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Abstract

Despite the great success of genome-wide association studies (GWAS) in identifying genetic loci
significantly associated with diseases, the vast majority of causal variants underlying disease-
associated loci have not been identified'. To create an atlas of causal variants, we performed
and integrated fine-mapping across 148 complex traits in three large-scale biobanks (BioBank
Japan*®, FinnGen®, and UK Biobank’?; total n = 811,261), resulting in 4,518 variant-trait pairs
with high posterior probability (> 0.9) of causality. Of these, we found 285 high-confidence variant-
trait pairs replicated across multiple populations, and we characterized multiple contributors to the
surprising lack of overlap among fine-mapping results from different biobanks. By studying the
bottlenecked Finnish and Japanese populations, we identified 21 and 26 putative causal coding
variants with extreme allele frequency enrichment (> 10-fold) in these two populations,
respectively. Aggregating data across populations enabled identification of 1,492 unique fine-
mapped coding variants and 176 genes in which multiple independent coding variants influence
the same trait (i.e., with an allelic series of coding variants). Our results demonstrate that fine-
mapping in diverse populations enables novel insights into the biology of complex traits by
pinpointing high-confidence causal variants for further characterization.

Introduction

Identifying causal variants for complex traits is a major goal of human genetics research, but most
genome-wide association studies (GWAS) do not pinpoint specific variants, limiting the biological
inference possible from follow-up experimentation'. Identifying causal variants from GWAS
associations (i.e., fine-mapping) is challenging due to extensive linkage disequilibrium (LD)
among associated variants, effect sizes that are often small, and the presence of multiple
independent causal variants at a locus. Fine-mapping methods assign to each variant a posterior
probability of being a causal variant (posterior inclusion probability, PIP)*'®, and recently-
developed methods for fine-mapping use scalable, sophisticated algorithms''® that allow for
multiple causal variants in a locus and can be applied to the very large data sets necessary to
overcome the challenges listed above. Previous studies, performed almost exclusively in cohorts
of European ancestry'’~%? or meta-analyses of majority European ancestry?>=°, have used fine-
mapping methods to identify putative causal variants, enabling novel biological insights into
diseases such as inflammatory bowel disease'® and type 2 diabetes?® and traits such as blood
cell counts?' and kidney function®.

The recent development of large-scale biobanks worldwide*® 7”23 provides an exciting opportunity
for well-powered fine-mapping of multiple phenotypes in diverse populations of both European
and non-European ancestries. Unlike results from most meta-analyses, biobanks allow access to
individual-level genotypes at large scale, enabling more accurate fine-mapping results®'%?, and
often include hundreds of complex diseases and quantitative traits. For example, BioBank Japan
(BBJ)*®, the largest non-European biobank, has recruited ~200,000 individuals with >200
phenotypes, which is sufficient to achieve powerful fine-mapping in a cohort of East Asian
ancestry. Within Europe, there is also substantial genetic diversity®'; for example, FinnGen®, a
biobank in Finland, currently combines genotype data with electronic health records for ~270,000
individuals in a population that has undergone strong population bottleneck followed by
subsequent isolation and rapid expansion, making it genetically distinct from mainland Europe®.
Moreover, because both Japan and Finland have recently undergone population bottlenecks,
these populations harbor deleterious alleles with high frequency that are rare or absent in other
populations®3°,
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Here, for the first time, we compare and combine fine-mapping results across large-scale
biobanks in three distinct populations. To this end, we apply state-of-the-art multiple-causal-
variant fine-mapping methods at scale in BBJ*® and FinnGen®, and we analyze these results in
conjunction with results from our parallel effort performing fine-mapping in UK Biobank (UKBB)" 2.
Our multiple-biobank fine-mapping enables us to identify high-confidence putative causal variants
that replicate in multiple populations, to compare fine-mapping results across biobanks, and to
identify population-specific putative causal variants and the genes these variants converge on.

Results

Expanded atlas of putative causal variants across three populations

In a companion paper®, we describe our fine-mapping in UKBB’ (n = 361,194; 119 traits); here,
to create an atlas of causal variants of complex traits, we extended our analysis to additionally
include 148 complex diseases and traits available in BBJ*® (n = 178,726; 79 traits) and FinnGen®
(n = 271,341; 67 traits from release 6) (Fig. 1a; Supplementary Table 1,2). These traits were
manually curated in each biobank to cover a wide spectrum of human phenotypes ranging from
common complex diseases to biomarkers. Of these, 26 traits (e.g., height and type 2 diabetes)
are available in all the three cohorts, 65 traits (e.g., lab tests and biomarkers) are available in any
two of the three, and the rest are specific to a single cohort (Fig. 1b). We performed GWAS in
BBJ and FinnGen using a generalized linear mixed model as implemented in SAIGE>® or BOLT-
LMM?3"38 (Methods). We identified 2,611 and 1,698 genome-wide significant locus-trait pairs (P
< 5.0 x 107%; 3 Mb regions excluding the major histocompatibility complex [MHC]; Methods) in
BBJ and FinnGen, respectively. We then conducted multiple-causal-variant fine-mapping using
FINEMAP'' and SuSIiE'® (Methods).

In total, our expanded atlas included 476, 342, and 3,847 fine-mapped variant-trait pairs (posterior
inclusion probability [PIP] > 0.9), and 3,558, 2,348, and 27,276 95% credible set (CS)-trait pairs
(median CS size = 11, 9, and 12) in BBJ, FinnGen, and UKBB, respectively (Fig. 1c—e). These
consisted of 4,518 unique variant-trait pairs (PIP > 0.9 in any population) and 31,598 unique 95%
CS-trait pairs (median CS size = 12; independent SuSiE CS merged across populations;
Methods) in aggregate, of which 23,563 CS-trait pairs (75%) contained at least one variant with
PIP > 0.1 (Supplementary Table 3,4). Notably, our expanded atlas included 66 unique variant-
trait pairs (PIP > 0.9 in any population) and 601 CS-trait pairs on the understudied X chromosome.
The three biobanks displayed similar and strong enrichment of high-PIP (> 0.9) variants in seven
main distinct functional categories (defined as non-overlapping regions; Methods): predicted
loss-of-function (pLoF), missense, synonymous, 5’/3’ UTR, promoter, and cis-regulatory element
(CRE) regions (DNase | hypersensitive sites [DHS] and H3K27ac*’; Extended Data Fig. 1a-h;
Supplementary Table 5). In addition, our combined results recapitulated the functional
enrichments of 35 additional annotations as previously reported*®*?® including conserved regions
in mammals**“* and ancient putative promoter/enhancer*®; these enrichments remained
significant even when analysis is restricted to the “non-genic” variants that do not belong to any
of the seven main functional categories listed above (Extended Data Fig. 1i; Supplementary
Table 6).

We additionally performed eQTL colocalization in BBJ and FinnGen, using fine-mapped cis-
eQTLs from GTEx®*” v8 and eQTL catalog*® release 4, identifying 719 variant-trait-gene triples;
in our companion paper®, we identified 4,420 triples in UKBB. We aggregated these results into a
combined 4,957 unique variant-trait-gene triples in which the variant was fine-mapped for both


https://doi.org/10.1101/2021.09.03.21262975
http://creativecommons.org/licenses/by-nc/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2021.09.03.21262975; this version posted September 5, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC 4.0 International license .

the trait and expression of the gene (PIPcoioc = PIPewas % PIPgiseqr. > 0.1), spanning 117 traits and
3,937 genes (Fig. 1f; Supplementary Table 7). We defined the rate of colocalization as the
proportion of variants with PIP > 0.1 in each biobank that showed at least one cis-eQTL
colocalization (PIPcioc > 0.1 across any trait, gene, or tissue) in our study; this rate was 5.3%,
5.6%, and 7.3% for BBJ, FinnGen, and UKBB, respectively. We investigated the MAF distribution
of colocalized variants in each biobank and observed that 85%, 74%, and 89% of colocalized
variants showed MAF > 5% in BBJ, FinnGen, and UKBB, respectively (Fig. 1g). This is in contrast
to the coding variants with PIP > 0.1, of which 56%, 42%, and 55% had MAF > 5% in BBJ,
FinnGen, and UKBB, respectively (Fig. 1h).


https://doi.org/10.1101/2021.09.03.21262975
http://creativecommons.org/licenses/by-nc/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2021.09.03.21262975; this version posted September 5, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC 4.0 International license .

a Complex diseases and traits Atlas of fine-mapping and cis-eQTL colocalization b 43
401
i 4
Biobank Japan (BBJ) 2 3
. . 159349379 230
79 complex traits £® BBJ: CAD s u é—g 5 301 26
S 20 501 * 20 19
& Japanese go 3 . mg 520 16
4 (n=178,726) ' E z
, 104 6
¥ % 1 * 4
. 0 04
FinnGen (FG) release 6 ~ 5 ]Fa:cAD . l'3:B('5J I . °
67 complex traits 3 I
> UKBB °
o
1

Finnish
(n=271,341)

UK Biobank (UKBB)
119 complex traits
0.01  0.05 0.50

“f White British
~1 (n=361,194)
MAF of colocalized variants

Expression QTL (cis-eQTL _. 40{GTEx: Artery - Tibial (PHACTR1) ¢ h 44%" 56%
GTExv8 eQTL Catalogue r2 . J_u_.l.-.A

49 tissues 66 cell typest/tissues 58% 42%

g 15%! 85%
1 ‘
BBJ

26%] 74%
FG ———‘-‘

1
1" “/ol 89%

PIP

~logio(P)

UKBB -

PIP

~logio(P

' Predominantly Europeans FG

_ o 45%| 55%
(ndonors =5714) * 12700000 13100000 UKBB
PHACTR1 . 0.01 0.05 0.50
Chromosome 6 MAF of coding variants
C BBJ 1 2 34zdeG 1 2 3 425
1,765 405 116E 1,071 266 ! 52
3,558 independent 95% CS in 2,406 regions of 79 traits 2,348 independent 95% CS in 1,517 regions of 67 traits
1 2-5 6-10 11-20 21-50 >50 1 2-5 6-10 11-20 21-50 >50

4700 7 S £ 586 668 579 343 393 440 263

2,979 CS of 79 traits fine-mapped to <50 variants 2,085 CS of 67 traits fine-mapped to <50 variants

>90% 50-90% 10-50% 1-10% 1% >90%  50-90% 10-50% 1-10% <1%
A7 T 1,407 1,103 161 337 (IR - S 730 157
— 2,294 CS of 79 traits have a variant with PIP >10%  — — 1,461 CS of 63 traits have a variant with PIP >10% —
>90%50-90% 10-50% >909850-90% 10-50%
_— 6,328 variant-trait pairs have PIP >10% 4,348 variant-trait pairs have PIP >10% _—
€ ukBB 1 2 3 4 =5 f Golocalization >90% 50-90% 10-50%  1-10%

27,276 independent 95% CS in 12,859 regions of 119 traits ~——— 27,238 genes have an eQTL variant with PIP >10% in =1 tissue(s) ————
1 2-5 6-10 11-20 21-50 >50 >90% 50-90% 10-50%

22,356 CS of 119 traits fine-mapped to <50 variants 435,173 variants have PIP >10% in =1 ti

>90%  50-90% 10-50% 1-10% <1% >90% 50-90% 10-50%
— 16,793 CS of 117 traits have a variant with PIP >10% — —— 3,937 gene-trait pairs have an eQTL variant with coloc PIP >10% in =1 tissue(s) ——
>90%50-90% 10-50% >90% 50-90% 10-50%
————— 45,965 variant-trait pairs have PIP >10% 4,957 variant-trait-gene triples have coloc PIP >10% in =1 tissue(s)

