showing distinct classification for seizure. 19 
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 1 
Fig. 2(b)- Visibility power for UPO region for randomly selected channel of healthy eye closed (set B) and patient 2 

during seizure (set E) showing distinct classification for seizure. 3 

 4 

Fig 2: Weighted average and visibility power as quantifying parameter for UPO region to classify 5 

seizure. 6 

 7 

To understand the nonlinear distribution of power at the UPO region and the 40-45Hz region, we 8 

reconstructed the signal from the Fourier Power spectrum only for the UPO or 40-45Hz region. 9 

Then the reconstructed signal is used for 2D and 3D scalograms for visualization of UPO as a 10 

faithful seizure biomarker and 40-45Hz also has characteristic differences between healthy and 11 

seizure patients. Fig 3 and 4 reveal the differences for healthy and seizure patients. 12 

  13 

2D Scalogram Plots: 14 
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1 
Fig 3(a):2D Scalogram plot for the reconstructed UPO region of the healthy individual in eyes closed (for a sample 2 

channel) of higher power compared to patients during seizure. 3 
 4 

5 
Fig 3(b):2D Scalogram plot for the reconstructed UPO region of the Set E, recorded during the epileptic seizure 6 

shows a repetitive train of pulses (yellow colour) with equivalent power. 7 
 8 
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1 
Fig 3(c):2D Scalogram plot for the reconstructed 40-45Hz region of the healthy during closed eyes showing lower 2 

power compared to the patient during seizure. 3 
 4 
 5 

6 
Fig 3(d):2D Scalogram Plot for the reconstructed 40-45Hz region of the patient during seizure showing possible 7 
energy transfer phenomena as transition from conscious to unconscious brain characteristic as we found very less 8 

power trains like healthy subjects as in Fig 4c. 9 
 10 

Fig 3: 2D scalogram plot of the reconstructed UPO and 40-45Hz region for a randomly selected 11 

channel of the Sets B and E. 12 

 13 

3D Scalogram Plots: 14 

 15 
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1 
Fig 4(a)- The 3D scalogram plot along with the reconstructed signal for the UPO region of the healthy subject eye 2 

open showing peak power initial recording time. Also the reconstructed signal for UPO region visibly resembling a 3 
music pattern. 4 

 5 

6 
Fig 4(b)- The 3D scalogram plot along with the reconstructed signal for the UPO region of the patient during seizure 7 
with consistent repetitive peak power across the time scale. The reconstructed signal for UPO region, showing loss 8 

of coherence. 9 
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1 
Fig 4(c)- The 3D scalogram plot along with the reconstructed signal for the 40-45Hz region of the healthy subject 2 
eye open showing consistent peak power in the time scale. The reconstructed signal in the first subplot for the 40-3 
45Hz region looks to be higher resonance in comparison to the patient during seizure where both resemble a music 4 

pattern. 5 
 6 
 7 

 8 
 9 

Fig 4(d)- The 3D scalogram plot along with the reconstructed signal for the 40-45Hz region of the patient during 10 
seizure showing occasional peak power peak power in the time scale. The possible energy transfer phenomena as 11 

transition from conscious to unconscious brain characteristic during seizure is prominent. The reconstructed signal 12 
for the 40-45Hz region in the first subplot resembles music patterns with less power in resonance as compared to Fig 13 

4c.  14 
 15 
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Fig 4: 3D plot of the scalogram along with the reconstructed signal for the UPO and 40-45Hz 1 

region of the Sets B and E. 2 

 3 

As we observed bi-stability in phase-space, in our regions of interest, 8-14Hz and 40-45Hz having 4 

higher order harmonics in the phase space, along with transient phenomena, we need to study the 5 

local properties for this region. To ascertain the time-frequency localization, we use wavelet 6 

analysis which reveals temporal behavior for those frequency regions of interest in the data. One 7 

clearly observes bimodal patterns in the scalogram plots. The 2D and 3D scalograms along with 8 

the reconstructed signal for both UPO and 40-45Hz region as shown in Fig 3 and 4 demonstrate 9 

the characteristic difference of scalogram power and reconstructed signal  pattern for seizure 10 

compared to healthy. To further analyze the dynamics of this UPO region, we have taken the 11 

reconstructed time series data from the FPS where except the UPO region we have removed other 12 

frequency ranges of Fourier power and reconstructed using inverse Fourier transform. This 13 

reconstructed time series obtained from the inverse Fourier transform is used for phase space 14 

analysis to understand the dynamical behavior of UPO observed in the analyzed EEG signals. 15 

