
 1 

Infant Vaccination Does Not Predict 

Increased Infant Mortality Rate: 

Correcting Past Misinformation  
 

Ella Nysetvold1, Tess Mika1, Weston Elison1, Daniel Garrett1, Justin Hunt1, Inori Tsuchiya1, S 

William Brugger2, Mary F Davis2,3, Samuel H Payne1, Elizabeth G Bailey1,*  

 

1. Biology Department, Brigham Young University, Provo UT 84602 

2. Microbiology & Molecular Biology Department, Brigham Young University, Provo UT 84602 

3. Department of Biomedical Informatics, Vanderbilt University, Nashville TN 37235 

 

*Correspondence to liz_bailey@byu.edu 

 

Abstract  
Despite extensive scientific research supporting the safety and effectiveness of approved vaccines, 

debates about their use continue in the public sphere. A paper prominently circulated on social 

media concluded that countries requiring more infant vaccinations have higher infant mortality 

rates (IMR), which has serious public health implications. However, inappropriate data exclusion 

and other statistical flaws in that paper merit a closer examination of this correlation. We re-

analyzed the original data used in Miller and Goldman’s study to investigate the relationship 

between vaccine doses and IMR. We show that the sub-sample of 30 countries used in the original 

paper was not a random sample from the entire dataset, as the correlation coefficient of 0.49 

reported in that study would only arise about 1 in 100,000 times from random sampling. Next, we 

show IMR as a function of countries’ actual vaccination rates, rather than vaccination schedule, and 

show a strong negative correlation between vaccination rates and IMR. Finally, we analyze United 

States IMR data as a function of Hepatitis B vaccination rate to show an example of increased 

vaccination rates corresponding with reduced infant death over time. From our analyses, it is clear 

that vaccination does not predict higher IMR as previously reported.  
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Introduction  

Vaccines as a Critical Public Health Issue 

Development of vaccinations are viewed as one of the greatest public health successes of all time. 

Widespread immunization has resulted in the control of many infectious diseases that were 

previously devastating and lethal, including smallpox, poliomyelitis, measles, rubella, tetanus, 

diphtheria, Haemophilus influenzae type b, and others(1–3). However, anti-vaccination movements 

have existed since vaccines were first introduced, and recent waves of this skepticism have led to 

the resurgence of diseases that were previously controlled(3,4). Recently, this public debate has 

intensified due to the rapid development and distribution of the COVID-19 vaccine(5).  

 

The term “vaccine hesitancy” has been used to describe the uneasiness of individuals and parents 

who are unsure about vaccination(4,6). Understanding the factors that lead to vaccine hesitancy has 

been difficult and complex, and researchers have discovered there are many context-specific and 

variable factors at play that impact vaccination decisions and behavior, including understanding of 

scientifically-based risks versus benefits, perceived personal risks versus benefits, and concerns 

about the vaccination schedule(4,6). This hesitancy has been seen to affect behavior. For example, 

Martin and Petrie found that mistrust of vaccine benefits and worries about unforeseen future 

effects of vaccines were statistically predictive of past vaccine refusal and future intentions to 

refuse vaccination(7).   

 

In the case of vaccines, there can be much more at stake than just the impact on one individual in a 

community. Vaccination of a large portion of the population (e.g. > 90%) protects the entire 

population by eliminating disease transmission; this is essential to help those who are medically 
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unable to be vaccinated(8). This indirect protection and community benefit has been observed with 

various vaccines(9–12), demonstrating that vaccine refusal affects more than just the individual 

who does not get immunized. For example, Salmon et al. examined the effect of vaccine exemption 

on both the individual and their community(13). The authors concluded that those who claimed 

vaccination exemption status were 35 times more likely to contract measles; however, if the 

number of individuals claiming exemption were to double, even nonexempt individuals could see 

up to a 30% increase in the incidence of measles. Overall, disease outbreaks are more likely in 

areas that contain larger numbers of unvaccinated individuals (e.g., Centers for Disease Control and 

Prevention: retrieved from https://www.cdc.gov/measles/cases-outbreaks.html). Thus, addressing 

vaccine hesitancy by increasing public confidence in vaccine safety has the potential to positively 

impact public health and save lives(14). 