Fig. 1 | Expanded atlas of putative causal variants across three populations. a. Overview of the studied cohorts
and cis-eQTL datasets. As an illustrative example, the 6p24.1 locus was shown for coronary artery disease (CAD)
association in BBJ, FinnGen, and UKBB with cis-eQTL association of PHACTR1 in tibial artery from GTEx. b. Number
of traits shared across the cohorts. c—e. For each cohort, number of independent 95% CS per region, number of fine-
mapped variants per 95% CS, number of 95% CS binned by the best PIP variant in each CS, and number of fine-
mapped variants binned by PIP. All numbers are counted against unique trait pairs. f. (Top two rows) number of genes
or variants binned by the best PIPs.cqrL across tissues. (Bottom two rows) number of gene-trait pairs or variant-trait-
gene triples binned by the best PIPcqioc across tissues. g. MAF distribution of cololocalized variants (the best PIPcoioc >
0.1) in each biobank. h. MAF distribution of coding variants (the best PIP > 0.1) in each biobank. Labels represent
proportions of variants with MAF > 5% and < 5% in each biobank.
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High-PIP variants are largely non-overlapping across populations

We set out to investigate what proportion of variants with PIP > 0.9 in one population are
associated or fine-mapped in other populations. Fine-mapping methods employ a model in which
there are a small number of causal variants driving the association signal at the locus, all of which
are measured without error, and there are no uncorrected confounding or non-linear effects.
When the model is perfectly specified and inference is perfectly accurate, we would expect, for
example, 90% of variants with PIP = 0.9 to be truly causal; however, this will not always be the
case. We systematically classified variants based on several hierarchical criteria (Fig. 2a;
Methods). First, what proportion of high-PIP (PIP > 0.9) variants in one population (the “discovery
population”) reach genome-wide significance (Pewas < 5.0 x 107®) in either of the other two
(“secondary”) populations, permitting a well-powered comparison of fine-mapping results at the
same locus. Second, of these variants where association is strongly replicated, what proportion
have replicated fine-mapping, defined by the same variant having PIP > 0.1 in the secondary
population (that is, the variant is also fine-mapped in the second population, though at a lower
threshold of confidence). For this analysis, we utilized only the 26 traits analyzed in all three
cohorts.

Out of 646 unique variant-trait pairs with PIP > 0.9 in at least one of the three populations, we
found that 45% (291 / 646) achieved genome-wide significance (Pswas < 5.0 x 107%) in at least
one of the other two populations (Fig. 2b). Of these, we found that 55% (160 / 291) had replicating
fine-mapping (PIP > 0.1) in at least one of the other two populations, while the other 45% (131 /
291) did not (PIP = 0.1). We took the proportion of fine-mapping replication (= # replication / [#
replication + # non-replication] among the variants reaching Pewas < 5.0 x 107®) and defined it as
the cross-biobank fine-mapping replication rate. This proportion was relatively consistent across
all the pairs of populations, ranging from 38% to 57% (Fig. 2b). The cross-biobank fine-mapping
replication rate was relatively insensitive to the specific threshold, increasing only slightly when
considering a fine-mapping result to be replicated if it had PIP > 0.05 or was in a 95% credible
set, as opposed to PIP > 0.1 (Extended Data Fig. 2a,b). While mean PIP in a secondary
population was positively correlated with PIP in the discovery population, the underlying
distribution of PIP in the secondary populations were bimodal, particularly for variants with PIP >
0.9 in the discovery population (Extended Data Fig. 2c—e).

To further interpret these observations, we analyzed simulated GWAS data described in our
companion paper®, and we characterized specific examples. In our simulations, our fine-mapping
algorithm was mostly well calibrated, with 96% of variants with PIP>0.9 truly causal. In these
simulations, however, the variants that were simulated to be causal and that reached genome-
wide significance also had a bimodal distribution of PIP, with 24% reaching PIP>0.9, due to
incomplete power for fine-mapping. Thus, while we have the highest confidence in the fine-
mapping results that replicate across populations, we do not interpret a cross-biobank replication
rate of 55% as strong evidence for or against fine-mapping miscalibration. In examining specific
examples in real data, we found that lack of replication was sometimes due to differences in LD
structure and effect sizes across populations that lower power in the secondary population, or
likely non-causal variants that nonetheless achieve high PIP in the discovery population, as
expected given the PIP threshold of 0.9. We illustrated a few examples in Extended Data Fig. 3.

Of the remaining 55% (355 / 646) of variant-trait pairs that did not reach genome-wide significance
(Powas < 5.0 x 107®) in either of the secondary populations, 42% (150 / 355) had an association
that replicated at the more permissive threshold of Pewas < 0.01 (Fig. 2c), suggesting the
association is present but at a level insufficient to perform fine-mapping reliably. An additional
14% (51 / 352) had high power to detect association (power > 0.9 for achieving Pewas < 0.01;
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Methods) in at least one of the secondary populations, assuming the same causal effect size
from the discovery population and a standard linear regression, but were not associated at Pewas
< 0.01 in either population. These variants may include causal variants with heterogeneous effect
sizes across populations or false positive variants that nonetheless achieved high PIP in the
discovery population (which is not unexpected given the number of traits studied and the PIP
threshold of 0.9). A few causal variants would also be expected not to reach this threshold due
only to random sampling, even with equal effect sizes and estimated power of 0.9. We note that
three variant-trait pairs had replicated fine-mapping (PIP > 0.1) but not genome-wide significance
in either of the secondary populations (Note that these are in genome-wide significant loci). Lastly,
42% (151 / 355) had low power or were missing from the GWAS summary statistics due mostly
to differences in allele frequencies across populations (Fig. 2c; Supplementary Note). This
proportion was different for different pairs of populations, ranging from 19% (UKBB and FinnGen)
to 62% (BBJ and UKBB). Importantly, our results indicate that these missing causal variants are
undiscoverable through standard GWAS fine-mapping in other populations, re-emphasizing the
desperate need for data generation in diverse populations.

For the remainder of this manuscript, we mainly focus on several subsets of PIP > 0.9 variants
with highest confidence: fine-mapped variants replicated in multiple populations, coding variants
with PIP > 0.9, and genes supported by multiple fine-mapped variants.

a
High-PIP (> 0.9) variant-trait pairs in a discovery population (BBJ, FG, or UKBB)
GW significant? No
(P<5x10%)
v v No No
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Fig. 2 | Overview of replication status for high-PIP fine-mapped variants across populations. A. Schematic
flowchart of our classification criteria. Starting from the high-PIP (> 0.9) variant-trait pairs in a discovery population, we
categorized each pair into the six categories: fine-mapping replication, fine-mapping non-replication, replicated
association, non-replicated association, low power, and missing variants (Methods). b,c. Barplots showing a fraction
of the high-PIP (> 0.9) variant-trait pairs identified in each discovery population, stratified by the above replication
categories tested in the other two secondary populations. Labels in the bar represent a proportion for each category,
while labels on the right represent a proportion of the genome-wide significant and non-genome-wide significant variant-
trait pairs. b. Breakdowns for the genome-wide significant variant-trait pairs (Pewas < 5.0 x 107%) in a secondary
population. c¢. Breakdowns for the non genome-wide significant variant-trait pairs (Powas = 5.0 x 1078) in a secondary
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population. Note that there were three variant-trait pairs in total that had replicated fine-mapping (PIP > 0.1) but not
genome-wide significance in either of the secondary populations (dark blue).

Common putative causal variants implicate shared biological mechanisms across
populations

Restricting to 91 traits available in two or more populations, we identified 285 high-confidence
variant-trait pairs (204 unique variants including 56 variants that are only polymorphic in
Europeans) that achieve replicated fine-mapping across multiple populations analyzed (PIP > 0.9
in at least one population and PIP > 0.1 in at least one of the others; Supplementary Table 8,9).
While estimating correlation of effect sizes across multiple traits and populations is challenging,
we observed 100% directional consistency for posterior effect sizes between populations (P for
sign test = 2.7 x 107'%). These replicated fine-mapped variants represent a set of common
putative causal variants (Extended Data Fig. 4a,b) with the highest confidence in our dataset,
providing excellent candidates for functional characterization and therapeutic targets.

We observed a significant enrichment of coding variants in high-confidence variant-trait pairs: of
the 285 high-confidence variant-trait pairs, 94 pairs (60 unique variants) are coding variants
(Supplementary Table 8), whereas 4 pairs would be expected by chance (Fisher’'s exact test P
<0.05). These variants include well-known pLoF and missense variants such as rs429358 (APOE
e4-tagging missense variant) for Alzheimer’s disease*’; rs2066847 (NOD2: p.Leu980ProfsTer2)
for Crohn’s disease®®®'; rs855791 (TMPRSS6: p.Val736Ala) for blood hemoglobin levels and
erythrocyte volume®?; rs2642438 (MARC1: p.Ala165Thr) for alkaline phosphatase®*®*; and
rs4149056 (SLCO1B1: p.Val174Ala) for total bilirubin®. Notably, we found that rs9379084
(RREBT: p.Asp1171Asn) showed PIP > 0.9 for height in every population; this variant was
previously implicated for type 2 diabetes® but not for height. We also found that a common
synonymous variant rs55714927 on ASGR1 (canonical transcript ENST00000269299.3) was
fine-mapped for alkaline phosphatase in both BBJ and UKBB (PIP = 1.0 for both; Extended Data
Fig. 5a). The same variant was significantly associated with other traits in our dataset, such as
albumin, cholesterol levels, and sex hormone binding globulin (Extended Data Fig. 5b). ASGR1
was previously reported for having a rare non-coding 12-base-pair deletion within intron 4 (del12;
€.284-36_283+33delCTGGGGCTGGGG, NM_001671.4; MAF = 0.41% in ~398,000 Icelanders),
which was associated with a reduced risk of coronary artery disease (CAD), lowering LDL
cholesterol, and increasing alkaline phosphatase and vitamin Bz levels®®. However, the reported
del12-tagging variant rs186021206 is independent from the synonymous variant rs55714927 (r?
= 0.001 in Europeans) and is monomorphic in East Asians, implying that the del12 variant does
not contribute to the identified rs55714927 association here. Instead, we observed rs55714927
has a significant splicing QTL effect in GTEx liver*” (P = 2.4 x 107*°) for the same isoform as del12
(Extended Data Fig. 5¢,d).

We also characterized 191 non-coding variant-trait pairs (144 unique variants) with replicated
fine-mapping as described above (Supplementary Table 9). These variants are primarily located
within CRE (48%) followed by promoter (16%) and 3' UTR (8%) regions, and are enriched for
predicted cis-regulatory expression modifier score®’, suggesting that most of these variants act
through transcriptional or by post-transcriptional regulation (Extended Data Fig. 4b—d). In total,
we identified 48 out of 144 putative causal non-coding variants that co-localized with cis-eQTL
associations (PIPcic > 0.1 in at least one tissue; Supplementary Table 9), including well-known
variants, e.g., rs2070895 (intronic variant of LIPC) for HDL cholesterol; and rs78378222 (3° UTR
variant of TP53) for skin cancer; as well as under-characterized variants, e.g., rs1497406
(intergenic variant, ~22 kb upstream of EPHAZ2) for y-glutamyl transferase; and rs34778241
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(intronic variant of EIF4E3) for loss of Y chromosome (Extended Data Fig. 6). Notably, we
identified a well-known intronic variant rs9349379 in PHACTR1 that was fine-mapped for CAD in
every population (Fig. 1b; PIP = 1.0; MAF = 0.35, 0.45, and 0.41 for BBJ, FinnGen, and UKBB,
respectively). This intronic variant also co-localized with a fine-mapped cis-eQTL association of
PHACTR1 in GTEXx tibial artery*” (PIPgi0c = 1.0). We note that, although we identified rs9349379
as a putative causal non-coding variant for CAD with high confidence, it was previously
demonstrated that rs9349379 also regulates expression of EDN1 (located a 600 kb upstream of
PHACTR1) in CRISPR-edited endothelial cells®®; and thus the causal gene(s) for CAD at this
locus remains unresolved®®°.

