
 1

Integrated methylome and phenome study of the circulating proteome 1 

reveals markers pertinent to brain health 2 

Danni A Gadd1,, Robert F Hillary1, Daniel L McCartney1, Liu Shi2, Aleks Stolicyn3, Neil Robertson4, 3 

Rosie M Walker5, Robert I McGeachan6, Archie Campbell1, Shen Xueyi3, Miruna C Barbu3, Claire 4 

Green3, Stewart W Morris1, Mathew A Harris3, Ellen V Backhouse5, Joanna M Wardlaw5,7,8,9, J 5 

Douglas Steele10, Diego A Oyarzún11,12,13, Graciela Muniz-Terrera14, Craig Ritchie14, Alejo Nevado-6 

Holgado2, Tamir Chandra4, Caroline Hayward1,15, Kathryn L Evans1,  David J Porteous1, Simon R 7 

Cox16,17, Heather C Whalley3, Andrew M McIntosh3, Riccardo E Marioni1,†  
8 

1 Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU 9 

2 Department of Psychiatry, University of Oxford, UK, OX3 7JX 10 

3 Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, EH10 5HF, UK  11 

4 MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU 12 

5 Centre for Clinical Brain Sciences, Chancellor’s Building, 49 Little France Crescent, Edinburgh BioQuarter, Edinburgh, EH16 4SB 13 

6 Centre for Discovery Brain Sciences, University of Edinburgh, 1 George Square, Edinburgh EH8 9JZ, UK 14 

7 Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK 15 

8 Edinburgh Imaging, University of Edinburgh, Edinburgh, UK 16 

9 UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK, EH8 9JZ 17 

10 Division of Imaging Science and Technology, Medical School, University of Dundee, Dundee, UK, DD1 9SY 18 

11 School of Informatics, University of Edinburgh, Edinburgh, EH8 9AB 19 

12 School of Biological Sciences, University of Edinburgh, Edinburgh, EH3 3JF 20 

13 The Alan Turing Institute, 96 Euston Road, London, NW1 2DB 21 

14 Centre for Clinical Brain Sciences, Edinburgh Dementia Prevention, University of Edinburgh, Edinburgh, UK, EH4 2XU 22 

15 Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU 23 

16 Lothian Birth Cohorts, University of Edinburgh, Edinburgh, EH8 9JZ 24 

17 Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ 25 

† Corresponding author: Riccardo Marioni, riccardo.marioni@ed.ac.uk26 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 16, 2022. ; https://doi.org/10.1101/2021.09.03.21263066doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2021.09.03.21263066
http://creativecommons.org/licenses/by/4.0/


 2

Abstract 27 

 28 

Characterising associations between the methylome, proteome and phenome may provide insight 29 

into biological pathways governing brain health. Here, we report an integrated DNA methylation and 30 

phenotypic study of the circulating proteome in relation to brain health. Methylome-wide association 31 

studies of 4,058 plasma proteins are performed (N=774), identifying 2,928 CpG-protein associations 32 

after adjustment for multiple testing. These were independent of known genetic protein quantitative 33 

trait loci (pQTLs) and common lifestyle effects. Phenome-wide association studies of each protein 34 

are then performed in relation to 15 neurological traits (N=1,065), identifying 405 associations 35 

between the levels of 191 proteins and cognitive scores, brain imaging measures or APOE e4 status. 36 

We uncover 35 previously unreported DNA methylation signatures for 17 protein markers of brain 37 

health. The epigenetic and proteomic markers we identify are pertinent to understanding and 38 

stratifying brain health. 39 

Introduction 40 

The health of the ageing brain is associated with risk of neurodegenerative disease 1,2. Relative brain 41 

age – a measure of brain health calculated using multiple volumetric brain imaging measures – has 42 

recently been shown to predict the development of dementia 3.  Structural brain imaging and 43 

performance in cognitive tests are well-characterised markers of brain health 4, which clearly 44 

associate with potentially modifiable traits such as body mass index (BMI), smoking and diabetes 5–7. 45 

Understanding the interplay between environment, biology and brain health may therefore inform 46 

preventative strategies.  47 

Multiple layers of omics data indicate the biological pathways that underlie phenotypes. Proteomic 48 

blood sampling can track peripheral pathways that may impact brain health, or record proteins 49 

secreted from the brain into the circulatory system. Although proteome-wide characterisation of 50 

cognitive decline and dementia risk 8–10 have been facilitated at large-scale by SOMAscan® protein 51 
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measurements, there is a need to further integrate omics to characterise brain health phenotypes. 52 

Epigenetic modifications to the genome record an individual’s response to environmental exposures, 53 

stochastic biological effects, and genetic influences. Epigenetic changes include histone 54 

modifications, non-coding RNA, chromatin remodelling, and DNA methylation (DNAm) at cytosine 55 

bases, such as 5-hydroxymethylcytosine. These are implicated in changes to chromatin structure and 56 

the regulation of pathways associated with neurological diseases 11,12. However, DNAm at cytosine-57 

guanine (CpG) dinucleotides is the most widely profiled blood-based epigenetic modification at large 58 

scale.  59 

Modifications to DNAm at CpG sites play differential roles in influencing gene expression at the 60 

transcriptional level 13. Additionally, DNAm accounts for inter-individual variability in circulating 61 

protein levels 14–16. Recently, through integration of DNAm and protein data, we have shown that 62 

epigenetic scores for plasma protein levels – known as ‘EpiScores’ – associate with brain 63 

morphology and cognitive ageing markers 17 and predict the onset of neurological diseases 18. These 64 

studies highlight that while datasets that allow for integration of proteomic, epigenetic and 65 

phenotypic information are rarely-available, they hold potential to advance risk stratification. 66 

Integration may also uncover candidate biological pathways that may underlie brain health. 67 

Associations between protein levels and DNAm at CpGs are known as protein quantitative trait 68 

methylation loci (pQTMs) and can be quantified by methylome-wide association studies (MWAS) of 69 

protein levels. The largest MWAS of protein levels to date assessed 1,123 SOMAmer protein 70 

measurements in the German KORA cohort (n=944) 14. In that study, Zaghlool et al reported 98 71 

pQTMs that replicated in the QMDiab cohort (n=344), with significant associations between DNAm 72 

at the immune-associated locus NLRC5 and seven immune-related proteins (P�<�2.5�×�10−7). 73 

This suggested that DNAm not only reflects variability in the proteome but is closely related to 74 

chronic systemic inflammation. Hillary et al have also assessed epigenetic signatures for 281 75 
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SOMAmer protein measurements that were previously associated with Alzheimer’s disease, in the 76 

Generation Scotland cohort that we utilised in this study 19. However, proteome-wide assessment of 77 

pQTMs has not been tested against a comprehensive spectrum of brain health traits.  78 

Here, we conduct an integrated methylome- and phenome-wide assessment of the circulating 79 

proteome in relation to brain health (Fig. 1), using 4,058 protein level measurements (Supplementary 80 