Vaccine Misinformation and its Spread 

Exposure to anti-vaccine information can directly affect vaccine intentions(15), and exposure to 

misinformation is more widespread than ever with increased use of the internet and social 

media(5,16,17). Not only can any information be shared on social media, regardless of its validity, 

but information can also be amplified quickly and spread virally(18–20). A 2018 study found that 

sophisticated bots and content polluters are more likely to post about vaccines than average Twitter 

users, often with anti-vaccine content(21). Research suggests that automated users are at least 

partially inflating anti-vaccine content and amplifying misinformation online, and this can have 

serious public health implications(22). This widely disseminated misinformation makes it difficult 

for individuals to determine which sources of information to trust and can affect their vaccine 

decisions(23,24).  
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Miller and Goldman’s 2011 Paper and the Purpose of this 

Study 

In their 2011 paper, Miller and Goldman(25) examined the correlation between infant mortality rate 

(IMR) and infant vaccine scheduling in various countries. They concluded that vaccine schedules 

with a greater number of vaccine doses for infants are correlated with higher IMR, proposing the 

potential for synergistic toxicity of vaccines. This is in sharp contrast to the scientific consensus 

that vaccines are safe and beneficial for infants even when given with other vaccines(26–29). 

Although the 2011 study was published in a peer-reviewed journal (Human and Experimental 

Toxicology), a brief reading of the Miller and Goldman manuscript led us to question the methods, 

results and conclusions. We observed significant deficiency in the statistical methods. Thus it is 

troublesome that this manuscript is in the top 5% of all research outputs since its publication, being 

shared extensively on social media with tens of thousands of likes and re-shares (see 

https://acs.altmetric.com/details/406556).  

 

To be trustworthy, science must be self-correcting(30). Sometimes these corrections are a 

refinement of current understanding (e.g. Einstein’s advances in Physics(31)), and sometimes they 

are a reversal of incorrect conclusions. This continual revision of the scientific record is normal, 

and an essential part of the scientific enterprise. It is critical that flawed scientific publications are 

recognized, as these can cause serious harm(32). In the case of vaccinations, faulty research 

impacts not just an individual who avoids vaccinations, but also the public health and safety of the 

population as a whole(8). Due to the disproportionate effect Miller and Goldman’s 2011 paper has 

had on the public conversation about vaccine safety compared to other scientific publications, we 

repeated their analysis to examine whether their conclusions are justified.  
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Methods  

All data and scripts used for the calculations and figures in this manuscript are publicly available on 

GitHub at https://github.com/PayneLab/vaccine_reevaluation.  

Data Sources  

IMR and immunization schedule data from the sources referenced in the original paper were used 

for Figure 1. The “CIA Country comparison: infant mortality rate data” (2009) was no longer 

available on www.cia.gov, the website referenced in the original paper. However, the same dataset 

was found on http://teacherlink.ed.usu.edu/tlresources/reference/factbook/rankorder/2091rank.html. 

We determined that this was an identical dataset to what was used by Miller and Goldman by 

manually confirming that the metrics for each of the 30 included countries were identical. For long 

term preservation, this file has been added to our GitHub repository, see ~/data/2009_IMR_data.txt. 

 

Immunization schedule data, detailing the ages at which each vaccine is recommended within each 

country, was collected from the “WHO/UNICEF Immunization Summary: A Statistical Reference 

Containing Data Through 2008 (The 2010 edition),” as referenced in the original paper 

(https://data.unicef.org/wp-content/uploads/2015/12/Immunization_Summary_2008_53.pdf). This 

file is now saved in our GitHub, see ~/data/Immunization_Summary_2008_53.pdf.  

 

Vaccine doses administered, as used in Figure 3, were downloaded from UNICEF data warehouse: 

https://data.unicef.org/resources/data_explorer/unicef_f/. We selected the following variables for 

download:  

● infant mortality rate,  

● under-five mortality rate,  
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● child mortality rate (aged 1-4 years),  

● Percentage of live births who received bacille Calmette-Guerin (vaccine against 

tuberculosis),  

● Percentage of surviving infants who received the first dose of DTP-containing vaccine,  

● Percentage of surviving infants who received the third dose of DTP-containing vaccine,  

● Percentage of surviving infants who received the third dose of hep B-containing vaccine,  

● Percentage of live births who received hepatitis-B-containing vaccine within 24 hours of 

birth,  

● Percentage of surviving infants who received the third dose of Hib-containing vaccine,  

● Percentage of surviving infants who received the first dose of inactivated polio-containing 

vaccine,  

● Percentage of surviving infants who received the first dose of measles-containing vaccine,  

● Percentage of children who received the 2nd dose of measles-containing vaccine, as per 

administered in the national schedule,  

● Percentage of surviving infants who received the third dose of pneumococcal conjugate-

containing vaccine (PCV),  

● Percentage of surviving infants who received the third dose of inactivated polio-containing 

vaccine,  

● Percentage of surviving infants who received the first dose of rubella-containing vaccine,  