The 144 putative causal non-coding variants also included seven intergenic variants located in
gene deserts; i.e., that are more than 250 kb away from the closest gene®® (Supplementary
Table 10). For example, rs77541621 and rs183373024 (349kb and 322kb upstream of POU5F 1B,
respectively) were fine-mapped for prostate cancer (PIP = 1.0 in FinnGen and UKBB), and are
located within the 8924 locus, a well-known gene desert associated with many complex
diseases®'®? (Extended Data Fig. 7a). These variants are one of the 12 independent variants for
prostate cancer that were previously identified at the 8924 locus, but the exact functional
mechanism of each variant is still under active investigation®®. Other examples include rs1434282
(284 kb downstream of PTPRC) for mean corpuscular volume, rs116376456 (269 kb downstream
of IRS1) for height, and rs35009121 (1.2 Mb downstream of GATAS3) for serum calcium levels
(Extended Data Fig. 7b—d). Although these loci are also known as gene deserts, none of the
fine-mapped variants are well-characterized in the current literature, nor do they overlap with
enhancer-gene mappings predicted by the activity-by-contact (ABC) model®.

We also found nine examples where a variant was fine-mapped in every population even though
it was not significantly associated in every population. Five of these were significant at a more
permissive threshold of P < 1.0 x 10~ but in other cases the marginal effect sizes were
substantially lower, due to LD with another causal variant(s). For example, rs244711 (4.7 kb
upstream of FGFRA4) is consistently fine-mapped for height but not significantly associated in BBJ
(marginal 8 = 9.0 x 1073, P = 4.1 x 107*; Extended Data Fig. 8a—d). We found that rs244711 is
partially correlated with a nearby fine-mapped missense variant rs1966265 (FGFR4: p.Val10lle)
in every population (* = 0.14, 0.08, and 0.13 in BBJ, FinnGen, and UKBB, respectively) but the
correlation is only negative in BBJ (r = —0.37). The causal effect of rs244711 is thus partially
cancelled out by the tagged effect of rs1966265 in BBJ, where the correlation between the two
variants is negative, but not in UKBB and FinnGen, where the correlation is positive, leading to a
non-significant association in BBJ but significant associations in UKBB and FinnGen. Another
example is rs1801706 (3° UTR variant of CETP), which is consistently fine-mapped for HDL
cholesterol but not significantly associated in BBJ (marginal 8 = 6.0 x 107; P = 0.43; Extended
Data Fig. 8e—h). This is owing to partial correlation with Japanese-enriched splice donor and
missense variants rs5742907 (c.1321+1G>A) and rs2303790 (p.Asp459Gly). These two variants
showed large effect sizes (marginal 8 = 0.76 and 0.39; P = 4.9 x 107'? and 5.5 x 1072%;
respectively) and are negatively correlated with rs1801706 in BBJ (r = —-0.03 and -0.06,
respectively; this corresponds to —16.6 and —56.3 decrease in marginal x° statistics of rs1801706
by partial tagging). These examples illustrate that, when a region contains multiple independent
associations, differences in LD between two sites can create differences in the marginal effect
size and observed association in univariate analyses between populations.
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Identification of population-enriched putative causal variants

Given that a substantial number of the variants with high PIP (> 0.9) in one population are
rare/absent (and therefore undiscoverable) in the other populations (Fig. 2¢), we investigated
allele frequency (AF)-enriched variants from the two bottlenecked populations included in our
study, Finland®®®® and Japan®”®. To quantify AF enrichment (AFE) in the Finnish and Japanese
populations, we used the gnomAD®® v2 and the GEM-J WGS™ to compute a ratio of AF in
Japanese vs. non-Japanese-Korean East Asians (NJKEA) for BBJ and in Finnish vs. non-Finnish-
Swedish-Estonian Europeans (NFSEE) for FinnGen (Methods).

Past studies have noted that variants stochastically boosted through a bottleneck are enriched
for functional categories®*=*>"'="*, Consistent with these previous studies, we found that there
were significantly more variants with AFE > 10 than with AFE < 1/10 in both FinnGen and BBJ,
and that variants with AFE > 10 were enriched for coding variants (2.2- and 4.8-fold enrichment
over variants with AFE < 10; Methods). Of 140,416 and 91,564 coding variants tested in FinnGen
and BBJ GWAS, 29,656 (21%) and 14,802 (16%) showed AFE > 10 in the Finnish or Japanese
population, respectively (Fig. 3a,b). Furthermore, high-PIP (> 0.9) coding variants were
significantly more likely to have high AFE than low-PIP (< 0.01) coding variants (Fig. 3c,d; Fisher’'s
exact test P < 0.05; Methods); and showed substantially younger estimated allele age based on
GEVA™ (Fig. 3e,f). These observations are consistent with recent bottleneck events and negative
selection on the putative causal variants studied here, because deleterious variants boosted in
frequency through these bottlenecks have had insufficient time to be brought back down in
frequency by selection"®.

Notably, we identified seven pLoF variants and 40 missense high-PIP (> 0.9) variants with
extreme AF enrichment (> 10-fold) in BBJ or FinnGen (Table 1). These variants are more likely
to be deleterious and impactful given their extreme enrichment. Indeed, the list includes several
known pathogenic variants or genes in related autosomal recessive disorders. For example,
rs75326924, a Japanese-enriched missense variant (p.Pro90Ser) on CD36 is a known
pathogenic variant for platelet glycoprotein IV (CD36) deficiency (PIP = 1.0 for platelet count; MAF
= 0.047 in GEM-J WGS), contributing to high prevalence of CD36 deficiency in Japanese (2—
3%)’"; and rs386833873, a Finnish-enriched frameshift variant (p.Leu41AspfsTer50) on NPHS1
is a well-known causal variant for the congenital nephrotic syndrome of the Finnish type (PIP =
1.0 for nephrotic syndrome; MAF = 0.011 in gnomAD Finnish)’®. Interestingly, we found two novel
population-enriched deleterious variants on PLOD2, fine-mapped for height: i) a Japanese-
enriched missense variant rs148051196 (p.GIn553Arg; PIP = 1.0; MAF = 7.3 x 107 in GEM-J
WGS) and ii) a Finnish-specific stop-gained variant rs201501322 (p.Ser166Ter; PIP = 0.58; MAF
= 1.9 x 107 in gnomAD FIN). PLOD2 is a known recessive gene for Bruck syndrome 2
(osteogenesis imperfecta with congenital joint contractures; OMIM: 609220)°. We identified
additional population-enriched variants for height in 27 genes, including known recessive genes
such as ADAMTS17 (causal gene for Weill-Marchesani syndrome 4; OMIM: 613195) and IHH
(brachydactyly type A1; OMIM: 112500). Furthermore, we identified fine-mapped variants on
genes that were not previously implicated, such as rs199935580 (THBS3: p.Arg520Trp; MAF =
1.0 x 107 in gnomAD FIN) fine-mapped for carpal tunnel syndrome (PIP = 1.0); rs191692991
(LUM: p.Arg310Cys; MAF = 5.5 x 10 in gnomAD FIN) fine-mapped for fibroblastic disorders
(PIP = 1.0); and rs200939713 (POF1B: p.Arg339Trp; MAF = 1.7 x 10~ in gnomAD FIN) fine-
mapped for varicose veins (PIP = 0.99). Detailed biological annotations of each gene are
summarized in the Supplementary Box.

On the other hand, the high-PIP non-coding variants were not significantly more likely to have
high AFE than low-PIP non-coding variants (Extended Data Fig. 9; Fisher’s exact test P > 0.05),


https://doi.org/10.1101/2021.09.03.21262975
http://creativecommons.org/licenses/by-nc/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2021.09.03.21262975; this version posted September 5, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC 4.0 International license .

partly because non-coding variants tend to be less deleterious and thus less likely to undergo
strong negative selection. However, we identified 23 population-enriched (> 10-fold) high-PIP (>
0.9) non-coding variants that are independent of population-enriched coding variants (r* < 0.1) in
each population (Supplementary Table 11). While we are not able to replicate these population-
enriched variants in other populations due to low AF, we identified several variants that might
have biological significance. For example, a Finnish-enriched rs748670681 in an intron of
TNRC18 (MAF = 0.042 in gnomAD FIN) is fine-mapped for inflammatory bowel disease (IBD) and
psoriasis (PIP = 1.0). Despite very significant association in FinnGen (P = 6.2 x 107°° for IBD),
this locus was not previously reported, and its biological function is not well-characterized.
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Fig. 3 | Population-enriched putative causal coding variants. a-d. Histograms showing a distribution of allele
frequency (AF) enrichment metric in (a) Finnish (n = 10,824) and (b) Japanese (n = 7,609) populations. A ratio of AF
was computed against NFSEE (n = 43,697) and NJKEA (n = 7,212) for coding variants analyzed in BBJ or FinnGen
GWAS that exist in gnomAD WES or GEM-J WGS. For a subset of variants that are fine-mapped in our analysis (see
Methods), we show AF enrichment distribution across maximum PIP bins computed in (¢) FinnGen or (d) BBJ. e-f.
Cumulative distribution of estimated allele age for coding variants, stratified by AF enrichment in (e) Finnish or (f)
Japanese. FIN: Finnish, JPN: Japanese, NFSEE: Non-Finnish-Swedish-Estonian European, NJKEA: Non-Japanese-
Korean East Asian.
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Table 1 | Population-enriched putative causal coding variants. Nonsynonymous coding variants (PIP > 0.9) with
AFE > 10 in the Japanese or Finnish populations are shown.

Variant rsid Gene Consequence AF (pop) AF (ref) AFE Best PIP Fine-mapped traits (PIP > 0.9)
BBJ

1:21890590:G:A rs199669988 ALPL Missense 0.015 0.00035 43.1 1 ALP

1:55505604:G:A rs564427867 PCSK9 Missense 0.012 NA Inf 1LDLC,TC
2:21242731:G:A rs13306206 APOB Missense 0.039 0.00049 795 1 LDLC, MI, TC
2:44051573.T:TA rs142037828 ABCG5 Splice region 0.051 0.00042 123.2 1 Cholelithiasis
2:120231070:C:G rs3731600 SCTR Missense 0.048 0.00069 69.2 0.99 T2D

2:219919943:.C:T rs200216644 IHH Missense 0.0036 0.00027 13.4 0.99 Height

3:145794588:T:C rs148051196 PLOD2 Missense 0.0073 0.00014 524 1 Height

4:6303731:G:A rs147834269 WFS1 Missense 0.053 0.0012 437 1T2D

6:158484904:G:C rs141160611 SYNJ2 Missense 0.032 0.0025 129 0.96 GGT

7:45954540:C:T rs17847676 IGFBP3 Missense 0.0061 6.90E-05 88.5 1 Height

7:80286003:C:T rs75326924 CD36 Missense 0.047 0.00083 56.9 1 Plt

8:118184855:A:T rs770224130 SLC30A8 Missense 0.0062 0.00014 44.7 0.97 T2D

9:107593923:C:G rs754040394 ABCA1 Missense 0.0019 NA Inf 1 HDLC, TC
11:64361219:G:A rs121907892 SLC22A12 Stop gained 0.021 0.00042 51.6 1 UA

11:116661394:G:C  rs201229911 APOA5 Missense 0.01 NA Inf 1 HDLC, TG
12:16510581:GAA:G rs779999476 MGST1 Frameshift 0.015 NA Inf 1 HDLC