Table 1). We characterise CpG-protein associations (pQTMs) for these proteins in 774 individuals 81 

from the Generation Scotland cohort using EPIC array DNAm at 772,619 CpG sites. We then 82 

identify which of the 4,058 protein levels associate with one or more of 15 neurological traits (seven 83 

structural brain imaging measures, seven cognitive scores and APOE e4 status) in 1,065 individuals 84 

from the same cohort where the pQTM data are a nested subset. By integrating these datasets, we 85 

probe the epigenetic signatures of proteins that are related to brain health. For these signatures, we 86 

map potential underlying genetic components and chromatin interactions that may play a role in 87 

protein level regulation. A YouTube video summarising the study and detailing access to the datasets 88 

can be viewed at https://www.youtube.com/channel/UCxQrFFTIItF25YKfJTXuumQ. 89 

Results 90 

Methylome-wide studies of 4,058 plasma proteins 91 

We conducted MWAS to test for pQTM associations between 772,619 CpG sites and 4,058 92 

circulating protein levels (corresponding to 4,235 SOMAmer measurements; Supplementary Table 93 

1). The MWAS population included 774 individuals from Generation Scotland (mean age 60 years 94 

[SD 8.8], 56% Female; Supplementary Table 2). 143 principal components explained 80% of the 95 

cumulative variance in the 4,235 measurements (Supplementary Fig. 1 and Supplementary Table 3). 96 

A threshold for multiple testing based on these components was applied across all MWAS (P < 97 

0.05/(143x772,619) = 4.5x10-10).  98 
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In our basic model adjusting for age, sex and available genetic pQTL effects from Sun et al 20 99 

238,245 pQTMs (2,107 cis and 236,138 trans, representing 0.005% of tested associations) had P < 100 

4.5x10-10 (Supplementary Table 4). In our second model that further adjusted for Houseman-101 

estimated white blood cell proportions21, there were 3,213 associations (453 cis and 2,760 trans) that 102 

had P < 4.5x10-10 (Supplementary Table 5). Smoking status and BMI are known to have well-103 

characterised DNAm signatures 22,23; fully-adjusted models were therefore further adjusted for these 104 

factors. There were 2,928 associations (451 cis and 2,477 trans) in the fully-adjusted models 
105 

(Supplementary Table 6). 2,847 pQTM associations were significant in all models. Figure 2 106 

summarises these findings. 107 

There were 191 unique proteins with associations in the fully-adjusted models, corresponding to 195 108 

SOMAmer measurements (two SOMAmers were present for CLEC11A, GOLM1, ICAM5 and 109 

LRP11). Genomic inflation statistics for these 195 SOMAmer measurements (fully-adjusted 110 

MWAS) are presented in Supplementary Table 7. In a sensitivity analysis, restriction of the threshold 111 

for cis pQTMs from 10Mb to 1Mb from the transcription start site of the gene encoding the protein 112 

yielded 409 cis pQTMs (a drop of 42 pQTMs) in the fully-adjusted MWAS. A summary of known 113 

pQTLs 24 and a record of whether these were available for adjustment is provided in Supplementary 114 

Table 8. Characterising the genomic location of the findings, 46% of cis and 29% of trans pQTMs in 115 

the fully-adjusted MWAS involved CpGs positioned in either a CpG Island, Shore or Shelf 116 

(Supplementary Table 6).  117 

Pleiotropic pQTM associations in the fully-adjusted MWAS 118 

Pleiotropy was observed for both CpG sites and protein levels (Fig. 3). Nineteen proteins had 10 or 119 

more pQTMs in the fully-adjusted MWAS (Supplementary Table 9). Of the 2,928 pQTMs in the 120 

fully-adjusted MWAS, 987 involved Pappalysin-1 (PAPPA) and there were a further 1,116 pQTMs 121 

that involved the Proteoglycan 3 Precursor (PGR3) protein. The remaining 825 pQTMs involved 189 122 
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unique protein levels, with 434 cis and 391 trans associations (Fig. 2). Principal components 123 

analyses indicated high correlations between CpGs associated with the pleiotropic proteins PAPPA 124 

and PRG3, whereas the CpGs involved in the remaining 825 pQTMs were largely uncorrelated 125 

(Supplementary Fig. 2). pQTM frequencies for the 1,837 unique CpGs selected in the fully-adjusted 126 

models, with their respective genes and EWAS catalogue 25 lookup of epigenome-wide significant (P 127 

< 3.6x10-8) phenotypic associations is presented in Supplementary Table 10. Of these CpGs, sites 128 

within the NLRC5, SLC7A11 and PARP9 gene regions exhibited the highest levels of pleiotropy (Fig. 129 

3).  130 

The pleiotropic findings for PAPPA and cg07839457 (NLRC5 gene) replicated previous MWAS 131 

results from Zaghlool et al 14 (944 individuals, with 1,123 protein SOMAmers). Of the 98 pQTMs 132 

identified by Zaghlool et al, 81 were comparable (both the protein and CpG sites from the 98 pQTMs 133 

were available across both MWAS). Of these 81 pQTMs, 26 replicated at our significance threshold 134 

(P < 4.5x10-10) with the same direction of effect, a further 16 replicated at the epigenome-wide 135 

significance threshold (P < 3.6x10-8) 26 and a further 39 replicated at nominal P < 0.05 136 

(Supplementary Table 11 and Supplementary Fig. 3). When accounting for 26 pQTMs that were 137 

previously reported by Zaghlool et al and 10 pQTMs that were previously reported by Hillary et al 138 

14,19, 2,892 of the 2,928 fully-adjusted pQTMs were novel. Of these 2,892 novel pQTMs, 1,109 139 

involved the levels of 41 proteins that were measured by Zaghlool et al (973 pQTMs for PAPPA and 140 

136 additional pQTMs for the levels of 40 proteins), whereas 1,783 pQTMs involved the levels of 141 

proteins that were previously unmeasured (1,116 pQTMs for PRG3 and 667 further pQTMs for 148 142 

proteins).  143 

Proteome associations with brain health phenotypes 144 

We next conducted a proteome-wide association study of brain health characteristics (protein 145 

PheWAS of brain imaging, cognitive scoring and APOE e4 status, alongside age and sex; Fig. 4). 146 
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Distribution plots for the seven cognitive scores and seven brain imaging phenotypes are presented in 147 

Supplementary Figs. 4-5. A maximum sample of 1,065 individuals was available (mean age 59.9 148 

years [SD 9.6], 59% Female; Supplementary Table 2); all 774 individuals from the pQTM study 149 

were included in these analyses. A threshold for multiple testing adjustment was calculated based on 150 

143 independent components that explained >80% of the 4,235 SOMAmer levels (Supplementary 151 