Hence, the phase space diagram emphasizes dynamical activity of the given time-series data. 16 

Similarly, we have also studied the phase space structure of the reconstructed signal for the 40-17 

45Hz region. 18 

 19 

UPO Region phase space plots: 20 

 21 

                                                                                                                                    22 
Fig 5(a)- Phase space plot of healthy subject eye closed (set B) recorded EEG potential as displacement and its 23 

corresponding change as the velocity coordinate showing a centrally periodic motion with multi-periodic nature 24 

through closed loops.                                                                                          25 

 26 

 27 
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           1 
Fig 5(b): Phase space plot of the patient during seizure (set E) displaying a more uniformly spread plot with  bimodal 2 

structure in the middle where manifested periodic motion in the middle gradually transitioning to unbound motion.                                                      3 

 4 

Fig 5: UPO region displacement-velocity phase space plot 5 

                                                                                                      6 

Further, to characterize these obtained phase structures for the UPO regions of set B and E, we 7 

used recently developed data driven discovery of governing physical laws using SINDy approach 8 

to derive the system equation for this phase space structure of the UPO. For the analysis, we 9 

considered x0 as the data from displacement coordinate while x1 is the data from velocity 10 

coordinate. 𝑥̇0 and 𝑥̇1 are the derivative of x0 and x1 respectively used to express the system 11 

equations. To correlate with harmonic oscillator motion, we have considered Fourier library with 12 

frequency order up to 3 and threshold 0.001 to compute the governing system equations for the set 13 

B UPO region phase space structure as shown below: 14 

 15 

𝑥̇0 = -19.092 sin(x0) - 0.515 cos(x0) + 288.882 sin(x1) - 0.007 cos(x1) + 4.507 sin(2 x0) + 0.886 16 

cos(2 x0) - 85.188 sin(2 x1) + 0.512 cos(2 x1) - 0.739 sin(3 x0) - 1.061 cos(3 x0) + 18.601 sin(3 x1) 17 

- 0.381 cos(3 x1)  …(12)  18 

 19 

𝑥̇1 = -38.261 sin(x0) - 1.053 cos(x0) + 10.064 sin(x1) + 0.322 cos(x1) + 9.018 sin(2 x0) + 1.785 20 

cos(2 x0) - 4.101 sin(2 x1) + 0.303 cos(2 x1) - 1.433 sin(3 x0) - 2.208 cos(3 x0) + 1.944 sin(3 x1) - 21 

0.298 cos(3 x1)  …(13)  22 

 23 

Similarly, for set E UPO, the derived governing system equation in Fourier domain is: 24 

 25 

𝑥̇0 = -25.679 sin(x0) - 0.688 cos(x0) + 276.953 sin(x1) - 0.773 cos(x1) + 10.221 sin(2 x0) + 0.558 26 

cos(2 x0) - 67.870 sin(2 x1) + 2.767 cos(2 x1) - 4.294 sin(3 x0) - 0.362 cos(3 x0) + 9.863 sin(3 x1) 27 

- 1.889 cos(3 x1)  …(14) 28 

 29 
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𝑥̇1 = -51.329 sin(x0) - 1.383 cos(x0) + 23.217 sin(x1) - 1.593 cos(x1) + 20.453 sin(2 x0) + 1.185 1 

cos(2 x0) - 7.793 sin(2 x1) + 5.650 cos(2 x1) - 8.629 sin(3 x0) - 0.838 cos(3 x0) + 0.684 sin(3 x1) - 2 

3.853 cos(3 x1)  …(15) 3 

 4 

In Fig 5, it is observed that the 8-14Hz UPO region for both the subjects shows simple harmonic 5 

motion, thus following Hooke's law as shown in equation (1), it then gradually changes to non-6 

linear motion. The nonlinear motions generally exhibit quite complicated action over an extended 7 

time interval, like chaos. Sometimes under restricted conditions, linear differential equations 8 

appear as the approximations to nonlinear equations. The plots are also depicting bimodal 9 

behavior; thus, they have two stable shapes, and the multiple trajectories are orbiting around it in 10 

periodic motion and also showing unbounded motion like that of an Impact oscillator [53]. On 11 

comparing the two sets it has been observed that the bi-stability is stronger for the patient during 12 

seizure than that of the healthy subject in stable state. It is well known that the low dimensional 13 

chaos is a characteristic of many physiological oscillatory systems including the brain. Time series 14 

EEG data in a stable state has been analyzed in a frame of nonlinear dynamics like the attractor 15 

dimension. UPO here reveals its efficacy as a faithful biomarker for seizure state with its 16 

diminishing power. On careful observation, these plots show similarity to the well-known 17 