● Percentage of surviving infants who received the last dose of rotavirus-containing vaccine 

(2nd or 3rd dose depending on vaccine used),  

● Percentage of surviving infants who received yellow fever- containing vaccine (for 

countries at risk and where the vaccine is in the national schedule) 

The resulting data have been added to our GitHub repository as 

~/data/Unicef_vaccination_doses_2019.txt 
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Hepatitis B vaccination rates and longitudinal IMR were retrieved from  

https://apps.who.int/gho/data/node.main.A828?lang=en and https://childmortality.org respectively. 

These data have been saved in our GitHub repository, see ~/data/HepBdata.xls and 

~/data/UNIGME-2020-Country-Sex-specific_U5MR-CMR-and-IMR.xlsx. 

Collecting Vaccine Schedule Data  

Combined vaccine dose counts were counted as the number of individual vaccines administered in 

the combined vaccine (Ex: DTaP = 3 vaccines) multiplied by the number of times the vaccine was 

scheduled for administration before 12 months of age (Ex: 3 doses of DTaP = 3 doses * 3 

vaccines/dose = 9 vaccine doses), as described in Miller and Goldman’s paper. For consistency we 

used the following criteria for counting vaccine doses, as it matched closest with the numbers 

included in Miller and Goldman’s paper: only vaccinations scheduled for less than 12 months, or 

ranges up to 12 months, were included; vaccinations scheduled for high-risk groups, subnational, 

military groups, travelers, children of carriers, pertussis contraindication, and HIV+ infants were 

not included. For example, Pneumo_ps is recommended for only high-risk groups in many 

countries, and so this was not counted in our metric. Doses were manually counted following these 

criteria and appended to the IMR data and stored as a file called Figure_1_Data.csv.  

Analysis 

All of the software and files used in this manuscript, including the code for generating images, is 

saved in our public GitHub repository https://github.com/PayneLab/vaccine_reevaluation. Data and 

code used to create Figure 1 and the associated correlation metrics can be found in 

~/code/Make_Figure_1.R. Data and code used to create Figure 2 can be found in 

~/code/Make_Figure_2.R. Sampling of the 30 countries was done at random, and repeated 50,000 

times to generate a distribution of potential correlation values. We calculated the simple mean, 
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median, standard deviation, IQR and z-score using the base R functions (see the code). For the 

vaccination rate and IMR analyses accompanying Figure 3, we calculated simple linear regression 

with the data downloaded from UNICEF as noted above. All implementation details are available 

in our GitHub in the script ~/code/Make_Figure_3.R. We calculated the effect of Hepatitis B 

vaccination rate with a Spearman correlation, using the data from sources above. Data and code 

used to create Figure 4 can be found in ~/code/Make_Figure_4.R. IMR rates were separated by sex 

because Hepatitis B is more prevalent in males(33,34) and the IMR is characteristically distinct by 

sex.  

Results  

A prime conclusion for the manuscript by Miller and Goldman(25) is that “nations that require 

more vaccine doses tend to have higher infant mortality rates.” At the time of publication, a 

corrigendum was published to notify readers of unreported affiliations and conflicts of interest for 

the authors(35). However, as we show herein, the most important problem with the manuscript is 

not the authors’ conflict of interest. Rather, it appears that their conclusion could only be reached 

by omitting >80% of the available data. Moreover, a re-analysis of the full dataset does not support 

the original conclusion.  

Limitations of the Miller and Goldman Study  

One of the major errors of Miller and Goldman’s analysis was unexplained data exclusion(25). In 

their paper, data from only 30 nations was used, despite the fact that data for 185 countries were 

available in their original data source (Figure 1). Within the text they state that they included “the 

immunization schedules for the United States and all 33 nations with better IMRs than the United 

States.” However, there is no scientific reason given for the exclusion of nations with IMR higher 
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than the United States. In fact, the vast majority of the data excluded from analysis had both fewer 

vaccinations than the US and also a significantly higher IMR than the US. Strikingly, the 

manuscript itself discusses IMR data for Gambia and Mongolia, both of which were excluded from 

the statistical analysis, demonstrating that the authors were aware of these data.  

 

Figure 1: 2009 Vaccine Dose and IMR Data Exclusion. The graph above shows a stark contrast between the data 

used in Miller and Goldman’s study (in black), and the data in the dataset that was available for that study (in red). 