12:109690842:.C:T  rs17848833 ACACB Missense 0.0032 NA Inf 1 HDLC, TG
16:57016150:G:A rs5742907  CETP Splice donor 0.0037 NA Inf 1 HDLC, TC
16:84872195.G:C rs965984074 CRISPLD2 Missense 0.00086 NA Inf 0.99 Height

17:7462468:G: T rs201860460 TNFSF13 Missense 0.0022 7.00E-05 31.1 1 AG, NAP
17:48545926:C:A rs201158957 CHAD Missense 0.0081 6.90E-05 116.1 1 Height

17:78358945.G:A rs112735431 RNF213 Missense 0.01 0.00049 212 1 CAD, MAP, PP, SBP
19:11241988:C:T rs13306505 LDLR Missense 0.0085 0.00021 41.1 1LDLC,TC
19:42855705:G:A rs200485103 MEGF8 Missense 0.0039 NA Inf 0.95 Glucose

19:46178043:G:T rs13306398 GIPR Missense 0.02 6.90E-05 286.9 1 BMI, BW
20:44507112:G:A rs139396693 ZSWIM3  Missense 0.015 0.00014 106.6 1 MCV

FG

1:21890632:G:A rs121918007 ALPL Missense 0.017  0.0011 157 0.94 Urolithiasis
1:155170392:G:A rs199935580 THBS3 Missense 0.001 1.10E-05 88.9 1 Carpal_Tunnel_Syndrome
1:192779303:G:T rs201233692 RGS2 Missense 0.0088 1.10E-05 761.5 0.96 Statin

4:120528397:C:T rs202226125 PDESA Missense 0.007 1.20E-05 612 1 Height

5:1272362:G:A rs770066110 TERT Stop gained 0.00052 NA Inf 1 IPF

5:1279485:T:C rs776981958 TERT Missense 0.0016 NA Inf 0.96 IPF

6:155450779:A:G rs148543891 TIAM2 Missense 0.031 6.90E-05 455.3 1 Height

9:35609378:C:T rs777777413 TESK1 Missense 0.0025 2.40E-05 101.4 1 Height

9:136501728:C:T rs77273740 DBH Missense 0.051 00023 21.7 1 Hypertension
10:13040400:A:G rs199848893 CCDC3 Missense 0.0021 NA Inf 1 Height

11:36248678:T:TG  rs767680853 LDLRAD3 Frameshift 0.0019 2.30E-05 82.3 1 Height

12:6882498:C:A rs149722682 LAG3 Missense 0.00061 NA Inf 1 AID, Hypothyroidism
12:91498031:G:A rs191692991 LUM Missense 0.0053 1.20E-05 450.7 1 Fibroblastic_Disorders, Height
14:100134609:G:A  rs201483470 HHIPL1 Missense 0.0093 0.00013 74.2 0.97 Height

15:28228553.C:T rs74653330 OCA2 Missense 0.048 0.0014 334 1 Malignant_Neoplasms, SkC
15:101569374:C:T  rs41531245 LRRK1 Missense 0.0076 0.00073 10.4 1 Fibroblastic_Disorders, Inguinal_Hernia
17:56436130:C:T rs199598395 RNF43 Missense 0.012 5.00E-05 239.7 1 Iron_Deficiency_Anaemia
17:60493445.C: T rs552441218 EFCAB3  Stop gained 0.001 6.90E-05 14.7 0.98 Depression_medications
19:36342510:CAG:C rs386833873 NPHS1 Frameshift 0.011 2.40E-05 473.3 1 Nephrotic_Syndrome
19:58421417:ACT:A rs774674736 ZNF417 Frameshift 0.0018 4.60E-05 39.8 0.93 Chronic_Tonsillitis

X:84563165:G:A rs200939713 POF1B Missense 0.0016 NA Inf 0.99 Varicose Veins
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Allelic series of putative causal variants across populations

Given that many fine-mapped variants are population-specific, we aggregated results across
populations to identify genes harboring fine-mapped coding variants for one or more traits.
Overall, we identified 1,492 unique putative causal pLoF/missense variants (best PIP > 0.1) that
mapped onto 1,113 genes (Supplementary Table 12). Of these genes, 240 have two or more
putative causal pLoF/missense variants located on the same gene, and 113 have variants
identified from multiple populations (Fig. 4a). The genes with the most putative causal
pLoF/missense variants include APOB (13 missense variants; the loss-of-function
observed/expected upper bound fraction [LOEUF]®® = 0.46), TFR2 (1 pLoF and 6 missense
variants; LOEUF = 0.77), and PIEZO1 (7 missense variants; LOEUF = 0.58); despite containing
many variants that impact human phenotypes, these genes are modestly constrained (Fig. 4b,
Extended Data Fig. 10a,b).

Next, we focused on allelic series in which multiple fine-mapped coding variants implicate the
same gene-trait pair (Fig. 4c). There were 2,452 gene-trait pairs with at least one fine-mapped
pLoF/missense variant (PIP > 0.1), of which 306 pairs (176 unique genes) had two or more
independent pLoF/missense variants (PIP > 0.1), forming an allelic series (Supplementary Table
13). We found 104 allelic series (69 unique genes) that included variants fine-mapped in multiple
populations, of which 41 allelic series (34 unique genes) included at most one variant per
population, making them discoverable only by aggregating data across populations. The cross-
population allelic series include e.g., ABCG2, a known pathogenic gene for gout, where we
identified two pLoF/missense variants (p.GIn126Ter and p.Phe489Leu) in BBJ, two missense
variants (p.Asp620Asn and p.Ala528Thr) in UKBB, and one missense variant (p.GIn141Lys) in
BBJ, FinnGen, and UKBB (Extended Data Fig. 10c).

We further investigated allelic series including both coding and non-coding variants, assuming
that non-coding causal variants proximal to deleterious coding variants (< 100 kb) might act
through regulation of the same gene®’. This facilitates understanding of unknown non-coding
functions and enables us to identify allelic series for an additional 263 gene-trait pairs (195 unique
genes) through coding/non-coding allelic series, of which 107 pairs (87 unique genes) included
variants fine-mapped across multiple populations (Supplementary Table 14). For example, we
identified coding/non-coding allelic series around EPX (eosinophil peroxidase) for eosinophil
count (Extended Data Fig. 10d), where we found European-specific missense variant
rs149610649 (EPX: p.Phe308Leu; MAF = 0.083 in gnomAD NFE) and Japanese-specific
intergenic variant rs536070968 (MAF = 0.011 in GEM-J WGS). The intergenic variant
rs536070968 is located 33 kb downstream of EPX and 11 kb upstream of LPO (lactoperoxidase),
an ortholog of EPX, illustrating the value of allelic series across multiple populations to assign a
potential causal gene from nearby genes.
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Discussion

In this study, we performed statistical fine-mapping in Biobank Japan and FinnGen, and
aggregated these results with our parallel fine-mapping of UK Biobank®, providing an extensive
list of candidate causal variants for 148 complex diseases and traits across diverse populations.
By integrating fine-mapped variants from deeply-phenotyped biobanks and eQTL studies, we
expanded both the depth and breadth of the resource to explore biological mechanisms of
complex traits at single-variant resolution, with replication across multiple populations and
colocalization with different tissues. We make these resources publicly available for the
community to further accelerate variant prioritization and characterization.

Examination of fine-mapping from three biobanks enabled the identification of 285 high-
confidence variant-trait pairs that are replicated across multiple populations. However, the
majority of high-PIP (> 0.9) variants are non-overlapping across populations. Many of the variants
with high PIP in one population but not in the other two populations were trivially explained by the
fact they are rare or monomorphic in the other two populations. The abundance of population-
enriched variants exemplifies the significant value of diverse populations in fine-mapping studies,
contributing to identification of population-specific discoveries and deeper allelic series of multiple
variants at the same locus across populations. We also classified observed inconsistencies into
those with potential heterogeneity in effect sizes (i.e., population-specific effects) and those with
replicated GWAS association but without replicated fine-mapping, further guiding interpretation of
these results.

Our study has several limitations that suggest directions for future work. First, the current fine-
mapping methods rely on modeling assumptions that are not all met in real-world fine-mapping
(e.g., no genotyping or imputation errors). While we have focused here on a high confidence
subset of results—high-PIP variants that replicate across biobanks, and fine-mapped coding
variants—we see further exploration of potential misspecification of fine-mapping models as an
important area for future work. Second, our sample sizes are still limited, especially for non-
European populations, emphasizing the desperate need for more diversity in human genetics.
Here, we were powered to fine-map variants with large or moderate effect sizes; more samples
will be required to fine-map causal variants with small effect sizes. Moreover, molecular data from
non-European samples are vastly limited, which fundamentally inhibits variant interpretation of
population-enriched variants. Third, systematic differences in study design, genotyping and
imputation across cohorts limited our ability to integrate data from the three biobanks. We see
method development for cross-population fine-mapping that takes into account this heterogeneity
as an important direction for future work.

We note that the populations studied here differ not only by ancestry, but along other dimensions,
e.g., sample recruitment (BBJ: hospital-based, UKBB: population-based, and FinnGen: mixed),
phenotyping (disease diagnosis, laboratory measurement, etc.), and environment. These other
sources of heterogeneity could contribute to the differences we observe across the three
biobanks. Despite these differences, we identify in this study a very substantial set of variants
extremely likely to be directly causal, supported by consistency across populations, a strong
enrichment of coding variants in high-PIP variants, and by the observation of 176 genes in which
fine-mapping indicated multiple, independent coding variants associated with the same trait.

To our knowledge, this study provides the largest and the most comprehensive comparison of
fine-mapping results from multiple large-scale biobanks of diverse ancestries. Although these
data still remain limited to identify common but small-effect causal variants shared across
populations, we have demonstrated that the use of diverse populations facilitates the identification
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of high-confidence causal variants shared across populations, population-enriched fine-mapped
variants, and allelic series of high-impact variants across populations. With fast-evolving biobanks
and high-throughput assays under development, our atlas of candidate causal variants provide a
valuable resource for future functional characterization efforts.

Data availability

The fine-mapping results produced by this study will be publicly available at
https://www.finucanelab.org/data. The BBJ summary statistics are available at the National
Bioscience Database Center (NBDC) Human Database (accession code: hum0197) and at the
GWAS catalog®' (https://www.ebi.ac.uk/gwas/home). They are also browseable at our PheWeb®?
website (https://pheweb.jp/). The BBJ genotype data is accessible on request at the Japanese
Genotype-phenotype Archive (http://trace.ddbj.nig.ac.jp/jga/index_e.html) with accession code
JGADO00000000123 and JGAS00000000114. The UKBB summary statistics will be available at
the ENCODE data portal (https://www.encodeproject.org/) and at the GWAS catalog®
(https://www.ebi.ac.uk/gwas/home). The UKBB individual-level data is accessible on request
through the UK Biobank Access Management System (https://www.ukbiobank.ac.uk/). The UKBB
analysis in this study was conducted via application number 31063. The FinnGen release 6 was
used in this study and is still subject to embargo according to the FinnGen consortium agreement;
thus the FinnGen summary statistics are available on request
(https://lwww.finngen.fi/en/access_results) and are being prepared for public release by Q4 2021.
The GTEx v8 summary  statistics is available at the GTEx  Portal
(https://gtexportal.org/home/datasets). The GTEXx individual-level data is accessible on request
through the dbGAP application (accession code: phs000424.v8.p2;
https://gtexportal.org/home/protectedDataAccess). The eQTL catalogue results are available at
https://www.ebi.ac.uk/eqtl/Data_access/.