Table 3 and Supplementary Fig. 1). This equated to P < 0.05/(143) = 3.5x10-4. The levels of 587 152 

plasma proteins were associated with age and 545 were associated with sex, with 222 proteins 153 

common to both phenotypes (Supplementary Table 12). When comparable associations from three 154 

studies (with N>1000) were tested 20,27,28, 97% of age and 98% of sex associations replicated in one 155 

or more of studies (Supplementary Table 12).  156 

There were 191 unique protein markers that had a total of 405 associations with brain health 157 

characteristics (Supplementary Fig. 6 and Fig. 4a). These consisted of 95 brain imaging 158 

(Supplementary Table 13), 296 cognitive test score (Supplementary Table 14) and 14 APOE e4 159 

status (Supplementary Table 15) associations. Supplementary Table 16 stratifies these associations 160 

by direction of effect and Supplementary Table 17 provides full summary statistics for all 405 161 

associations. Of the seven brain morphology traits, Relative Brain Age and General Fractional 162 

Anisotropy (gFA) had the largest number of associations, with 24 and 22 protein markers identified, 163 

respectively. Of the cognitive score traits, Processing Speed and General Cognitive Ability scores 164 

were associated with the highest number of protein markers (102 and 73, respectively). The 14 165 

APOE e4 status associations are plotted in Supplementary Fig. 7. 166 

Stratifying the 405 associations by direction of effect revealed that the majority (89%) of 167 

associations indicated that higher levels of the proteins were associated with less favourable brain 168 

health (Supplementary Table 16). Eighty-seven of the 405 associations involved protein leves that 169 

were associated with more favourable brain health; this signature included the levels of SLITRK1, 170 
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NCAN and COL11A2. Higher levels of ASB9, RBL2, HEXB and SMPD1 associated with poorer 171 

brain health. Protein interaction network analyses for the genes corresponding to the 191 protein 172 

markers (Supplementary Fig. 8) indicated that many of the proteins in these signatures clustered 173 

together, implying shared underlying functions. An inflammatory cluster including CRP, ITIH4, C3, 174 

C5, COL11A2 and SIGLEC2 was present and higher levels of these markers were associated with 175 

poorer brain health outcomes. Gene set enrichment analyses on the 191 genes corresponding to the 176 

protein markers (Supplementary Fig. 9) supported the link between many of the proteins associated 177 

with poorer brain health and the innate immune system, while also implicating extracellular matrix, 178 

lysosomal, metabolic and additional inflammatory pathways. Tissue expression profiles of the 191 179 

genes (Supplementary Fig. 10) indicated that many of the markers were expressed non-neurological 180 

tissues; however, some proteins were expressed in nervous tissues. Markers such as ASB9 and 181 

NCAN were found to be consistently identified across multiple brain imaging traits as markers of 182 

poorer and better brain health, respectively (Supplementary Table 16). While many of the 183 

associations for brain imaging measures identified proteins that were distinct from those found for 184 

cognitive scores and APOE e4 status, 22 protein markers were associated with both a cognitive score 185 

and a brain imaging trait (Fig. 4b and Supplementary Table 18). Of these 22 proteins, there were 10 186 

principal components that had a cumulative variance of >80% and five components had eigenvalues 187 

> 1 (Supplementary Fig. 11). Three APOE e4 status markers (ING4, APOB and CRP) were also 188 

associated with cognitive scores (Fig. 4b). 189 

Replication of protein PheWAS associations 190 

Six of the 14 APOE e4 status associations replicated previous SOMAmer protein findings (N 191 

SOMAmers= 4,785 and N participants=227) 10, and eight novel relationships involved NEFL, ING4, 192 

PAF, MENT, TMCC3, CRP, FAM20A and PEF1. Several of the markers for cognitive function 193 

were identified in previous work relating Olink proteins to cognitive function (such as CPM) 29 and 194 
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work that characterised SOMAmer signatures of cognitive decline and incident Alzheimer’s disease 195 

(such as SVEP1) 8. No studies have performed SOMAmer-based, whole proteome PheWAS studies 196 

of the brain imaging and cognitive score traits we have profiled in a heathy ageing population that 197 

were not enriched for neurodegenerative diseases. However, replication of associations from several 198 

studies 9,29,30 was found for a small subset of associations (Supplementary Table 19). 199 

Integration of the brain health proteome with our pQTM dataset 200 

Differential DNAm signatures were explored for the 191 protein markers that had P < 3.5x10-4 in 201 

associations with either cognitive scores, brain imaging measures or APOE e4 status in the protein 202 

PheWAS. Of the 191 proteins, 17 had pQTMs in the fully-adjusted MWAS. Higher levels of 15 of 203 

these proteins were associated with poorer brain health, while AMY2A and CST5 were associated 204 

with more favourable brain health. There were a total of 35 pQTMs involving 31 unique CpGs that 205 

were located within 20 distinct genes (Supplementary Table 20), with 15 trans (Fig. 5) and 20 cis 206 

associations. All pQTMs were previously unreported. The 20 cis pQTMs involved the levels of 207 

CHI3L1, IL18R1, SIGLEC5, OLFM2, UGDH, CRHBP, AMY2A and CFHR1 proteins. The trans 208 

pQTMs involved the levels of SCUBE1, RBL2, TNFRSF1B, CST5, HEXB, ACY1, CRTAM, 209 

SMPD1 and RBP5 proteins.  210 

Of the 20 cis pQTMs, 11 involved CpGs in different genes to the protein-coding gene on the same 211 

chromosome, whereas the remaining 9 pQTMs involved CpGs located within the protein-coding 212 

gene. Several CpG sites were associated with multiple protein levels in the trans pQTMs (Fig. 5). 213 

DNAm at site cg06690548 in the SLC7A11 gene was associated with RBP5, ACY1 and SCUBE1 214 

levels. The cg11294350 site in the CHPT1 gene was associated with HEXB and SMPD1 levels. The 215 

cg07839457 site in the NLRC5 gene was associated with the levels of CRTAM and TNFRSF1B. 216 

There was also a protein that had several trans associations with multiple CpG sites; pQTMs were 217 
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identified between circulating RBL2 levels and cg01132052, cg0539861, cg18487916, cg27294008 218 

and cg18404041, within the NEK4/ITIH3/ITIH1 gene region of chromosome 3.  219 

Functional mapping of neurological pQTMs 220 

A lookup that integrated information from the GoDMC and eQTLGen databases assessed whether 221 

pQTMs were partially driven by an underlying genetic component. This identified methylation 222 

quantitative trait loci (mQTLs) for CpGs that were associated with CHI3L1, IL18R1 and SIGLEC5 223 

and were also expression quantitative trait loci (eQTLs) for the respective protein levels 224 