Using only a very small subset of the available data, the original study showed a moderate correlation between the 

number of scheduled vaccine doses and IMR (R2 = 0.493). However, when the full dataset is included, the correlation is 

near zero (R2 = 0.026), indicating that these two variables are unrelated. Thus, the exclusion of data dramatically 

changed the conclusion of the data analysis.  

 

Data from four additional nations were excluded with a tenuous explanation. Liechtenstein, San 

Marino, Andorra and Monaco are small European countries with relatively low IMR and a high 

number of vaccinations. Miller and Goldman removed these countries “because they each had 

fewer than five infant deaths.” It is likely their small population has very few annual infant deaths. 

However, it is unclear why this criteria should lead to their exclusion. Miller and Goldman stated 

that including these nations would produce “extremely wide confidence intervals and IMR 

instability”, suggesting that nations could have been included or excluded based on their effect on a 
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statistical metric. Excluding data inappropriately can lead to selection bias, contributing to 

misinformation in the scientific community(36).  

Reanalysis Including Data for Previously Excluded Countries  

To re-evaluate the hypothesis that vaccines are associated with infant mortality, we repeated the 

linear regression analysis using vaccine schedule and IMR data for all countries. This is possible 

because the original data used by Miller and Goldman is publicly available (see Methods). When 

all of the data were included, the positive correlation between IMR and immunization schedules 

disappeared (R2 = 0.026 vs. R2 = 0.493). This indicates that there is no relationship between 

increasing vaccination schedules and infant mortality. 

 

In order to better visualize how extreme Miller and Goldman’s result was even within their own 

dataset, we randomly sampled 30 countries from the full dataset of 185 countries and computed the 

linear regression. This sampling was done 50,000 times, and the distribution of regression results 

was plotted (Figure 2). We then determined the degree to which Miller and Goldman’s result (R2 = 

0.493) may be considered an outlier. Within this distribution of random samples, the mean R2 was 

0.049 with a standard deviation of 0.053. We calculated the z-score of 0.493 against our 

distribution to be 8.3, meaning there is approximately a 1 in a 100,000 chance that this result was 

achieved with a random sample of the dataset. To verify this, we performed 1 million random 

samplings, and the most extreme R2 observed was 0.577, with only 10 samples’ R2 exceeding 

0.493.  Therefore, we conclude that the sample of 30 countries from the Miller and Goldman 

analysis is not representative of the true dataset. 
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Figure 2. Distribution of R2 values from 50,000 random samples. The graph above demonstrates the degree to 

which R2 = 0.493 may be considered an outlier. Of 50,000 random samples of the full dataset, the most extreme R2 

observed was 0.461, indicating that such a result as reported by Miller and Goldman is statistically improbable. 

Vaccination Rate, Not Just Schedule 

In the original analysis by Miller and Goldman, they used the vaccine schedule and not the actual 

data on vaccine doses administered, claiming vaccination rates were high enough it would not 

affect the results. However, in countries/locales with poor access to health care, the recommended 

set of vaccinations might not be available to a significant fraction of the population. Therefore, to 

more clearly answer the question about whether vaccination is related to infant mortality, we 

compared the vaccination rate for each country against the infant mortality rate. Data from 

UNICEF includes 2019 global statistics on vaccination rate and IMR for 8 different types of 

vaccines (see Methods). In agreement with previous literature demonstrating the benefit of 

vaccines, we show that higher vaccination rates lead to lower infant mortality rates for 7 of the 8 

vaccinations tested (Figure 3). 
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Figure 3 - Vaccination rate and infant mortality. For 8 vaccines with global vaccination rate data, we plotted the 

association with each nation’s infant mortality rate. We also calculated the linear regression statistic for each data set: 

DPT vaccine correlation coefficient = -0.85 and p-value = 4.19E-21, Hib vaccine correlation coefficient = -0.81 and p-

value = 1.45E-19, HepB vaccine correlation coefficient = -0.77 and p-value = 2.62E-17, Polio vaccine correlation 

coefficient = -0.87 and p-value = 4.76E-22, Rotavirus vaccine correlation coefficient = -0.079 and p-value = 0.41, 

Tuberculosis vaccine correlation coefficient = -0.38 and p-value = 1.04E-04, PCV vaccine correlation coefficient = -

0.42 and p-value = 2.29E-06, Measles vaccine correlation coefficient = -0.79 and p-value = 4.93E-21. 