Code availability

Our fine-mapping pipeline is available at https://github.com/mkanai/finemapping-pipeline, and the
code to perform all analyses and generate the figures is provided at
https://github.com/mkanai/finemapping-insights. Custom fine-mapping pipelines for FinnGen is
available at https://github.com/FINNGEN/finemapping-pipeline and for eQTL catalogue is
available at https://qgithub.com/eQTL-Catalogue/susie-workflow; both of which has implemented
functionally-equivalent pipelines with a dataset-specific custom code.
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Methods

Study cohorts

BioBank Japan (BBJ)

The BioBank Japan (BBJ) is a hospital-based cohort that collected DNA, serum, and clinical
information of approximately 200,000 individuals from 66 hospitals in Japan between 2003 and
2007. All the study participants had been diagnosed with one or more of 47 target diseases by
physicians at the cooperating hospitals. Written informed consent was obtained from all the
participants, as approved by the ethics committees of the RIKEN Center for Integrative Medical
Sciences, and the Institute of Medical Sciences, the University of Tokyo. Details of study design,
sample collection, and baseline clinical information were described elsewhere*®.
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We genotyped samples using i) the Illumina HumanOmniExpressExome BeadChip or ii) a
combination of the lllumina HumanOmniExpress and the HumanExome BeadChip. We applied
standard quality-control criteria for samples and variants as described elsewhere® (summarized
in Supplementary Table 1). We analyzed 178,726 individuals of Japanese ancestry, chosen
based on sample selection criteria using principal component analysis (PCA)°. The genotypes
were prephased using Eagle®® and imputed using Minimac3® with a reference panel that consists
of the 1000 Genomes Project Phase 3 (version 5) samples (n = 2,504)®” and whole-genome
sequencing (WGS) data of Japanese individuals (n = 1,037)%. We excluded variants with low
imputation quality (Rsq < 0.7) and used 13,531,752 variants in this study. All the variants were
processed on the human genome assembly GRCh37.

We defined phenotypes based on clinical information retrieved from medical records and
interviews using a standardized questionnaire. Detailed phenotype definitions are described
elsewhere® and summarized in Supplementary Table 2.

FinnGen

FinnGen is a public-private partnership project combining genotype data from Finnish biobanks
and digital health records from Finnish health registries®. This study used the Data Freeze 6 which
contains 271,341 individuals of Finnish ancestry. Patients and control subjects in FinnGen
provided informed consent as described in Supplementary Note. Detailed characteristics of the
cohort are described in our accompanying paper®.

Samples were primarily genotyped using the FinnGen ThermoFisher Axiom custom array. The
samples from legacy cohorts have previously been genotyped using various generations of
lllumina GWAS arrays. The genotypes were prephased using Eagle 2.3.5 and imputed using
Beagle 4.1 with a reference panel of Finnish WGS data, the SISu v3 reference panel (n = 3,775).
We applied post-imputation quality control as described in our accompanying paper®, excluding
variants with INFO < 0.6 and MAF < 0.001, and used 16,311,902 variants in our study. All the
variants were originally processed on the human genome assembly GRCh38, and lifted over to
GRCh37 for comparison with other cohorts used in this study.

Clinical endpoints were defined based on medical records from multiple national health registries.
Detailed phenotype definitions are described in our accompanying paper® and summarized in
Supplementary Table 2.

UK Biobank (UKBB)

The UK Biobank (UKBB) is a population-based cohort that recruited approximately 500,000
individuals in the United Kingdom between 2006 and 2010. This study analyzed a set of 366,194
unrelated “white British” individuals defined previously in the Neale Lab GWAS
(https://github.com/Nealelab/UK Biobank GWAS). The individuals of British ancestry were
determined by the PCA-based sample selection criteria
(https://github.com/Nealelab/UK Biobank GWAS/blob/master/ukb31063 eur_selection.R), and
were further filtered to self-reported “white British”, “Irish”, or “white”. The UK Biobank analysis
was conducted via application number 31063. The cohort characteristics were extensively

described elsewhere’.

Genotyping was performed using either i) the Applied Biosystems UK BiLEVE Axiom Array or ii)
UKB Axiom Array. The genotypes were imputed using IMPUTE4 with a combination of reference
panels: i) the Haplotype Reference Consortium and ii) UK10K and the 1000 Genomes Phase 3.
We retained 13,791,467 variants with INFO > 0.8, MAF > 0.001, and Hardy-Weinberg equilibrium
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P value > 1.0 x 107'°, with exception for the VEP-annotated coding variants where we allowed
MAF > 1.0 x 107°. The detailed quality-control criteria were described in the Neale Lab GWAS
(https://github.com/Nealelab/UK Biobank GWAS). All the variants were processed on the human
genome assembly GRCh37.

We derived phenotypes based on multiple data sources available in UKBB, e.g., biomarkers, body
measures, and disease case-control status mapped on phecodes®®
(https://phewascatalog.org/phecodes). Detailed phenotype definitions are described in our
accompanying paper® and summarized in Supplementary Table 2.

Genome-wide association analysis

We performed GWAS using a generalized linear mixed model as implemented in SAIGE®* (for
binary traits) or BOLT-LMM?*"% (for quantitative traits) with age, sex, top principal components,
and other study-specific covariates as detailed in Supplementary Table 1. We excluded sex-
adjusting covariates from sex-specific or stratified traits (i.e., age at menarche/menopause, breast
cancer, testosterone levels, and uterine fibroid; Supplementary Table 2). For mosaic loss of
chromosome Y, we used summary statistics publicly available from BBJ* and UKBB?'.

Statistical fine-mapping

We conducted statistical fine-mapping using FINEMAP''® and SuSIiE' with GWAS summary
statistics and in-sample dosage LD. We defined fine-mapping regions based on a 3 Mb window
around each lead variant and merged regions if they overlapped. We excluded the major
histocompatibility complex (MHC) region (chr 6: 25-36 Mb) from analysis due to extensive LD
structure in the region. Allowing up to 10 causal variants per region, we derived up to 10
independent 95% credible sets (CS) and posterior inclusion probabilities (PIP) of each variant
using the default uniform prior probability of causality. The 95% CS reported by FINEMAP and
SuSiE each have 95% posterior probability of containing a causal variant; in a locus with multiple
causal variants identified, there will be multiple CS. This definition of CS differs from the definition
given in Hormozdiari et al.%?, in which each CS has 95% posterior probability of containing all
causal variants in a locus. We computed in-sample dosage LD using LDstore 2 (ref. %).

We combined fine-mapping results from the two methods by taking an average of PIP, excluding
variants with a substantial PIP difference (> 5%) to further improve fine-mapping accuracy. We
justify our approach based on functional enrichment analysis that demonstrates that the variants
with inconsistent PIP across the methods show little functional enrichment (as described in our
accompanying paper®). If either fine-mapping method failed (e.g., due to conversion failure or
available memory restrictions), we used successful results from the other method. If both of the
methods failed, we excluded these regions from analysis.

To define independent CS merged across populations, we merged SuSiE 95% CS from each
population using hierarchical clustering based on the weighted Jaccard similarity index. Briefly,
we computed the PIP-weighted Jaccard similarity index between all the pairs of CS for the same
trait identified from each cohort. For a pair of CS, we computed the similarity index as
Y min(x,y)/Y; max(x;,y;) where xiand y; are PIP values (or zero if missing) in each CS
for the same variant i. We then used 1 — the similarity index as a distance to conduct hierarchical
clustering of the CS using the complete linkage method. We cut a dendrogram tree at a height of
0.9 so that any two credible sets with PIP-weighted Jaccard similarity above 0.1 are merged into
a single credible set.
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Colocalization

We conducted colocalization of fine-mapped variants from complex trait and cis-eQTL
associations. Based on fine-mapping results from complex trait and cis-eQTL, we computed a
posterior inclusion probability of colocalization for a variant as a product of PIP for GWAS and for
cis-eQTL (PIPgoioc = PIPgwas % PlPgs.cari)?. We assembled fine-mapping results of cis-eQTL
associations from GTEx*’ v8 (detailed in our accompanying paper®) and eQTL catalogue®®
release 4, both of which used the same or the functionally-equivalent fine-mapping pipelines to
our GWAS fine-mapping (see Code availability). All the variants were originally processed on
the human genome assembly GRCh38 and lifted over to GRCh37 to colocalize with GWAS
results in this study.

Functional enrichment

We performed functional enrichment analysis for fine-mapped variants from each population. We
first defined seven main distinct functional categories: pLoF (predicted loss-of-function),
missense, synonymous, 5 UTR, 3’ UTR, promoter, cis-regulatory element (CRE), and non-genic.
We assign fine-mapped variants to these categories in the sequential order so that each category
is non-overlapping from each other. Variant-based categories (pLoF, missense, synonymous, and
573" UTR variants) are defined based on the most severe consequence for a variant on a
canonical transcript, predicted by the Ensembl Variant Effect Predictor (VEP)* v85 (using
GRCh37 and GENCODE v19). The pLoF category represents stop-gained, splice site disrupting,
and frameshift variants predicted as high-confidence by LOFTEE®. The missense category
includes missense-like variants such as low-confidence LoF. Region-based categories (promoter
and CRE) are defined using region-based annotations. The promoter annotation is retrieved from
the baseline annotations in Finucane & Bulik-Sullivan et al.*°, originally from the UCSC Genome
Browser® and post-processed by Gusev et al’®. The CRE annotation is defined as intersection of
DNase | hypersensitive sites (DHS) and H3K27ac regions from the Roadmap Epigenomics
Project®”, ChIP-Atlas®®, Meuleman et al.®’, Domcke, et al.”®®, Corces et al.’’, Buenrostro, et al.”%,
and Calderon, et al.”®, reprocessed in our accompanying paper®. Lastly, the non-genic category
represents any variants that do not belong to the other six categories. In addition, we annotated
each variant using 35 binary annotations from the baselineLD v2.2 model*.

For each variant, we computed the maximum PIP across traits in BBJ, FinnGen, UKBB, and all
cohorts combined. We estimated functional enrichment for each category as a relative risk (i.e.,
a ratio of proportion of variants) between being in an annotation and fine-mapped (PIP < 0.01 or
PIP > 0.9). Thatis, a relative risk = (proportion of variants with PIP > 0.9 that are in the annotation)
/ (proportion of variants with PIP < 0.01 that are in the annotation). The 95% confidence intervals
are calculated using bootstrapping with 5,000 replicates.

Fine-mapping replication analysis

To investigate fine-mapping replication, we systematically evaluated the consistency of fine-
mapping results across populations for the 26 traits analyzed in all three populations
(Supplementary Table 2), using all six pairs of discovery population and distinct secondary
population. Starting from high-PIP (> 0.9) variant-trait pairs in the discovery population, we first
split them by whether the association is genome-wide significant (P < 5.0 x 107®) in the secondary
population, and then categorized each pair into the following categories, based on criteria
evaluated in the secondary population:

For genome-wide significant (P < 5.0 x 107®) variant-trait pairs,
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1. Pairs for which the fine-mapping result is replicated (PIP > 0.1).
2. Pairs for which the fine-mapping is not replicated (PIP < 0.1)
For non-genome-wide significant (P = 5.0 x 10®) variant-trait pairs,

3. Pairs for which the association is replicated (P < 0.01).

4. Pairs for which the association is not replicated (P = 0.01) but the variant is included in the
study and has decent statistical power (estimated power > 0.9 for achieving P =0.01). We
estimated statistical power via the non-centrality parameter (NCP) of the chi-square
distribution'®. We defined NCP = 2f(1 — H)nB? where fis MAF, n is the effective sample
size, and B is a posterior effect size estimated by SuSiE in the discovery population. Here,
we assumed the variant has the same causal effect size in a second population. For
quantitative traits, effective sample size equals the number of samples. For binary traits,
effective sample size is calculated via n¢(1 — ¢) where ¢ is the number of cases divided
by the number of total samples. We note that this power estimation does not account for
linear mixed models adopted by BOLT-LMM or SAIGE.