(Supplementary Table 20). Further visual inspection of the distributions for the 35 pQTMs indicated 225 

that trimodal distributions – suggestive of unaccounted SNP effects – were present for CpGs 226 

involved in seven of the pQTMs (Supplementary Fig. 12).  227 

Tissue expression profiles for the 33 genes that were linked to either CpGs or proteins in the 35 228 

neurological pQTMs are summarised in Supplementary Fig. 13. Gene set enrichment for these 33 229 

genes identified enrichment for immune effector pathways in a subset of 11 genes, whereas a cluster 230 

of four genes (SMPD1, HEXB, AMY2A and AMY2B) were enriched for amylase and hydrolase 231 

activity (Supplementary Fig. 14). 232 

Of the 35 pQTMs, seven had CpGs that were located in either a CpG Shore or Shelf position and 233 

there were 13 that were located either 1500 bp or 200 bp from the TSS of the protein-coding gene 234 

(Supplementary Table 20). Fifteen pQTMs involved CpGs that were located in the gene body and 7 235 

were located in either the first exon or UTR regions (Supplementary Table 20).  236 

Promoter-capture Hi-C and ChIP-sequencing integration was used to assess the interactions and 237 

chromatin states of our pQTMs and associated CpG loci. This analysis focused on 11 of the 20 cis 238 

pQTMs that involved CpGs on the same chromosome as the protein-coding gene, but were located in 239 

a different gene. Mapping information is presented for the seven proteins involved in these pQTMs 240 
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in Supplementary Figs. 15-21. In all instances, we found evidence of spatial co-localisation of these 241 

genes using promoter-capture Hi-C data from brain hippocampal tissue. We attempted to 242 

contextualise these sites further with ChIP-seq (ENCODE project) analyses of active chromatin 243 

marks H3K27ac and H3K4me1 and repressive chromatin H3K4me3 and H3K27me3 in both 244 

peripheral blood mononuclear cells (PBMCs) and brain hippocampus. ChIP-seq data suggested that 245 

in many instances there were shared regulatory regions that existed across both blood and 246 

hippocampal samples that were hubs for local promoter interactions. For example, promoter loops 247 

were found linking the S100Z and CRHBP genes, with a signature of activating (H3Kme1 and 248 

H3K27ac) and silencing (H3k27me and H3K4me3) marks (normally considered bivalent chromatin) 249 

that may form the basis for shared regulation of this gene locus. 250 

Discussion 251 

We have conducted a large-scale integration of the circulating proteome with indicators of brain 252 

health and blood-based DNA methylation. We characterised 191 protein markers that were 253 

associated with either brain imaging measures, cognitive scores or APOE e4 status in an ageing 254 

population. We also report methylome-wide characterisations for the SOMAscan® panel V.4 (4,058 255 

protein measurements) in a nested subset of this population. By integrating these datasets, we 256 

uncovered 35 methylation signatures for 17 protein markers of brain health. We delineated pQTM 257 

CpGs that had evidence of underlying genetic influence and characterised the potential for chromatin 258 

interactions for genes involved in cis pQTMs. As this population consists of older individuals that 259 

were not enriched for neurodegenerative diseases, the markers we identify are likely indicators of 260 

healthy brain ageing. 261 

Many of the 191 proteins identified in the protein PheWAS were part of inflammatory clusters with 262 

shared functions in acute phase response, complement cascade activity, innate immune activity and 263 

cytokine pathways. Tissue expression analyses suggested that a large proportion of the 191 protein 264 
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markers were not expressed in the brain; this supports work suggesting that sustained peripheral 265 

inflammation influences general brain health 3132 and accelerates cognitive decline 8,33–35. However, a 266 

subset of proteins were expressed in the central nervous system. Given that leakage at the blood-267 

brain-barrier interface has been hallmarked as a part of healthy brain ageing 36,37, there is a 268 

possibility that brain-derived proteins may enter the bloodstream as biomarkers. SLIT and NTRK 269 

Like Family Member 1 (SLITRK1), Neurocan (NCAN) and IgLON family member 5 (IGLON5) 270 

were examples of proteins expressed in brain for which higher levels associated with either larger 271 

grey matter volume, larger whole brain volume, or higher general fractional anisotropy. SLITRK1 272 

localises at excitatory synapses and regulates synapse formation in hippocampal neurons 38. 273 

Neurocan (NCAN) is a component of neuronal extracellular matrix and is linked to neurite growth 39. 274 

IGLON5 has been implicated in maintenance of blood-brain-barrier integrity and an anti-IGLON5 275 

antibody disease involves the deterioration of cognitive health 40. Taken together, the protein markers 276 

identified in the PheWAS may, therefore, reflect pathways that could be targeted to improve brain 277 

health. 278 

Integration of our fully-adjusted protein MWAS dataset revealed 35 associations between DNAm 279 

and 17 protein markers of brain health (Fig. 6; Supplementary Table 20). All 35 associations were 280 

novel. While this study is focused on blood DNAm – limiting generalisation to brain DNAm – many 281 

of the 35 pQTMs involved CpGs and proteins that have been previously implicated in neurological 282 

processes. DNAm at site cg06690548 (located in the SLC7A11 gene) was of particular interest; 283 

differential DNAm at this CpG in blood has been identified as a causal candidate for Parkinson’s 284 

disease (N > 900 cases and N > 900 controls) 41. Xc- is the cystine-glutamate antiporter encoded by 285 

SLC7A11, which facilitates glutamatergic transmission, oxidative stress defence and microglial 286 

response in the brain 4243 and is a target for the neurodegeneration-associated environmental 287 

neurotoxin β-methylamino-L-alanine 41. Analyses in the wider Generation Scotland cohort suggests 288 

that cg06690548 is a site associated with alcohol consumption 44. The proteins associated with 289 
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cg06690548 in the subset of this cohort we assessed (ACY1, SCUBE1 and RBP5) have known links 290 

to liver function 45–47. DNAm at cg06690548 in blood has also been recently implicated in the largest 291 

MWAS of amyotrophic lateral sclerosis (ALS) to date (6,763 cases, 2,943 controls) 48. Given that 292 

ACY1, SCUBE1 and RBP5 were markers for either lower processing speed and higher relative brain 293 

age, the CpG sites we identify in this study – such as cg06690548 – may be important plasma 294 

markers for mediation of environmental risk on brain health that merit further exploration. 295 

cg06690548 lies within the first intron of SLC7A11 41, indicating that this site is of potential 296 

functional significance. 297 

The presence of NLRC5 and various other inflammatory proteins in our neurological protein pQTMs 298 

suggests that the methylome may capture an inflammatory component of brain health. Many of the 299 

genes corresponding to CpGs and proteins involved in the 35 pQTMs were enriched for immune 300 

effector processes and were not expressed in brain. However, some markers did show evidence for 301 

brain-specific expression, such as acid sphingomyelinase (SMPD1) and Hexosaminidase Subunit 302 

Beta (HEXB). The HEXB and SMPD1 proteins associated with DNAm at cg11294350 (in the 303 