‘Lissajous’ figures [52]. In Set E ictal period recordings where data is collected from a depth 18 

electrode, it is observed to possess a higher contribution of potential energy, manifesting through 19 

a denser plot and the bimodal or the bi-stability gets stronger in comparison to the healthy subject. 20 

In the plots the central dense region shows the simple harmonic behavior of the concentric ellipses; 21 

they then gradually transition to non-linear unbound type of motion similar to the impact oscillator. 22 

An impact oscillator is a periodically forced system that hits an obstruction whenever the 23 

displacement reaches a threshold value and a number of continuous impacts originate when the 24 

maximum displacement value of regular oscillatory motion equals this value, such events are 25 

known as grazing bifurcation [15]. In the phase-space plots it could be observed that the 26 

displacement-velocity and velocity-acceleration plots as shown in supplementary material of this 27 

manuscript also shows similar kind of behavior as we know that of the harmonic equation. 28 

𝑥 = 𝐴𝑠𝑖𝑛𝜔𝑡 29 

                      𝑥̇ = 𝐴𝜔𝑐𝑜𝑠𝑡        …(16) 30 

    𝑥̈ = 𝐴𝜔2𝑠𝑖𝑛𝜔𝑡 31 

 32 

The derived governing system equations in Fourier form from the data for these UPO region phase 33 

space structures of both subjects show similar harmonic oscillator system description as in 34 

equation 16. Thus, in the displacement-velocity behavior we are getting the relation between sine 35 

and cosine terms, hence resembling these plots. The higher order terms in sine and cosine functions  36 

in the obtained governing system equation points to the nonlinearity present in both UPO and 40-37 

45Hz, instead of a simple harmonic oscillator. The nonlinearity brings in anharmonicity to the 38 

simple damped driven oscillators leading to bi-stability, higher harmonic generation and  limit 39 

cycle behavior [9, 54]. It is worth emphasizing that we observe the characteristic impact oscillator 40 

behavior, when a grazing mechanism leads a non impacting periodic orbit to bifurcate into the 41 
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impacting one [16]. Like the duffing oscillator the outer orbits tend to return back to the origin 1 

which is again matching with the nonlinear nature of the impact oscillator. These faithful 2 

reproductions of physical behavior from the EEG UPO region analysis confirm the previous 3 

observations and its use as biomarker for medical usages. 4 

40-45Hz region phase space plots:- 5 

 6 

                                                                 7 
 8 

Fig 6(a): For Set B 40-45 region, in the central region the trajectories paths are following a simple harmonic motion                                           9 

but with increase of the distance from the center, the lines are following a nonlinear type of motion with velocity 10 

values suddenly increasing in the outermost orbits.                                                                          11 

                                                                                                                                                                12 

  13 

 14 
 15 

Fig 6(b): For Set E 40-45Hz region, here the central region is also following linear motion and at  the outer part it is 16 

following a piecewise linear motion with grazing bifurcation. The acceleration values are increasing sharply, depicting 17 
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an-harmonic oscillator behavior of the patient during seizure. 1 

 2 

Fig 6: 40-45Hz region phase space displacement-velocity plot 3 

 4 

Similarly, with use of SINDy model for set B 40-45Hz region reconstructed data and the derived 5 

governing system equation in Fourier domain is: 6 

 7 

𝑥̇0 = -3131511.935 sin(x0) + 82443769.956 cos(x0) + 678523.429 sin(x1) - 82419440.425 cos(x1) 8 

+ 2504706.443 sin(2 x0) - 33070180.875 cos(2 x0) - 542505.362 sin(2 x1) + 33031264.301 cos(2 9 

x1) - 626022.264 sin(3 x0) + 5537454.129 cos(3 x0) + 135553.385 sin(3 x1) - 5522867.096 cos(3 10 

x1)  …(17) 11 

 12 

𝑥̇1 = -12797384.692 sin(x0) + 90183271.512 cos(x0) + 611409.417 sin(x1) - 90118381.247 cos(x1) 13 

+ 10240767.826 sin(2 x0) - 36214221.929 cos(2 x0) - 489091.283 sin(2 x1) + 36110384.091 cos(2 14 

x1) - 2561495.102 sin(3 x0) + 6074872.937 cos(3 x0) + 122313.224 sin(3 x1) - 6035925.366 cos(3 15 

x1)  …(18) 16 

 17 

Whereas system equation for set E 40-45Hz region phase space structure is: 18 

 19 

𝑥̇0 = 5458601.938 sin(x0) - 631503369.401 cos(x0) - 162423.019 sin(x1) + 631553510.817 cos(x1) 20 