5. Whether the variant is analyzed in the study (i.e., exists in summary statistics). The
missingness is mainly due to low frequency or monomorphism (non-existence) in the
secondary population, which is described in the Supplementary Note.

The schematic flowchart of this process is illustrated in Fig. 2a. We note that there could be a
case where non-genome-wide significant variant-trait pairs (P = 5.0 x 107°) in a secondary
population still had fine-mapping replication (PIP > 0.1).

High-confidence and low-confidence fine-mapping results

We annotated high-confidence and low-confidence high-PIP (> 0.9) variant-trait pairs for the 91
traits analyzed in two or more populations (Supplementary Table 3). High-confidence pairs are
defined as having PIP > 0.9 in at least one population and PIP > 0.1 in all the other populations
analyzed in this study. Low confidence pairs are defined as having PIP > 0.9 in one population
and P < 5.0 x 10 but PIP < 0.1 and not in 95% CS in one of the other populations. Those
categorized otherwise (e.g., population-specific variants) were not assigned either annotation.

Allele frequency enrichment

To identify population-enriched variants, we defined allele frequency (AF) enrichment metrics as
a ratio of pseudo AF between ancestral and founder populations. To do this, we retrieved allele
counts from gnomAD® v2 and GEM-J WGS. To account for finite sample sizes, we computed
pseudo AF by constantly adding one to allele count (AC), i.e., pseudo AF = (AC + 1) / allele
number. Due to the disparity in available sample sizes between gnomAD v2 exomes and
genomes, we computed enrichment metrics separately for coding and non-coding variants using
exomes and genomes, respectively. Coding and non-coding variants are defined as having VEP-
predicted coding consequences or not (see the previous section).

For coding variants, we used gnomAD v2 exomes for the Finnish (n = 10,824), non-Finnish-
Swedish-Estonian Europeans (NFSEE; n = 43,697), and non-Japanese-Korean East Asians
(NJKEA; n =7,212). For non-coding variants, we used gnomAD v2 genomes for the Finnish (n =
1,738), NFSEE (n = 5,421), and NJKEA (n = 780). We used the GEM-J WGS for both coding and
non-coding variants, which contains WGS data from the Japanese population (n = 7,609). To
account for coverage differences across data sources, we excluded regions from GEM-J WGS
with a median coverage < 10 in gnomAD exomes or genomes. To eliminate non-coding
enrichment due to tagging coding variants, we excluded non-coding variants in LD (r* > 0.1) with
coding variants using gnomAD v2 LD matrices for the Finnish and East Asian populations. We
restricted our analysis to 140,416 and 91,564 coding variants and 11,732,074 and 9,539,454 non-
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coding variants tested in FinnGen and BBJ GWAS, respectively. To annotate estimated allele
age, we retrieved point estimates of allele age (mode of the composite posterior distribution) from
the Genealogical Estimation of Variant Age (GEVA)™.

Allelic series analysis

We investigated an allelic series of fine-mapped variants within and across populations. We first
took nonsynonymous coding variants (pLoF and missense predicted by VEP as described in the
previous section) that had PIP > 0.1 for at least one of the studied traits. We then counted the
number of these variants falling in each gene, identified allelic series of two or more such variants
in a single gene for the same trait, and categorized allelic series according to whether they were
discoverable in a single population or only by combining data across populations. Furthermore,
we investigated non-coding variants that are proximal to these fine-mapped nonsynonymous
coding variants (< 100 kb), assuming they might act through the same gene.

References

1. Visscher, P. M. et al. 10 Years of GWAS Discovery: Biology, Function, and Translation.
Am. J. Hum. Genet. 101, 5-22 (2017).

2. Shendure, J., Findlay, G. M. & Snyder, M. W. Genomic Medicine-Progress, Pitfalls, and
Promise. Cell 177, 45-57 (2019).

3. Schaid, D. J., Chen, W. & Larson, N. B. From genome-wide associations to candidate
causal variants by statistical fine-mapping. Nat. Rev. Genet. 19, 491-504 (2018).

4. Nagai, A. et al. Overview of the BioBank Japan Project: Study design and profile. Journal of
Epidemiology 27, S2—-S8 (2017).

5. Sakaue, S. et al. A global atlas of genetic associations of 220 deep phenotypes. medRxiv
2020.10.23.20213652 (2020).

6. FinnGen. FinnGen: Unique genetic insights combining isolated population and national
health reqgistry data. In preparation.

7. Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data.
Nature 562, 203—209 (2018).

8. Ulirsch, J. C. & Kanai, M. An annotated atlas of causal variants for complex human traits. In

preparation.


https://doi.org/10.1101/2021.09.03.21262975
http://creativecommons.org/licenses/by-nc/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2021.09.03.21262975; this version posted September 5, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC 4.0 International license .

9. Wakefield, J. A Bayesian measure of the probability of false discovery in genetic
epidemiology studies. Am. J. Hum. Genet. 81, 208-227 (2007).

10. Hormozdiari, F., Kostem, E., Kang, E. Y., Pasaniuc, B. & Eskin, E. Identifying Causal
Variants at Loci with Multiple Signals of Association. Genetics 198, 497-508 (2014).

11. Chen, W. et al. Fine Mapping Causal Variants with an Approximate Bayesian Method Using
Marginal Test Statistics. Genetics 200, 719-736 (2015).

12. Kichaev, G. et al. Integrating functional data to prioritize causal variants in statistical fine-
mapping studies. PLoS Genet. 10, e1004722 (2014).

13. Wen, X,, Lee, Y., Luca, F. & Pique-Regi, R. Efficient Integrative Multi-SNP Association
Analysis via Deterministic Approximation of Posteriors. Am. J. Hum. Genet. 98, 1114-1129
(2016).

14. Benner, C. et al. FINEMAP: Efficient variable selection using summary data from genome-
wide association studies. Bioinformatics 32, 1493—1501 (2016).

15. Benner, C., Havulinna, A. S., Salomaa, V., Ripatti, S. & Pirinen, M. Refining fine-mapping:
effect sizes and regional heritability. bioRxiv 318618 (2018) doi:10.1101/318618.

16. Wang, G., Sarkar, A., Carbonetto, P. & Stephens, M. A simple new approach to variable
selection in regression, with application to genetic fine mapping. J. R. Stat. Soc. Series B
Stat. Methodol. 25, 1 (2020).

17. Maller, J. B. et al. Bayesian refinement of association signals for 14 loci in 3 common
diseases. Nat. Genet. 44, 1294—-1301 (2012).

18. Farh, K. K.-H. et al. Genetic and epigenetic fine mapping of causal autoimmune disease
variants. Nature 518, 337-343 (2015).

19. Huang, H. et al. Fine-mapping inflammatory bowel disease loci to single-variant resolution.
Nature 547, 173-178 (2017).

20. Mahajan, A. et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-

density imputation and islet-specific epigenome maps. Nat. Genet. 50, 1505-1513 (2018).


https://doi.org/10.1101/2021.09.03.21262975
http://creativecommons.org/licenses/by-nc/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2021.09.03.21262975; this version posted September 5, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

21.

22.

23.

24.

25.

206.

27.

28.

29.

30.

31.

32.

33.

It is made available under a CC-BY-NC 4.0 International license .

Ulirsch, J. C. et al. Interrogation of human hematopoiesis at single-cell and single-variant
resolution. Nat. Genet. 51, 683-693 (2019).

Weissbrod, O. et al. Functionally informed fine-mapping and polygenic localization of
complex trait heritability. Nat. Genet. 52, 1355-1363 (2020).

Woijcik, G. L. et al. Genetic analyses of diverse populations improves discovery for complex
traits. Nature 570, 514-518 (2019).

Lam, M. et al. Comparative genetic architectures of schizophrenia in East Asian and
European populations. Nat. Genet. 1-9 (2019).

Chen, M.-H. et al. Trans-ethnic and Ancestry-Specific Blood-Cell Genetics in 746,667
Individuals from 5 Global Populations. Cell 182, 1198—1213.e14 (2020).

Gharahkhani, P. et al. Genome-wide meta-analysis identifies 127 open-angle glaucoma loci
with consistent effect across ancestries. Nat. Commun. 12, 1258 (2021).

Levey, D. F. et al. Bi-ancestral depression GWAS in the Million Veteran Program and meta-
analysis in >1.2 million individuals highlight new therapeutic directions. Nat. Neurosci. 24,
954-963 (2021).

Chen, J. et al. The trans-ancestral genomic architecture of glycemic traits. Nat. Genet. 53,
840-860 (2021).

Robertson, C. C. et al. Fine-mapping, trans-ancestral and genomic analyses identify causal
variants, cells, genes and drug targets for type 1 diabetes. Nat. Genet. 53, 962-971 (2021).
Stanzick, K. J. et al. Discovery and prioritization of variants and genes for kidney function in
>1.2 million individuals. Nat. Commun. 12, 4350 (2021).

Novembre, J. et al. Genes mirror geography within Europe. Nature 456, 98—-101 (2008).
Martin, A. R. et al. Haplotype Sharing Provides Insights into Fine-Scale Population History
and Disease in Finland. Am. J. Hum. Genet. 102, 760-775 (2018).

Lim, E. T. et al. Distribution and medical impact of loss-of-function variants in the Finnish

founder population. PLoS Genet. 10, €1004494 (2014).


https://doi.org/10.1101/2021.09.03.21262975
http://creativecommons.org/licenses/by-nc/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2021.09.03.21262975; this version posted September 5, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

It is made available under a CC-BY-NC 4.0 International license .

Chheda, H. et al. Whole-genome view of the consequences of a population bottleneck
using 2926 genome sequences from Finland and United Kingdom. Eur. J. Hum. Genet. 25,
477-484 (2017).

Xue, Y. et al. Enrichment of low-frequency functional variants revealed by whole-genome
sequencing of multiple isolated European populations. Nat. Commun. 8, 15927 (2017).
Zhou, W. et al. Efficiently controlling for case-control imbalance and sample relatedness in
large-scale genetic association studies. Nat. Genet. 50, 1335-1341 (2018).

Loh, P.-R. et al. Efficient Bayesian mixed-model analysis increases association power in
large cohorts. Nat. Genet. 47, 284—-290 (2015).

Loh, P.-R., Kichaev, G., Gazal, S., Schoech, A. P. & Price, A. L. Mixed-model association
for biobank-scale datasets. Nat. Genet. 50, 906—908 (2018).

Fulco, C. P. et al. Activity-by-contact model of enhancer-promoter regulation from
thousands of CRISPR perturbations. Nat. Genet. 51, 1664—-1669 (2019).

Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-wide
association summary statistics. Nat. Genet. 47, 1228-1235 (2015).

Gazal, S. et al. Linkage disequilibrium-dependent architecture of human complex traits
shows action of negative selection. Nat. Genet. 49, 1421-1427 (2017).

Gazal, S. et al. Functional architecture of low-frequency variants highlights strength of
negative selection across coding and non-coding annotations. Nat. Genet. 50, 1600-1607
(2018).

Hujoel, M. L. A., Gazal, S., Hormozdiari, F., van de Geijn, B. & Price, A. L. Disease
Heritability Enrichment of Regulatory Elements Is Concentrated in Elements with Ancient
Sequence Age and Conserved Function across Species. Am. J. Hum. Genet. 104, 611-624
(2019).