CHPT1 gene), are involved in neuronal lipid degradation in the brain and have been associated with 304 

the onset of a range of neurodegenerative conditions 49–52. RBL2 is another protein that had partial 305 

expression signals across brain regions; the NEK4/ITIH3/ITIH1 region was the location for five 306 

CpGs with differential DNAm linked to RBL2 levels. This region is implicated in schizophrenia and 307 

bipolar disorder by several large-scale, genome-wide association studies (GWAS) 53–56. Similarly, 308 

the RBL2 locus has been associated with intelligence, cognitive function and educational attainment 309 

in GWAS (n > 260,000 individuals) 33,57,58.  310 

Given that this study utilised CpGs from the Illumina EPIC array, 15 of the 31 unique CpGs did not 311 

have mQTL characterisations in public databases, which primarily comprise results from the earlier 312 

450K array. However, our plots showing pQTM associations suggested that for several CpGs (such 313 
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as cg11294350 that associated with SMPD1 and HEXB), there may be a partial genetic component 314 

influencing DNAm. As mQTLs tend to explain 15-17% of the additive genetic variance of DNAm 59, 315 

it is possible that the signals we isolate in these instances are partially driven by genetic loci, but are 316 

also likely driven by unmeasured environmental and biological influences. In the case of SIGLEC5, 317 

IL18R1 and CHI3L, mQTLs were identified that were also eQTLs, providing evidence that mQTLs 318 

for these CpG sites were possible regulators of protein expression.  319 

Integration of promoter-capture Hi-C chromatin interaction and ChIP-seq databases 60 provided 320 

evidence for long-range interaction relationships for cis pQTMs with CpGs in different gene regions 321 

that are proximal to the protein-coding gene of interest. This suggests that in such instances, the 322 

pQTMs may reflect regulatory relationships in the 3-dimensional genomic neighbourhood. The 323 

pQTMs therefore direct us towards pathways that can be tested in experimental constructs. Positional 324 

information suggested that many CpGs involved in neurological pQTMs lay within 1500 bp of the 325 

TSS of the respective protein-coding gene. While positional information of CpGs is thought to infer 326 

whether DNAm is likely to play a role in the expression regulation of nearby genes, this is still 327 

somewhat disputed. Some studies suggest that transcription factors regulate DNAm 61 and 328 

differential methylation at gene body locations predicts dosage of functional genes 62. Additionally, 329 

the DNAm signatures of proteins we quantify represent widespread differences across blood cells 330 

that are related to circulating protein levels and are therefore not derived from the same cell-types as 331 

proteins. Despite this limitation, previous work supports DNAm scores for proteins as useful markers 332 

of brain health, suggesting there is merit in integrating DNAm signatures of protein levels in disease 333 

stratification 18.  334 

Our study has several limitations. First, though full replication of our results was not possible, our 335 

replication of pQTMs identified by Zaghlool et al 14 reinforces inflammation signalling as intrinsic to 336 

the methylome signature of blood proteins. This also suggests that pQTMs may be common across 337 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 16, 2022. ; https://doi.org/10.1101/2021.09.03.21263066doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.03.21263066
http://creativecommons.org/licenses/by/4.0/


 15

ancestries. Second, we observed a substantial inflation for PAPPA and PRG3 proteins. While 338 

comprehensive adjustment for estimated immune cells was performed and the remainder of CpGs 339 

involved in pQTMs did not show high correlations (Supplementary Fig. 2), concurrently measured 340 

blood components such as haemoglobin, red blood cells and platelets were not available. Future 341 

studies should seek to resolve signals with more detailed blood-cell phenotyping and immune cell 342 

estimates 63. Third, 89% of the proteins identified in our protein PheWAS did not have epigenetic 343 

pQTMs; this may be due to 1) the presence of pathways relating to neurological disease that are not 344 

reflected by blood immune cell DNAm, 2) underpowered analyses, or 3) the presence of indirect 345 

associations that are not captured by our MWAS approach. Fourth, the extent of non-specific and 346 

cross-aptamer binding with SOMAmer technology has not been fully resolved 64. Fifth, there are 347 

likely unknown genetic influences on pQTMs. Further characterisation of pQTLs and advances in 348 

multi-omic modelling techniques 15 will aid in the separation of genetic and environmental 349 

influences on epigenetic signatures. Sixth, differences in blood and brain DNAm and pQTLs are 350 

emerging; these indicate that blood-based markers may not fully align to biology of brain 351 

degeneration 65,66. However, our ChIP-seq analysis of chromatin regulation suggested that some 352 

regulatory states may persist between blood and brain. Seventh, profiling DNAm signatures alone 353 

cannot capture the full role of the epigenome in brain health. Integration of more diverse epigenetic 354 

markers will be critical to further resolve these relationships. Finally, though we have incorporated a 355 

wide portfolio of brain health measures, we recognise that these are not extensive. Increasing 356 

triangulation across modalities, as we have shown here, will be useful in identifying candidate 357 

markers. 358 

In conclusion, by integrating epigenetic and proteomic data with cognitive scoring, brain 359 

morphology and APOE e4 status, we identify 191 protein markers of brain health. We characterise 360 

DNAm signatures for all 4,058 proteins included in the study, uncovering 35 associations between 361 

differential DNAm and the levels of 17 of the protein markers of brain health outcomes. These data 362 
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identify candidate targets for the preservation of brain health and may inform risk stratification 363 

approaches. 364 

Methods 365 

The Generation Scotland sample population 366 

The Stratifying Resilience and Depression Longitudinally (STRADL) cohort used in this study is a 367 

subset of N=1,188 individuals from Generation Scotland: The Scottish Family Health Study (GS). 368 

Generation Scotland constitutes a large, family-structured, population-based cohort of >24,000 369 

individuals from Scotland 67. Individuals were recruited to GS between 2006 and 2011. During a 370 

clinical visit detailed health, cognitive, and lifestyle information was collected in addition to 371 

biological samples. Of the 21,525 individuals contacted for participation, N=1,188 completed 372 

additional health assessments and biological sampling approximately five years after GS baseline 68. 373 

Of these, N=1,065 individuals had proteomic data available and N=778 of these had DNAm data 374 

available. Supplementary Table 2 summarises the demographic characteristics across the two 375 

groups, with descriptive statistics for phenotypes. 376 

Proteomic measurement 377 

SOMAscan® V.4 technology was used to quantify plasma protein levels. This aptamer-based assay 378 

facilitates the simultaneous measurements of multiple SOMAmers (Slow Off-rate Modified 379 

Aptamers) 69. SOMAmers were processed for 1,065 individuals from the STRADL subset of GS. 380 