- 4368384.335 sin(2 x0) + 252662524.133 cos(2 x0) + 130773.093 sin(2 x1) - 252742777.688 cos(2 21 

x1) + 1092667.639 sin(3 x0) - 42127410.859 cos(3 x0) - 32983.353 sin(3 x1) + 42157523.001 cos(3 22 

x1)  …(19) 23 

 24 

𝑥̇1 = 18209445.067 sin(x0) - 61662109.203 cos(x0) - 281217.774 sin(x1) + 61703060.635 cos(x1) 25 

- 14572039.226 sin(2 x0) + 24621484.214 cos(2 x0) + 225628.488 sin(2 x1) - 24687036.534 cos(2 26 

x1) + 3644768.817 sin(3 x0) - 4091512.643 cos(3 x0) - 56625.125 sin(3 x1) + 4116113.532 cos(3 27 

x1)  …(20) 28 

 29 

From the above 40-45Hz phase space plots as in Fig 6, it can be concluded the occurrence of the 30 

energy transfer phenomenon [19] with conservation of energy states here. In this 40-45 Hz region 31 

the coherence phenomenon gets more intense and in case of the epileptic patient plot (epileptogenic 32 

zone and during seizure) the potential energy is seen to be more dominant (thus the kinetic energy 33 

decrease) than in the case of the healthy subjects. The velocity, acceleration plots for the 40-45Hz 34 

region are shown in the supplementary material section of this manuscript where near the central 35 

region it separates out the lower value voltages compared to the higher value voltage. The small 36 

oscillations are having linear motion, but the large oscillations are tending to acquire an unbound 37 

kind of motion like an impact oscillator.  38 

 39 

In Fig 6(b), it is seen that the inset figure of 100 data points with the marked black arrows show 40 

where acceleration or the velocity values are zero, clearly revealing that the region possesses 41 
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minimum kinetic region as well as the maximum potential energy. If we observe over the plot the 1 

crowd in those points are clearly visible whereas in the inset figure it is only showing the emerging 2 

feature which itself has great importance in this analysis, because it shows the local coordinates 3 

(x,𝑥̇, 𝑥̈) characteristically similar behavior as of the plot which is not possible in case of wave 4 

features (with sine and cosine). Thus, we could also consider this energy transition phenomena at 5 

40-45Hz section as a biomarker for the onset of the epileptic seizure. From the plots it is confirmed 6 

that a small perturbation in the potential value results into a significant variation in the 7 

corresponding velocities, or its rate of change in a piecewise linear motion in the extreme orbits 8 

which is indicative of grazing impact oscillator type dynamical characteristics, of non-linearity. It 9 

is also seen, if we consider the plots for Set E and Set D (the intracranial epileptogenic zone 10 

recordings for the patient shown in supplementary material section) it is observed that the plots for 11 

these two sets shows similar behavior in the sense of the path, trajectories but the contribution of 12 

potential energy is higher in Set D, which  results in a similar structure as each other, which is 13 

quite expected because both are from the patient during ictal and inter- ictal period. Other phase 14 

space plots for the datasets are given in the supplementary material of the manuscript. 15 

 16 

  Amplitudes (Coefficients) 

Sl.N

o. 

Set 

Name 

Regio

n 

Var

. 

Sin(x0) Sin(x1) Sin(2x0) Sin(2x1) Sin(3x0) Sin(3x1) 

1. Set-B UPO  𝑥0̇ -19.092 

 

288.882 

 

4.507 

 

-85.188 

 

-0.739 

 

18.601 

𝑥1̇ 

 

-38.261 

 

10.064 

 

9.018 

 

-4.010 

 

-1.433 

 

1.944 

40-45 

Hz 
 𝑥0̇ -

3131511.

935 

678523.

429 

2504706.

.443 

-

542505.3

62 

-

626022.2

64 

135553.3

85 

𝑥1̇ 

 

-

12797384

.692 

611409.

417 

1240767.

826 

-

489091.2

83 

-

2561495.

102 

122313.2

24 

2. Set-E UPO  𝑥0̇ 

 

-25.679 

 

276.953 

 

10.221 

 

-67.870 

 

-4.294 9.863 

𝑥1 -51.329 

 

23.217 

 

20.453 

 

-7.793 

 

-8.629 

 

0.684 

40-45 

Hz 
 𝑥0̇ 

 

5458601.

938 

-

162423.

019 

-

4368384.

335 

130773.0

93 

1092667.