Lindblad-Toh, K. et al. A high-resolution map of human evolutionary constraint using 29

mammals. Nature 478, 476—482 (2011).


https://doi.org/10.1101/2021.09.03.21262975
http://creativecommons.org/licenses/by-nc/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2021.09.03.21262975; this version posted September 5, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

It is made available under a CC-BY-NC 4.0 International license .

Ward, L. D. & Kellis, M. Evidence of abundant purifying selection in humans for recently
acquired regulatory functions. Science 337, 1675-1678 (2012).

Marnetto, D. et al. Evolutionary Rewiring of Human Regulatory Networks by Waves of
Genome Expansion. Am. J. Hum. Genet. 102, 207-218 (2018).

The GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across
human tissues. Science 369, 1318-1330 (2020).

Kerimov, N. et al. eQTL Catalogue: a compendium of uniformly processed human gene
expression and splicing QTLs. 2020.01.29.924266 (2020) doi:10.1101/2020.01.29.924266.
Yamazaki, Y., Zhao, N., Caulfield, T. R., Liu, C.-C. & Bu, G. Apolipoprotein E and
Alzheimer disease: pathobiology and targeting strategies. Nat. Rev. Neurol. 15, 501-518
(2019).

Hugot, J. P. et al. Association of NOD2 leucine-rich repeat variants with susceptibility to
Crohn’s disease. Nature 411, 599-603 (2001).

Ogura, Y. et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s
disease. Nature 411, 603-606 (2001).

Benyamin, B. et al. Common variants in TMPRSS6 are associated with iron status and
erythrocyte volume. Nat. Genet. 41, 1173—-1175 (2009).

Luukkonen, P. K. et al. MARC1 variant rs2642438 increases hepatic phosphatidylcholines
and decreases severity of non-alcoholic fatty liver disease in humans. J. Hepatol. 73, 725—
726 (2020).

Emdin, C. A. et al. A missense variant in Mitochondrial Amidoxime Reducing Component 1
gene and protection against liver disease. PLoS Genet. 16, 1008629 (2020).

Johnson, A. D. et al. Genome-wide association meta-analysis for total serum bilirubin
levels. Hum. Mol. Genet. 18, 2700-2710 (2009).

Nioi, P. et al. Variant ASGR1 Associated with a Reduced Risk of Coronary Artery Disease.

N. Engl. J. Med. 374, 2131-2141 (2016).


https://doi.org/10.1101/2021.09.03.21262975
http://creativecommons.org/licenses/by-nc/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2021.09.03.21262975; this version posted September 5, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC 4.0 International license .

57. Wang, Q. S. et al. Leveraging supervised learning for functionally informed fine-mapping of
cis-eQTLs identifies an additional 20,913 putative causal eQTLs. Nat. Commun. 12, 1-11
(2021).

58. Gupta, R. M. et al. A Genetic Variant Associated with Five Vascular Diseases Is a Distal
Regulator of Endothelin-1 Gene Expression. Cell 170, 522-533.e15 (2017).

59. Wang Xiao & Musunuru Kiran. Confirmation of Causal rs9349379-PHACTR1 Expression
Quantitative Trait Locus in Human-Induced Pluripotent Stem Cell Endothelial Cells.
Circulation: Genomic and Precision Medicine 11, e002327 (2018).

60. Nobrega, M. A., Ovcharenko, I., Afzal, V. & Rubin, E. M. Scanning human gene deserts for
long-range enhancers. Science 302, 413 (2003).

61. Grisanzio, C. & Freedman, M. L. Chromosome 8g24-Associated Cancers and MYC. Genes
Cancer 1, 555-559 (2010).

62. Huppi, K., Pitt, J. J., Wahlberg, B. M. & Caplen, N. J. The 8924 gene desert: an oasis of
non-coding transcriptional activity. Front. Genet. 3, 69 (2012).

63. Matejcic, M. et al. Germline variation at 8924 and prostate cancer risk in men of European
ancestry. Nat. Commun. 9, 4616 (2018).

64. Nasser, J. et al. Genome-wide enhancer maps link risk variants to disease genes. Nature
593, 238-243 (2021).

65. Sajantila, A. et al. Paternal and maternal DNA lineages reveal a bottleneck in the founding
of the Finnish population. Proc. Natl. Acad. Sci. U. S. A. 93, 12035-12039 (1996).

66. Kittles, R. A. et al. Dual origins of Finns revealed by Y chromosome haplotype variation.
Am. J. Hum. Genet. 62, 1171-1179 (1998).

67. Jinam, T. et al. The history of human populations in the Japanese Archipelago inferred from
genome-wide SNP data with a special reference to the Ainu and the Ryukyuan populations.
J. Hum. Genet. 57, 787—795 (2012).

68. Takeuchi, F. et al. The fine-scale genetic structure and evolution of the Japanese


https://doi.org/10.1101/2021.09.03.21262975
http://creativecommons.org/licenses/by-nc/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2021.09.03.21262975; this version posted September 5, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

It is made available under a CC-BY-NC 4.0 International license .

population. PLoS One 12, e0185487 (2017).

Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in
141,456 humans. Nature 581, 434—443 (2020).

GEnome Medical alliance Japan Project (GEM-J). GEM Japan Whole Genome Aggregation
(GEM-J WGA) Panel. https://togovar.biosciencedbc.jp/doc/datasets/gem_j_wga.

Rivas, M. A. et al. Insights into the genetic epidemiology of Crohn’s and rare diseases in
the Ashkenazi Jewish population. PLoS Genet. 14, e1007329 (2018).

Casals, F. et al. Whole-exome sequencing reveals a rapid change in the frequency of rare
functional variants in a founding population of humans. PLoS Genet. 9, 1003815 (2013).
Gudbijartsson, D. F. et al. Large-scale whole-genome sequencing of the Icelandic
population. Nat. Genet. 47, 435-444 (2015).

Albers, P. K. & McVean, G. Dating genomic variants and shared ancestry in population-
scale sequencing data. PLoS Biol. 18, e3000586 (2020).

Lohmueller, K. E. The impact of population demography and selection on the genetic
architecture of complex traits. PLoS Genet. 10, e1004379 (2014).

Henn, B. M. et al. Distance from sub-Saharan Africa predicts mutational load in diverse
human genomes. Proc. Natl. Acad. Sci. U. S. A. 113, E440-9 (2016).

Kashiwagi, H. et al. Molecular basis of CD36 deficiency. Evidence that a 478C-->T
substitution (proline90-->serine) in CD36 cDNA accounts for CD36 deficiency. J. Clin.
Invest. 95, 1040—1046 (1995).

Lenkkeri, U. et al. Structure of the gene for congenital nephrotic syndrome of the finnish
type (NPHS1) and characterization of mutations. Am. J. Hum. Genet. 64, 51-61 (1999).
van der Slot, A. J. et al. Identification of PLOD2 as Telopeptide Lysyl Hydroxylase, an
Important Enzyme in Fibrosis *. J. Biol. Chem. 278, 40967—-40972 (2003).

Weeks, E. M. et al. Leveraging polygenic enrichments of gene features to predict genes

underlying complex traits and diseases. bioRxiv (2020) doi:10.1101/2020.09.08.20190561.


https://doi.org/10.1101/2021.09.03.21262975
http://creativecommons.org/licenses/by-nc/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2021.09.03.21262975; this version posted September 5, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

It is made available under a CC-BY-NC 4.0 International license .

Buniello, A. et al. The NHGRI-EBI GWAS Catalog of published genome-wide association
studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 47, D1005—
D1012 (2019).

Gagliano Taliun, S. A. et al. Exploring and visualizing large-scale genetic associations by
using PheWeb. Nat. Genet. 52, 550-552 (2020).

Hirata, M. et al. Cross-sectional analysis of BioBank Japan clinical data: A large cohort of
200,000 patients with 47 common diseases. Journal of Epidemiology 27, S9-S21 (2017).
Ishigaki, K. et al. Large-scale genome-wide association study in a Japanese population
identifies novel susceptibility loci across different diseases. Nat. Genet. 52, 669-679
(2020).

Loh, P.-R., Palamara, P. F. & Price, A. L. Fast and accurate long-range phasing in a UK
Biobank cohort. Nat. Genet. 48, 811-816 (2016).

Das, S. et al. Next-generation genotype imputation service and methods. Nat. Genet. 48,
1284-1287 (2016).

The 1000 Genomes Project Consortium. A global reference for human genetic variation.
Nature 526, 68—74 (2015).

Akiyama, M. et al. Characterizing rare and low-frequency height-associated variants in the
Japanese population. Nat. Commun. 10, 4393 (2019).

Bastarache, L. et al. Systematic comparison of phenome-wide association study of
electronic medical record data and genome-wide association study data. Nat. Biotechnol.
31, 1102-1110 (2013).

Terao, C. et al. GWAS of mosaic loss of chromosome Y highlights genetic effects on blood
cell differentiation. Nat. Commun. 10, 4719 (2019).

Thompson, D. J. et al. Genetic predisposition to mosaic Y chromosome loss in blood.
Nature 575, 652—657 (2019).

Hormozdiari, F. et al. Colocalization of GWAS and eQTL Signals Detects Target Genes.


https://doi.org/10.1101/2021.09.03.21262975
http://creativecommons.org/licenses/by-nc/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2021.09.03.21262975; this version posted September 5, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

93.

94.

95.

96.

97.

98.

99.

It is made available under a CC-BY-NC 4.0 International license .

Am. J. Hum. Genet. 99, 1245-1260 (2016).

Benner, C. et al. Prospects of Fine-Mapping Trait-Associated Genomic Regions by Using
Summary Statistics from Genome-wide Association Studies. Am. J. Hum. Genet. 101, 539—
551 (2017).

McLaren, W. et al. The Ensembl Variant Effect Predictor. Genome Biol. 17, 122 (2016).
Kent, W. J. et al. The human genome browser at UCSC. Genome Res. 12, 996—-1006
(2002).

Gusev, A. et al. Partitioning Heritability of Regulatory and Cell-Type-Specific Variants
across 11 Common Diseases. Am. J. Hum. Genet. 95, 535-552 (2014).

Roadmap Epigenomics Consortium. Integrative analysis of 111 reference human
epigenomes. Nature 518, 317-330 (2015).

Oki, S. et al. ChIP-Atlas: a data-mining suite powered by full integration of public ChlP-seq
data. EMBO Rep. 19, (2018).

Meuleman, W. et al. Index and biological spectrum of human DNase | hypersensitive sites.

Nature (2020) doi:10.1038/s41586-020-2559-3.

100.Domcke, S. et al. A human cell atlas of fetal chromatin accessibility. Science 370, (2020).

101.Corces, M. R. et al. Lineage-specific and single-cell chromatin accessibility charts human

hematopoiesis and leukemia evolution. Nat. Genet. 48, 1193—-1203 (2016).

102.Buenrostro, J. D. et al. Integrated Single-Cell Analysis Maps the Continuous Regulatory

Landscape of Human Hematopoietic Differentiation. Cell 173, 1535-1548.e16 (2018).

103.Calderon, D. et al. Landscape of stimulation-responsive chromatin across diverse human

immune cells. Nat. Genet. 51, 1494-1505 (2019).

104.Vukcevic, D., Hechter, E., Spencer, C. & Donnelly, P. Disease model distortion in

association studies. Genet. Epidemiol. 35, 278-290 (2011).


https://doi.org/10.1101/2021.09.03.21262975
http://creativecommons.org/licenses/by-nc/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2021.09.03.21262975; this version posted September 5, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC 4.0 International license .