Briefly, binding between plasma samples and target SOMAmers was achieved during incubation and 381 

quantification was recorded using a fluorescent signal on microarrays. Quality control steps included 382 

hybridization normalization, signal calibration and median signal normalization to control for inter-383 

plate variation. Full details of quality control stages are provided in Supplementary Methods. In the 384 

final dataset, 4,235 SOMAmer epitope measures were available in 1,065 individuals and these 385 
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corresponded to 4,058 unique proteins (classified by common Entrez gene names). Supplementary 386 

Table 2 provides annotation information for the 4,235 SOMAme measurements that were available.  387 

DNAm measurement 388 

Measurements of blood DNAm in the STRADL subset of GS subset were processed in two sets on 389 

the Illumina EPIC array using the same methodology as those collected in the wider Generation 390 

Scotland cohort. Quality control details have been reported previously 70–72 and further details are 391 

provided in Supplementary Methods. Briefly, samples were removed if there was a mismatch 392 

between DNAm-predicted and genotype-based sex and all non-specific CpG and SNP probes (with 393 

allele frequency > 5%) were removed from the methylation file. Probes which had a beadcount of 394 

less than 3 in more than 5% of samples and/or probes in which >1% of samples had a detection 395 

P>0.01 were excluded. After quality control, 793,706 and 773,860 CpG were available in sets 1 and 396 

2, respectively. These sets were truncated to include a total of 772,619 common probes and were 397 

joined together for use in the MWAS, with 476 individuals included in set 1 and 298 individuals in 398 

set 2. DNAm-specific technical variables (measurement batch and set) were adjusted in all MWAS 399 

and PheWAS models. 400 

Phenotypes in Generation Scotland 401 

All phenotypes in Generation Scotland MWAS and PheWAS samples are summarised in 402 

Supplementary Table 2. An epigenetic score for smoking exposure, EpiSmokEr 73 was calculated 403 

for all individuals with DNAm. The meffil 74 implementation of the Houseman method was used to 404 

calculate estimated white blood cell (WBC) proportions for Sets 1 and 2. Blood reference panels 405 

were sourced from Reinius et al 75.  The ‘blood gse35069 complete’ panel was used to imputed 406 

measures for Monocytes, Natural Killer cells, Bcells, Granulocytes, CD4+T cells and CD8+T cells. 407 

Eosinophil and Neutrophil estimates were also sourced through the ‘blood gse35069’ panel. Body 408 

mass index (body weight in kilograms, divided by squared height in metres) was available for all 409 
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individuals, alongside depression status (defined using a research version of the Structured Clinical 410 

Interview for DSM disorders (SCID) assessment), which was coded as a binary variable of no 411 

history of depression (0) or lifetime episode of depression (1). Five individuals did not have 412 

depression status information and were excluded from MWAS and PheWAS analyses, where 413 

appropriate. APOE e4 status was available for 1,050 individuals. APOE e4 status was coded as a 414 

numeric variable (e2e2 = 0, e2e3 = 0, e3e3 = 1, e3e4 = 2, e4e4 = 2). Fifteen e2e4 individuals were 415 

excluded due to small sample size.  416 

Scores from five cognitive tests (Supplementary Fig. 4; Supplementary Table 2) measured at the 417 

clinic visit for the STRADL subset of GS were considered. Full details for the specific scores has 418 

been detailed previously 68 and further details can be found in Supplementary Methods. Briefly, 419 

these included the Wechsler Logical Memory Test (maximum possible score of 50), the Wechsler 420 

Digit Symbol Substitution Test (maximum possible score of 133), the verbal fluency test (based on 421 

the Controlled Oral Word Association task), the Mill Hill Vocabulary test (maximum possible score 422 

of 44) and the Matrix Reasoning test (maximum possible score of 15). Outliers were defined as 423 

scores >3.5 standard deviations above or below the mean and were removed prior to analysis. The 424 

first unrotated principal component combining logical memory, verbal fluency, vocabulary and digit 425 

symbol tests was calculated as a measure of general cognitive ability (‘g’). General fluid cognitive 426 

ability (‘gf’) was extracted using the same approach, but with the vocabulary test (a crystallised 427 

measure of intelligence) excluded from the model. While highly similar to g, the gf score is 428 

exclusive to measures such as memory and processing capability that are considered fluid. gf may 429 

therefore be of greater relevance for assessing cognitive decline in ageing individuals. 430 

The derived brain volume measures (Supplementary Fig. 5; Supplementary Table 2) were recorded 431 

at two sites (Aberdeen and Edinburgh) 68. Brain volume data included total brain volume (ventricle 432 

volumes excluded), global grey matter volume, white matter hyperintensity volume and total 433 
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intracranial volume. Intracranial volume was treated as a covariate to adjust for head size in all tests 434 

including brain volume associations. The derived global white matter integrity measures included 435 

global fractional anisotropy (gFA) and global mean diffusivity (gMD). The protocols applied to 436 

derive the brain volume measures from T1-weighted scans, and white matter integrity measures from 437 

diffusion tensor imaging (DTI) scans have been previously described 35,68,76 and additional details are 438 

also provided in Supplementary Methods. Brain Age was estimated using the software package 439 

'brainageR' (Version 2.1; DOI: 10.5281/zenodo.3476365, available at https://github.com/james-440 

cole/brainageR), which uses machine learning and a large training set to predict age from whole-441 

brain voxel-wise volumetric data derived from structural T1 images 3. This estimate was regressed 442 

on chronological age to produce a measure of Relative Brain Age (residuals from the linear model). 443 

Outliers for all imaging variables were defined as measurements >3.5 standard deviations above or 444 

below the mean and were removed prior to analysis. 445 

Phenome-wide association analyses 446 

Prior to running protein PheWAS analyses, protein levels were transformed by rank-based inverse 447 

normalisation and scaled to have a mean of zero and standard deviation of 1. Models were run using 448 

the lmekin function in the coxme R package 77. This modelling strategy allows for mixed-effects 449 

linear model structure with adjustment for relatedness between individuals. Models were run in the 450 

maximum sample of 1,095 individuals, with the 4,235 protein levels as dependent variables and 451 

phenotypes as independent variables. A random intercept was fitted for each individual and a kinship 452 

matrix was included as a random effect to adjust for relatedness. Age, sex (male = 1, reference 453 

female = 0), numerical APOE e4 status variable (e2 = 0, e3 = 1, e4 = 2), cognitive and brain imaging 454 

phenotypes were included as scaled predictors. Continuous variables were scaled to mean of zero 455 

and variance one. Diagnosis of depression (case = 1, reference control = 0) at the STRADL clinic 456 

visit in GS was included as a covariate in all models, due to known selection bias for depression 457 
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phenotypes in STRADL 68. Clinic study site and protein lag group (storage time before proteomic 458 

sequencing) were included as covariates in all models. Missing data were excluded from lmekin 459 

models. 460 

Three regression models were considered. For the analyses with age and sex as the predictors of 461 

interest, two coefficients (β1 and β2) were extracted. 462 

Protein level ~ Intercept + β1 age + β2 sex + depression + study site + lag group + (1|individual) + 463 