Vaccine Impact Over Time 

It is curious that the original Miller and Goldman study did not examine longitudinal data to 

evaluate their hypotheses. If vaccines were really affecting infant mortality, then the introduction of 

new vaccines should be correlated with a rise in infant mortality. Therefore, we propose a different 

test to evaluate the impact of increasing the number of vaccinations. Specifically, we want to 

evaluate the infant mortality over a time period when a new vaccination becomes common and the 

impact of that specific addition can be assessed. The Hepatitis B vaccine was introduced in 

1981(37) and became common in the United States in the 1990s. We identified a dataset for 

vaccine doses administered and infant mortality which covers the timeframe of HepB vaccine 

adoption (see Methods).  
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We examined the relationship between Hepatitis B vaccination rate (percent of one-year-old 

children vaccinated) and IMR for male and females in the United States from 1993 - 2019 (Figure 

4). For both males and females there is a modest decrease in IMR from 1993 - 1996 as percent of 

one-year-old children vaccinated for HepB approaches approximately 85%. Between 1996 and 

2019, when Hepatitis vaccination remains consistently high, infant mortality drops significantly 

from 8.5% to 6% in males and from 7% to 5% in females. Although there are potential 

confounding factors, these data suggest that if there is any relationship between Hepatitis B 

vaccination and IMR it is a lowering of the infant mortality rate. Similar conclusions have been 

drawn by other studies analyzing vaccine effectiveness(38,39). 

 

Figure 4: Hepatitis B Vaccine Administration Compared to Male and Female IMR in the United States by Year. 

These graphs demonstrate a moderate negative correlation between percent of children vaccinated for Hepatitis B and 

IMR for both males and females in the United States (Spearman Correlation Coefficient = -.665, p-value = .000152).  
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Discussion  

Our findings indicate that the conclusions previously suggested by Miller and Goldman(25) are 

false. More recommended vaccine doses are not associated with an increase in infant mortality. 

Their conclusion could only be reached by extensive omission of available data (see Figures 1 and 

2). When we repeated the analysis with previously excluded data, the positive correlation between 

vaccination scheduling and IMR disappeared.  

 

While Miller and Goldman claimed that using vaccination rates rather than the schedule would be 

unlikely to alter their results, we found that using vaccination rates did challenge their 2011 

conclusions. When we examined the association between actual vaccination rates and IMR, we 

found a consistent and strong negative correlation, with higher vaccination rates predicting less 

infant death (Figure 3). This result better aligns with the scientific consensus about the benefits of 

vaccination, even with many vaccines given together (26–29). Finally, we presented a case study 

with longitudinal data demonstrating a lowering of infant mortality in the United States coincident 

with the widespread adoption of the Hepatitis B vaccine over time (Figure 4). If synergistic toxicity 

truly exists, as proposed by Miller and Goldman, adding new vaccines to the schedule would have 

had the opposite effect over time. 

 

The Miller and Goldman study had other limitations not directly addressed in our study. For 

example, it only looks at the initial effect of vaccines on infants. Vaccines are developed for 

diseases that affect the entire age spectrum of the population, e.g. infants, adolescents and adults. 

Therefore, to correctly evaluate the public health impact of vaccination, one would need to include 

the lives saved when vaccinated individuals no longer acquire these diseases. Such analyses are 

part of current published literature, e.g. measles cases in the US which dropped dramatically in the 
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1960s coincident with the introduction of a measles vaccine(40). Another major flaw of the paper’s 

analysis was simplistic implementation of statistical methods. When studying a question as 

complicated as infant mortality, including only one variable (vaccination schedule) in regression 

analyses is not considered best practice. Furthermore, linear regression and correlation coefficients 

are heavily influenced by outliers(41), which were removed as noted above (see Figure 1). The 

Miller and Goldman manuscript mentions potential covariates and confounding factors, including 

many socio-economic factors known to play a critical role in infant mortality(42–45). 

Unfortunately, even the ones available in their dataset were not included in their analysis. 

 

In the context of the current vaccine debate, it is important that accurate information about vaccine 

safety is accessible. A vast literature exists for the development and clinical testing of individual 

vaccines (e.g. refs(46–49)), evaluation of vaccination schedules (e.g. refs(26,50–54)) and public 

health studies testing their efficacy within society (e.g. refs(55–59)). Unfortunately, many 

individuals get their information from social media, which is not a curated or validated source, and 

many of these social media users lack the scientific training to evaluate the validity of what they 

see. In this setting, a single manuscript can have an inordinate impact on public discourse, even 

when it is demonstrably false. While corrections and retractions are not always successful at 

preventing the original misinformation from impacting public debate, repeated corrections and 

retractions can help alleviate the effects of misinformation(60). 
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