Extended Data Figures

a BBJ b FinnGen C UKBB d Al cohorts
OM 52K 4199 367 334 12M 44K 3418 206 286 15M 353K 20K 2200 2449 23M 417K 35K 2671 2920
1.00 — — ] ey T — — ] E
G 0.751 - — | —
& —
>
k]
= 0.50 1 1 E
il
S
Q.
Q
& 0.251 1 1 E
TSI & & & P S S P S S P S S
SR OMERS A SRS SRR SRR
Q*Q Q AS o Q 09 Q AS o Q G*Q Q7 AS o Q G‘Q Q7 AS o Q
A AR N N A AR N N AR N N AR N N
Best PIP bin per variant Best PIP bin per variant Best PIP bin per variant Best PIP bin per variant
e f h
9 ® ploF
1001 1 1 1 issense
S*nonymous
® UTR5
+ + UTR3
® Promoter
= ® CRE
[} Non-genic
£ | | t ' +
9
S °
w °
* ¢ + [} ° °
1 B T I T T T T T S T T T T T R

& © O D & L L L & 9 O D & L & L & 9 0O D & L & L & 9 O D & L &
CHFETEEFTCF P TEEF T I FEEEFT S CFf TEEST
& & © & & & © & & o © & & o © &
W ¢ < S ANPS < S AP < S AP < S
) ) ) 2
! Variants
{® ® Al
10 ¢0...+ ® Non-genic
(A AN
51 +++ t e
-
c ® 0 o
g ¢ +++.+’°¢0¢oo.
[ ]
S | ) ¢ 0% .0 0
2 + ¢ e 47900000
uCJ oo o
LT R T T T I e e T e T T T T T e e - —— - -
®
[ ]
3 3 3§65 3 8 Q&8 §E S5 P Z §g L L L L F L LB HE R EDN EEHE L2 E GRS
S £ 35 & 3 X35 EL B S ES S S S ESSQQ £SO S EJE S EE O E
Emgggwm‘:;;_2,_6‘n:,__L_::_LOOI_D_L::EIx_u:::Dt
s £ 3 &£ 33 0.8 m8 88 s FFrFF B FF o F % F 5 8 UK 5 5 2 &
F & 2 28 2 2 5 & T 'E._a:I\\\IIIIZZw\oleg\IICI
W5 B 6 5 = © 1 e 2 2 e g g g ww s 0 s 2 17 % 4 o S o
| £ = » < J ¢ ¥ I ¢ 5 8 Il e I N o 5 N 2 w v £ T
§ 59399 > 5 9 4 8 2 8§ 80§ 8¢ 8y s3socgdEFTYLECEE D
P ® & € € a9 a9 g S » < Q X c » =2 =
Eggggggm‘ g‘“”"gm‘o“ﬁgngI&QLﬁ 2—'5§I§°° g
IIQ_EQ_Q_O: N>c‘:u>tuu.:|:: T pey © o T 2 o8
I J 3 ¢ o E & £ g W g 2 g g E 3 o T
2 0o ® o & £ S5 ¢ c F X X o S g £ = o
o $ £ € ® ® & w € © S B =
2 2 5 8 £ o 5 5 ¥ 2 3 7] x ©
% E o0 E g T T <] = o £
I 3 £ o c T I 5
S 8 s o £t & <]
e 2 5 | o £ &
S 3 o g > 5
=1 [
g g ¢ 2 © T
o g = s @
2 o 3 2 2
< 4 < S 8
§ 538 © s
2 ° o
< <

Extended Data Fig. 1 | Functional enrichments of fine-mapped variants. a-d. Proportion of variants for the seven
main functional categories (Methods), stratified by the best PIP bin for a variant in BBJ, FinnGen, UKBB, and all cohorts
combined. Labels above each bar represent the number of variants in each bin. e-h. Enrichments of fine-mapped
variants (PIP > 0.9) in each functional category compared to non-fine-mapped variants (PIP < 0.01). i. Enrichments in
35 binary annotations from the baselineLD v2.2 model*3. Enrichment was calculated as a relative risk (i.e., a ratio of
proportion of variants) between being in an annotation and fine-mapped (PIP < 0.01 or PIP > 0.9; Methods). Error bars
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correspond to 95% confidence intervals using bootstrapping. Numerical results are available in Supplementary Table
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Extended Data Fig. 2 | Additional details of fine-mapping replication status across populations. a,b. Breakdowns
for the genome-wide significant variant-trait pairs (Pewas < 5.0 x 1078) in a secondary population, using distinct fine-
mapping replication criteria (a. PIP > 0.05 and b. in 95% CS) different from Fig. 2 (PIP > 0.1). c—e. PIP distributions in
a secondary population, stratified by PIP bins in a discovery population. Half-sided violin plots represent PIP
distributions for each secondary population. Points represent mean PIP in the secondary population for each PIP bin
in a discovery population. f. PIP distribution of true causal variants with Pgwas < 5.0 x 1078 in simulated GWAS data

from our companion paper®.
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Extended Data Fig. 3 | lllustrative examples of fine-mapping non-replication across populations. Locuszoom
plots for the same locus across populations. Colors in the locuszoom panels represent r? values to the lead variant. In
the PIP panels, only fine-mapped variants in SuSIE 95% CS are colored, where the same colors are applied across
populations based on the merged CS (Methods). a. rs35506085 for height that was fine-mapped in FinnGen and UKBB
(PIP = 1.0), but not in BBJ (PIP ~ 0) likely due to extensive LD. b. rs17140875 for height that was fine-mapped in BBJ
(PIP = 1.0) but not in FinnGen or UKBB (PIP ~ 0). The variant is more common in BBJ (MAF = 0.08) than in FinnGen
or UKBB (MAF = 0.04 and 0.05, respectively) and has more LD neighbors in Europeans. ¢. rs1996023 for BMI that
was fine-mapped in BBJ (PIP = 0.99), but not in FinnGen or UKBB (PIP ~ 0). Instead, we found other CS in FinnGen
and UKBB that showed modest LD with rs1996023 in Europeans (r> ~ 0.5) but high LD in BBJ (2 ~ 0.8). d. rs495855
for height that was fine-mapped only in UKBB (PIP = 1.0). This seems very likely a false positive given extensive LD in
every population.
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Extended Data Fig. 4 | Overview of high-confidence fine-mapped variants. a. Distribution of minor allele
frequencies (MAF) in each cohort. Violin plots represent the distribution. Each point represents a high-confidence fine-
mapped variant and each line connects the same variant across cohorts. b. Consequences annotated by VEP (see
Methods). c. Histogram of distance to the closest gene for high-confidence fine-mapped non-coding variants. Color
represents non-coding consequences same as b. d. Distribution of predicted expression modifier score (EMS)®’ for
fine-mapped non-coding variants, stratified by the best PIP bins. The highest bin (0.9 < PIP < 1) was further stratified
into the high-confidence variants or not based on replication across populations (see Methods). Maximum normalized
EMS score over genes was calculated for each fine-mapped variant using the whole blood tissue. Details of the high-
confidence fine-mapped variants are summarized in Supplementary Table 8,9.
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Extended Data Fig. 5 | Synonymous variant rs55714927 shows splicing effect in ASGR1. a. Locuszoom plots for
alkaline phosphatase (ALP) in BBJ and UKBB. b. Phenome-wide association study (PheWAS) of rs55714927 across
all the traits analyzed in this study. Only phenotypes that showed P < 5.0 x 10-8 in any cohort are displayed. Each point
represents a marginal beta for a given trait in a cohort, with an error bar representing the standard error. Shape of each
point represents whether each variant showed PIP > 0.1. ¢. sQTL effect of rs55714927 in GTEx liver. d. Sashimi plot
showing splicing effects of rs55714927 in three homozygous reference allele carriers vs. three homozygous alternative
allele carriers that were randomly chosen.
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Extended Data Fig. 6 | Colocalization between high-confidence fine-mapped non-coding variants for complex
traits and cis-eQTL associations in trait-relevant tissues. Locuszoom plots for the same locus of complex traits
across populations and of cis-eQTL associations in trait-relevant tissues. Colors in the locuszoom panels represent r?
values to the lead variant. In the PIP panels, only fine-mapped variants in SUuSIE 95% CS are colored, where the same
colors are applied across populations based on the merged CS (Methods). a. rs2070895 for HDL cholesterol in BBJ
and UKBB and for LIPC expression in GTEX liver. b. rs78378222 for skin cancer in FinnGen and UKBB and for TP53
expression in GTEXx skin. ¢. rs1497406 for y-glutamyl transferase (GGT) in BBJ and UKBB and for EPHA2 expression
in GTEX liver. d. rs34778241 for loss of chromosome Y (LOY) in BBJ and UKBB and for EIF4E3 expression in GTEx
whole blood.
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Extended Data Fig. 7 | High-confidence fine-mapped intergeneric variants in a gene desert. Locuszoom plots for
the same locus across populations. Colors in the locuszoom panels represent r? values to the lead variant. In the PIP
panels, only fine-mapped variants in SuSIE 95% CS are colored, where the same colors are applied across populations
based on the merged CS (Methods). a. rs77541621 in the 8924 locus for prostate cancer in UKBB and FinnGen. b.
rs1434282 in the 1932 locus for mean corpuscular volume (MCV) in BBJ and UKBB. c¢. rs116376456 in the 2q36 locus
for height in UKBB and FinnGen. d. rs35009121 in the 10p14 locus for calcium levels in BBJ and UKBB.
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Extended Data Fig. 8 | Putative causal variants are negatively correlated in a locus. a—d. rs244711 and rs1966265
for height in BBJ, FinnGen, and UKBB. e-h. rs1801706, rs5742907 and rs2303790 for HDL cholesterol in BBJ and
UKBB. a, e. Locuszoom plots for the same locus across populations. Colors in the manhattan panels represent r?
values to the lead variant. In the PIP panels, only fine-mapped variants in SUuSIE 95% CS are colored, where the same
colors are applied across populations based on the merged CS (Methods). b, f. Heatmaps showing r values between
the highlighted variants and the other variants in 95% CS in each population. In a CS panel, variants are colored by
the same colors in the locuszoom plots (a, €). ¢, d, g, h. Forest plots showing marginal and posterior betas of fine-
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Extended Data Fig. 9 | Population-enriched non-coding variants. a—-d. Histograms showing a distribution of allele
frequency (AF) enrichment metric in (@) Finnish (n = 1,738) and (b) Japanese (n = 7,609) populations. A ratio of AF
was computed against NFSEE (n = 5,421) and NJKEA (n = 780) for non-coding variants analyzed in FinnGen or BBJ
GWAS that exist in gnomAD WGS or GEM-J WGS, respectively. For a subset of variants that are fine-mapped in our
analysis (see Methods), we show AF enrichment distribution across maximum PIP bins computed in (¢) FinnGen or
(d) BBJ. e—f. Cumulative distribution of estimated allele age for non-coding variants, stratified by AF enrichment in (e)
Finnish or (f) Japanese. FIN: Finnish, JPN: Japanese, NFSEE: Non-Finnish-Swedish-Estonian European, NJKEA:
Non-Japanese-Korean East Asian.
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Extended Data Fig. 10 | Allelic series of putative causal variants across populations. a. Number of genes with
fine-mapped nonsynonymous variants (pLoF and missense) with best PIP > 0.1 for each LOEUF decile®®. Genes
without fine-mapped nonsynonymous variants are not plotted. Colors represent the consequence of each variant. When
multiple nonsynonymous variants are found, the most deleterious consequence is colored. b—d. Lollipop plots of allelic
series for (b) APOB, (c) ABCG2, and (d) EPX. Each point represents a fine-mapped variant from a single trait and
cohort. Point color represents discovery cohort and number label represents a fine-mapped trait. Points above the gene
body correspond to those with positive effect sizes, whereas points below the gene body correspond to those with
negative effect sizes. Coding variants are labeled with the HGVS protein nomenclature and non-coding variants (in d)
are labeled with rsids. Protein domains are annotated based on the Pfam database.
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