(1|kinship) 464 

For the analyses with one of cognitive scoring, APOE e4 status or non-volumetric brain imaging as 465 

the predictor of interest, the β3 coefficient was extracted. 466 

Protein level ~ Intercept + age + sex + β3 phenotype + depression + study site + lag group + 467 

(1|individual) + (1|kinship) 468 

Finally, for the models with volumetric brain imaging measures as the predictor of interest the  β4 469 

coefficient was extracted. 470 

Protein level ~ Intercept + age + sex + β4 phenotype + depression + study site*ICV + lag group + 471 

edited + batch + (1|individual) + (1|kinship)  472 

All analyses of brain volume measures included adjustment for intracranial volume and study site as 473 

main effects, in addition to the interaction between these variables. ICV was used to account for head 474 

size. Imaging data processing batch, and presence or absence of manual intervention during quality 475 

control (edited) variables were also included as covariates, wherever appropriate. 476 

P-values for all PheWAS models were calculated in R using effect size estimates (beta) and standard 477 

errors (SE) as follows: pchisq((beta/SE)^2, 1, lower.tail=F). The Prcomp package 78 was used to 478 

generate principal components for the 4,235 SOMAmer measurements (N=1,065). 143 components 479 
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explained >80% of the cumulative variance in protein levels (Supplementary Fig. 1 and 480 

Supplementary Table 3); these components were used to derive the PheWAS multiple testing 481 

adjustment threshold of P < 0.05 / 143 = 3.5x10-4. This method was chosen due to the presence of 482 

high intercorrelations within the protein data. 483 

Epigenome-wide association study of protein levels 484 

Prior to running the MWAS, protein levels for 774 individuals with complete phenotypic information 485 

were log transformed and regressed on age, sex, study site, lag group and 20 genetic principal 486 

components (generated from multidimensional scaling of genotype data from the Illumina 610-487 

Quadv1 array). Residuals from these models were then rank-based inverse normalised and taken 488 

forward as protein level data. Methylation data were in M-value format and were pre-adjusted for 489 

age, sex, processing batch, methylation set, depression status 73 and known pQTL effects (from a 490 

previous genome-wide association study of 4,034 SOMAmers targeting 3,622 proteins from Sun et 491 

al) 24 in the basic MWAS. A second model further adjusted for estimated white blood cell 492 

proportions (Monocytes, CD4+T cells, CD8+T cells, BCells, Natural Killer cells, Granulocytes and 493 

Eosinophils). While Neutrophil estimates were available, they were excluded due to high correlation 494 

(>95%) with Granulocyte proportions (Supplementary Fig. 22). Finally, the fully-adjusted model 495 

further regressed DNAm onto an epigenetic score for smoking, EpiSmokEr73 and body mass index 496 

(BMI).  497 

Omics-data-based complex trait analysis (OSCA) 79 Version 0.41 was used to run EWAS analyses. 498 

Within OSCA, a genetic relationship matrix (GRM) was constructed for the STRADL population. A 499 

threshold of 0.05 was used to identify 120 individuals likely to be related based on their genetic 500 

similarity. For this reason, the MOA method was used to calculate associations between individual 501 

CpG sites and protein levels, with the addition of the GRM as a random effect to adjust for 502 
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relatedness between individuals 79. CpG sites were the dependent variables and the 4,235 proteins 503 

were the independent variables.  504 

Five fully-adjusted models did not converge (NAGLU, CFHR2, DAP, MST1, PILRA) and were 505 

excluded. A threshold for multiple testing correction (P < 4.5x10-10) was based on 143 independent 506 

protein components with cumulative variance >80% (Supplementary Fig. 1 and Supplementary 507 

Table 3) (P < 0.05/(143x772,619) CpGs). A more conservative threshold based on total number of 508 

SOMAmers was also considered (P < 0.05/(4,235x772,619) = 1.5x10-11) and is detailed in 509 

Supplementary Tables 4-6. pQTMs were classified as cis if the CpG was on the same chromosome 510 

as the protein-coding gene and fell within 10Mb of the transcriptional start site (TSS) of the protein 511 

gene. pQTMs involving a CpG located on a different chromosome to the protein-coding gene, or 512 

>10Mb from the TSS of the protein gene were classed as trans. 513 

Circos plots were created with the circlize package (Version 0.4.12) 80. BioRender.com was used to 514 

create Figs. 1, 2, 3 and 6. All analyses were performed in R (Version 4.0) 81. 515 

Functional mapping and tissue expression analyses 516 

Functional mapping and annotation (FUMA) 82 gene set enrichment analyses were conducted for 517 

genes corresponding to protein markers that were identified through the PheWAS study, in addition 518 

to genes linked to either CpGs or proteins in the neurological pQTM subset. Protein-coding genes 519 

were selected as the background set and ensemble v92 was used with a false discovery rate (FDR) 520 

adjusted P < 0.05 threshold for gene set testing. For the genes corresponding to protein markers in 521 

the PheWAS a minimum overlapping number of genes was set to 3, whereas this was set to 2 for the 522 

genes involved in neurological pQTMs for the purposes of visualisation. The STRING 83 database 523 

was queried to build a protein interaction network based on all proteins that had associations in the 524 

PheWAS. mQTL and eQTL lookups were performed using the GoDMC 59 and eQTLGen databases 525 
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84, respectively. UCSC database searches were used to profile the positional information relating to 526 

CpGs in the pQTMs involving proteins associated with brain health.  527 

Although inter-chromosomal chromatin interactions are unlikely to be stable and persistent, seven 528 

proteins with cis pQTMs involving CpGs located intra-chromosomally to the proximal protein-529 

coding gene were considered for ChIP-seq and promoter-capture Hi-C mapping to interrogate local 530 

chromatin interactions and states that might form the basis for co-regulation of these loci. ChIP-seq 531 

data from peripheral blood mononuclear cells (PBMCs) and brain hippocampus were selected from 532 

the ENCODE project 86, with accession identifiers available in Supplementary Table 21. Processed 533 

promoter-capture Hi-C data for brain hippocampal tissue was integrated from Jung et al, 60 and is 534 

available at NCBI Geo with accession GSE86189. Data concerning both promoter-prometer 535 

interactions and promoter-other interactions were concatenated and all regions subsequently 536 

visualised on the WashU epigenome browser 87. 537 

Ethics declarations 538 

All components of GS received ethical approval from the NHS Tayside Committee on Medical 539 

Research Ethics (REC Reference Number: 05/S1401/89). GS has also been granted Research Tissue 540 

Bank status by the East of Scotland Research Ethics Service (REC Reference Number: 20/ES/0021), 541 

providing generic ethical approval for a wide range of uses within medical research. 542 