639 

-

32983.35

3 

𝑥1 18209445

.067 

-

281217.

774 

1457203

9.226 

225628.4

88 

3644768.

817 

-

56625.12

5 

 17 

Table 3: Amplitude of the coefficients of all sine terms in the governing system equations  of both 18 

UPO and 40-45Hz region for healthy and patients. Sine amplitudes of x1 are found to be higher 19 
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than x0 and the 40-45Hz amplitudes are higher compared to UPO amplitude. 1 

 2 

 3 

Fig 7: Plot of displacement-velocity phase space data along with the model data for set E(patient 4 

during seizure) 40-45Hz region. We observe the derived governing equation/model matches to the 5 

phase space displacement-velocity data in the first subplot where x-axis is time, and in the second 6 

subplot phase space is drawn for data and the model that enables future phase space trajectory state 7 

prediction. Other plots for set B for 40-45Hz and UPO region are shown in the supplementary 8 

material of the manuscript. 9 

 10 

Hence the phase space dynamics help as a bio-alarm for the seizure in epileptic patient. Our derived 11 

governing system equation for 40-45Hz from the phase space data complements the analysis. In 12 

Table 3, we show the coefficient amplitudes of all sine terms from the governing system equations 13 

to give a comparative view of the nonlinearity terms and it’s spread for the UPO and 40-45Hz 14 

region. From the equation in table 3, we observe the higher order sine term has lesser amplitude 15 

as compared to lower order one relating to the higher order nonlinear phenomena existence. We 16 

observe such nonlinear phenomena by the weaker presence of higher order sinusoidal terms for 17 

the UPO region, as compared to the 40-45Hz range, which points to the high order nonlinearity at 18 

40-45Hz relating energy transfer phenomena from conscious to unconscious brain state. Also, it is 19 

observed that Set B 40-45Hz higher order sine terms mostly have lower amplitude, as compared 20 

to Set E which points to the nonlinearity of higher order in patients during seizure compared to 21 

healthy subjects. We also observe from the equations that the sine term amplitudes are generally 22 

higher than that of the cosine terms for the UPO region, whereas the cosine terms have higher 23 

magnitude for the 40-45Hz region compared to sine terms. This corroborates the energy transfer 24 

phenomenon occurring in the 40-45Hz region as it is observed to be having higher coherence 25 
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phenomena where the brain state transitions from the conscious to the unconscious state. In Fig. 1 

7, we show the derived governing system equation for the reconstructed signal used in phase space 2 

orbit closely matches with the data. The derived governing equations could be used to predict the 3 

future state of the system hence enables here prediction of the future phase space trajectory 4 

evolution at UPO and 40-45Hz region that allows easy identification of change in 5 

physical/biological phenomenon in these regions. 6 

 7 

4. Inference 8 

 9 

The Fourier power spectrum analysis to identify the UPO region and further its reconstructed 10 

signal from inverse Fourier transform to use in the phase-space analysis for different subject EEG 11 

recordings of the brain can be used for finding the biosignature on the onset of epileptic seizure. 12 

As brain signals are from a nonlinear dynamical system whose behavior is complex hence it is 13 

highly effective for the analysis of epilepsy. The bi-stability in the plots show nonlinear behavior 14 

of the data. Fourier spectral analysis method allow us to separate the UPO domain precisely in 15 

phase space perspective. Together with a data driven approach, the governing system equations 16 

were derived to corroborate the understanding of nonlinearity observed from the phase space orbits 17 

which also allows future state prediction of phase space trajectory for UPO and 40-45Hz region. 18 

The Newtonian mechanics approach in terms of potential and kinetic energy difference and 19 

differing grazing orbits often possess piecewise linear motion. For the case of the brain signals we 20 

observe impact oscillator type behavior and symmetries in phase space, originating from 21 

coalescing of the orbits. The observed coherence and higher order nonlinearity at 40-45Hz region 22 

corroborates the understanding of energy transfer phenomena and effectively the brain state 23 

transition from conscious to unconscious state with characteristic difference between healthy and 24 

seizure. The time-frequency localization using wavelet analysis to understand the transient 25 

phenomena at these region of interest 8-14Hz and 40-45Hz shows bimodal patterns with distinct 26 

behavior for healthy and seizure. Potentially, 40-45Hz could also be used as biomarker for seizure 27 

and we wish to focus our study on future. As epilepsy is a serious disease affecting a considerable 28 

amount of the global population hence these investigations may find its significance in 29 

biomedicine. 30 

 31 

Appendix A. Supplementary material 32 

Supplementary material to this article can be found with this manuscript. 33 
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