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The detection of mitotic figures in histological tumor images
plays a vital role in the decision-making of the appropriate ther-
apy. However, tissue preparation and image acquisition meth-
ods degrade the performances of the deep learning-based ap-
proaches for mitotic figures detection. MItosis DOmain Gener-
alization challenge addresses the domain-shift problem of this
detection task. This work presents our approach based on pre-
processing homogenizers to tackling this problem.
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Introduction

Machine learning algorithms often underperform when they
are validated on an external data that differs significantly
from the distribution of their training data. This problem
is even more pronounced in medical imaging modalities due
to several intrinsic sources that can contribute to this vari-
ability. The MIDOG challenge presents the problem of do-
main shift in data from the perspective of mitosis detection
on large cohorts of histopathology dataset collected from sev-
eral scanners. Mitosis detection by itself is a very challenging
problem owing to the large variability in the morphology of
mitosis nuclei, along with the presence of several imposter
nuclei. This difficulty is cemented by the large scale inter-
observer variabilities. In an endeavour to reduce the domain
discrepancy, we present a preprocessing pipeline that acts as
an unsupervised domain generalizer that averages the appear-
ance between the different scanners with an additional capa-
bility to nullify domain specific signals. This deep learning
pipeline leverages the property of auto-encoders as a cross-
data homogenizer, essentially reducing the appearance be-
tween the different domains [1]

Material and Methods

Our algorithm was trained on MItosis DOmain Generaliza-
tion (MIDOG) dataset only.The algorithm consists of a ho-
mogenizer followed by RetinaNet [2].

Dataset. The MIDOG challenge presented samples obtained
from four slide scanners systems namely the Hamamatsu
XR NanoZoomer 2.0, the Hamamatsu S360, the Aperio
ScanScope CS2 and the Leica GT450. Around 50 scans
were provided from each of these scanner. The entire train-
ing data hence consisted of 200 Whole Slide Images (WSIs)
from human breast cancer tissue samples stained with rou-
tine Hematoxylin & Eosin (H&E) dye. Supervised training

annotations were provided for three scanners except the Le-
icaGT450. The supervision consisted of mitotic figures and
hard negatives that resembles mitotic nuclei. Annotations
were collected from multiple experts who were blinded to
one another. The preliminary test set contains five WSIs cor-
respond to four unrevealed scanners of which only two were
also part of the training set. Evaluating the algorithms was
accomplished based on this preliminary test before publish-
ing preliminary results on a leaderboard. The final test con-
tains 20 WSIs belong to the same four scanners used for the
preliminary test set.

Methodology. As mentioned, the object detection using
RetinaNet remains unaltered, whereas our main contribution
lies in inventing a domain generalising preprocessing step.
The preprocessing pipeline consists of a multihead encoder
network Gf . The encoder coupled with a decoder compo-
nent Gr completes the autoencoder section of the pipeline
that tries to reconstruct the input images, x ∈X with an L2
loss. This optimization in mean square loss sense results in
reconstructing images that hold an average appearance to all
the variability in the training images. Utilizing this idea, we
use the whole dataset, with the appropriate validation splits,
provided as a part of MIDOG challenge in order to make the
autoencoder learn all the latent domains present in data. This
is feasible as this part of the training does not require an as-
sociated supervised label.
The encoder network also has a training adversarial head Gy

which basically acts as a domain discriminator. The reason
for incorporating this module is to further erase domain spe-
cific signals explicitly with the help of an adversarial compo-
nent. Here the training process makes use of explicit domain
labels in the form of the scanner technology labels, y ∈ Y =
{HamamatsuRx,HamamatsuS360,Aperio,LeicaGT450}.
We have summarized the overall architecture in Fig Fig. 1.
Mathematically, if we denote the output of the encoder is a D-
dimensional feature vector f , For every input x, the outputs
of the model are the reconstructed image r and the domain
label y.

f =Gf (x,θf ) (1)

Finally, during the learning stage, we aim to maximize the
domain label prediction loss and minimize the reconstruction
loss simultaneously to obtain domain-invariant features.

L=
∑

i=1...N

Lr(Gr(Gf (xi;θf );θr),yi) (2)
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Fig. 1. The architecture of the homogenizer

Network Training. From the data of each of the four scan-
ners we selected 40 WSIs for training the homogenizer and
10 WSIs for validation WSIs. We used a patch size of
256 × 256 pixels and a batch size of 8. Furthermore, we
performed data augmentation with ColorJitter, affine trans-
formations and random lightning and contrast change. We
trained the network with a cyclical maximal learning rate of
10−4 for 60 epochs until convergence. The loss of the ho-
mogenizer is a weighted combination of the perceptual loss
and the classification loss. And the model optimized by min-
imizing the reconstruction loss and maximizing the domain
classification loss. For object detection, we followed the
same strategy of splitting the data of each of the three anno-
tated scanners into 40 WSIs for training and 10 WSIs for val-
idation. We used the focal loss as the classification Loss [3]
and L1 loss for regression. We trained the network with a
learning rate of 10−4 for 150 epochs until convergence.

Discussion and Conclusion
In this paper, we have described our method for the MIDOG
challenge [4]. Our code will be made publicly available in
our GitHub repository after the final submission deadline.
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