Data availability 543 

Datasets generated in this study are made available in Supplementary Tables. Source data are 544 

provided with this paper. 545 

Fully-adjusted MWAS summary statistics for protein levels are available through Zenodo [insert 546 

details once accepted files are uploaded] and hosted on the MRC-IEU EWAS catalog [insert details 547 

once accepted files are uploaded] 25. 548 
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A YouTube video summarising the findings of the study and detailing how to access files can be 549 

viewed at https://www.youtube.com/channel/UCxQrFFTIItF25YKfJTXuumQ. 550 

The source datasets from the cohorts that were analysed during the current study are not publicly 551 

available due to them containing information that could compromise participant consent and 552 

confidentiality. Data can be obtained from the data owners. Instructions for accessing Generation 553 

Scotland data can be found here: https://www.ed.ac.uk/generation-scotland/for-researchers/access; 554 

the ‘GS Access Request Form’ can be downloaded from this site. Completed request forms must be 555 

sent to access@generationscotland.org to be approved by the Generation Scotland Access 556 

Committee. 557 

Code availability 558 

All R code used in this study is available with open access at the following Gitlab repository: 559 

https://gitlab.com/dannigadd/epigenome-and-phenome-wide-study-of-brain-health-outcomes/-560 

/tree/main  561 
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Figure legends 807 

Figure 1. Integrated methylome and phenome study of the plasma proteome in relation to 808 

brain health. Study design and key results are presented in this flow diagram. 1,065 individuals 809 

from Generation Scotland had the levels of 4,058 plasma proteins (corresponding to 4,235 810 

SOMAmers) measured. A methylome-wide association study (MWAS) of the 4,058 plasma protein 811 

levels was conducted in 774 individuals that represented a nested subset of the full sample with 812 

DNAm measurements available. This identified 2,928 CpG-protein (pQTM) associations. A 813 

phenome-wide protein association study (Protein PheWAS) identified 191 protein levels that were 814 

associated with a minimum of one brain health trait (N>=909). Integration of the protein MWAS and 815 

PheWAS results identified 35 pQTMs that involved the levels of 17 protein markers of brain health 816 

and 31 unique CpGs located in 20 genes.  817 

Figure 2. Methylome-wide studies of 4,058 plasma proteins. a Summary of MWAS results for 818 

4,058 protein levels in Generation Scotland (N=774). MWAS pQTMs that had P < 4.5x10-10 in the 819 

basic, white blood cell proportion (WBC)-adjusted and fully-adjusted models. Cis associations 820 

(purple) and trans associations (green) are summarised for each model. Covariates used to adjust 821 

DNAm are described for each model. Protein levels were adjusted for age, sex, 20 genetic principal 822 

components (PCs) and technical variables and normalised prior to running MWAS. b Flow diagram 823 

showing the distinction between the highly pleiotropic PAPPA and PRG3 protein pQTMs and the 824 

825 pQTMs that involved the levels of a further 189 proteins. c Genomic locations for 825 of the 825 

2,928 fully-adjusted pQTMs, excluding highly pleotropic associations for PAPPA and PRG3 protein 826 

levels. Chromosomal location of CpG sites (x-axis) and protein genes (y-axis) are presented. The 434 827 

cis pQTMs (purple) lay on the same chromosome and ≤ 10Mb from the transcriptional start site 828 

(TSS) of the protein gene, whereas the 391 trans pQTMs (green) lay > 10Mb from the TSS of the 829 
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protein gene or on a different chromosome. A list of the full association counts for each protein and 830 

CpG site can be found in Supplementary Tables 8-9.  831 

Figure 3. Pleiotropic associations in the fully-adjusted MWAS. a pQTMs that had P < 4.5x10-10 832 

in the fully-adjusted MWAS are plotted as individual points with chromosomal locations of the 191 833 

protein genes (upper) and the 1,837 CpGs (lower) on the x-axis. 19 proteins with ≥ 10 associations 834 

with CpGs are highlighted in turquoise and labelled on the upper plot. Nine CpGs with ≥ 6 835 

associations with protein levels are highlighted in turquoise on the lower plot. b Summary of genes 836 

with highly pleiotropic CpG signals in the fully-adjusted MWAS. The fully-adjusted MWAS pQTMs 837 

can be accessed in Supplementary Table 6. A list of the full association counts for each protein and 838 

CpG site can be found in Supplementary Tables 8-9.  839 

Figure 4. PheWAS of 4,058 plasma proteins and brain health. a Number of protein marker 840 

associations with P < 3.5x10-4 for each of the 15 traits related to brain health in the phenome-wide 841 

protein association studies (protein PheWAS). These studies included a maximum sample of 1,065 842 

individuals with protein measurements from Generation Scotland and tested for associations between 843 

15 phenotypes and the levels of 4,058 plasma proteins. Cognitive score (turquoise), brain imaging 844 

(light blue) and APOE e4 status (dark blue) associations are summarised. b Heatmap of standardised 845 

beta coefficients for 77 of the 405 protein PheWAS associations (P < 3.5x10-4) indicated by an 846 

asterisk. They include three proteins that had associations with both APOE e4 status and one or more 847 

cognitive scores, in addition to 22 proteins that had associations with both a brain imaging measure 848 

and a cognitive score. Negative and positive beta coefficients are shown in blue and red, 849 

respectively. A heatmap describing the full 405 associations for APOE e4 status, cognitive scores 850 

and brain imaging measures is available in Supplementary Fig. 6. Full summary statistics for the 405 851 

associations are presented in Supplementary Table 17 and the subset of 77 associations shown in part 852 

b can be accessed in Supplementary Table 18.  853 
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Figure 5. pQTMs involving protein markers of brain health. Circular plot showing 15 trans 854 

pQTM associations between DNAm at 11 CpG sites and the levels of nine proteins that were 855 

associated with one of more of the neurological phenotypes (P < 3.5x10-4). Chromosomal positions 856 

are given on the outermost circle. Full details of the 35 pQTMs, including 20 cis associations are 857 

reported in Supplementary Table 20. 858 

Figure 6. Integration of candidate marker associations. a Three trans associations with the CpG 859 

site cg06690548 in the SLC7A11 gene, which encodes a synaptic protein that is linked to 860 

environmental mediation in Parkinson’s disease and is involved in glutamate transmission and 861 

oxidative stress. b Five trans associations between CpGs in the ITIH3/ITIH1/NEK4 region on 862 

chromosome 3 and the levels of RBL2, which was associated with reductions in Global Grey Matter 863 

Volume. c Two trans associations between DNAm at cg11294350 in the CHPT1 gene and two 864 

proteins with lysosomal-associated function (SMPD1 and HEXB) that were associated with higher 865 

Relative Brain Age and lower General Fractional Anisotropy. Associations with a positive beta 866 

coefficient are denoted as red connecting lines, whereas associations with a negative beta coefficient 867 

are denoted as blue connecting lines. The full 15 trans associations and 20 cis associations can be 868 

found in Supplementary Table 20. 869 
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