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Abstract

Some mathematical concepts have been used in the last decades to predict the behavior of
spread of infectious diseases. Among them, the reproductive number concept has been used in
several published papers for study the stability of the spread. Some conditions were suggested
to predict there would be either stability or instability. An analysis was also suggested to
determine conditions under which infectious classes will increase or die out. Some authors
pointed out limitations of the reproductive number, as they presented its inability to fairly
help understand the spread patterns. The concept of strength number and analysis of second
derivatives of the mathematical models were suggested as additional tools to help detect waves.
In this paper, we aim at applying these additional analyses in a simple model to predict the
future.

Keywords: Strength number, second derivative analysis, waves, piecewise modeling.

1 Introduction

Mathematical models of spread of disease have been used successfully with limitation to predict
future behaviors of the spread. The main aim is to have an asymptotic idea of what the spread
will look like in a near future, such that measures could be taking to help control and eradicate
the spread of the virus. Several mathematical concepts have been suggested to help better analyze
these models. During the modelling process, mathematicians or modelers first translate the observed
facts into mathematical equations using either ordinary differential equations or partial differential
equations [1-4]. The obtained system of equation either linear or nonlinear is further analyze. The
first analysis consisting in obtaining equilibrium points (disease free and endemic). This analysis is
often followed by analysis of stability that include global and asymptotic global stability, conditions
under which the infectious classes will decrease, increase, or stay constant. The reproductive number
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that can be obtained in different way for instance using the next generation of matrix is obtained to
help predict either the spread will be stable or not. Then finally the study of the sign for the first
derivative of the Lyapunov function associate to the system to also give clear idea of the stability. In
thousands of papers published in this topics, similar analysis can be found, so far there is not major
contribution that have been done after the idea of reproductive number was suggested. However,
while checking with great care predictions done while using this analysis, one will easily see that this
analysis cannot help humans predict waves in spread. For example, several mathematical models
have been suggested to predict the spread of Covid-19, unwillingly no analysis help to predict the
numbers of waves that humans will faced by Covid-19 spread [5-12]. In fact, some researchers showed
that, the reproductive number was not suffi cient to provide a clear behavior of the spread, although
no attention was paid to such analysis, one will agree that suggested mathematical models and
analysis done in the last decades have not really help to predict waves. Very recently, additional
sets of analysis were suggested, first an evaluation equilibrium point of second derivative of the
model, evaluation of conditions under which the second derivatives of infections classes are positive,
negative or zero, calculation of strength number using next generation matrix and evaluation of sign
of second derivative of Lyapunov function associate to the model. Additionally, it was also suggested
that model should be derived with piecewise derivatives, in this paper we will apply that analysis
to a simple epidemiological model.

2 A SEIR model

While the SEIR model has been used and analysed in many research works to predict spread of some
infectious diseases. This model has been used to calculate the so-called reproductive, also they have
calculated its respective equilibrium points including disease-free and endemic points. However, the
model has not been used to check either the model can predict waves, or if the equilibrium points
are local maximum or local minimum. In this section, a SEIR model will subjected to a different
analysis that may help if such model is suitable for describing spread with waves.

dS (t)

dt
= µN − µS − βSI

N
(1)

dE (t)

dt
=

βSI

N
− (τ + µ)E

dI (t)

dt
= τE − (γ + µ) I

dR (t)

dt
= γI − µR

where N = S + E + I +R. The initial conditions are as follows;

S (0) = S0, E (0) = E0, I (0) = I0, R (0) = R0. (2)

Here S (t) is the class of the susceptible individuals. E (t) is the class of the exposed individuals.
I (t) is the class of the infected individuals. R (t) is the class of the recovered individuals.
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2.1 Positiveness and boundness of solutions

Just to start with primaries analysis, at least to show that the solutions are positive since they depict
real world problem with positive values. In this subsection, we examine the conditions under which
the positivity of the solutions of the considered model are satisfied. Let us start with the class E (t)

E (t) ≥ E0e−(τ+µ)t, ∀t ≥ 0.

For the function I (t) , we have the following inequalities

I (t) ≥ I0e−(γ+µ)t, ∀t ≥ 0

and
R (t) ≥ R0e−µt, ∀t ≥ 0. (3)

We shall define the norm
‖λ‖∞ = sup

t∈Dλ
|λ (t)| (4)

where Dλ is the domain of λ. Using the above norm, we get the following inequality for the function
S (t) ,

·
S (t) = µN − µS − βSI

N
, ∀t ≥ 0

≥ −
(
µ+

β |I|
|N |

)
S, ∀t ≥ 0, (5)

≥ −
(
µ+

β supt∈DI |I|
supx∈DN |N |

)
S, ∀t ≥ 0

≥ −
(
µ+

β ‖I‖∞
‖N‖∞

)
S, ∀t ≥ 0.

This yields

S (t) ≥ S0e
−
(
µ+

β‖I‖∞
‖N‖∞

)
t
, ∀t ≥ 0. (6)

2.2 Analysis of equilibrium points

In this subsection, we give a detailed analysis about equilibrium points. Disease-free equilibrium for
this model is

E0 (N, 0, 0, 0, 0) . (7)

To get the endemic equilibrium points, we need to solve the following system

µN − µS − βSI

N
= 0 (8)

βSI

N
− (τ + µ)E = 0

τE − (γ + µ) I = 0

γI − µR = 0.
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Then the endemic equilibrium points are

S∗ =
N
(
µ2 + µτ + µγ + γτ

)
τβ

(9)

E∗ = −
(
µ2 + µτ + µγ − τβ + γτ

)
µN

τβ (τ + µ)

I∗ = −
Nµ

(
µ2 + µτ + µγ − τβ + γτ

)
β (µ2 + µτ + µγ + γτ)

R∗ = −
Nγ

(
µ2 + µτ + µγ − τβ + γτ

)
β (µ2 + µτ + µγ + γτ)

.

The above endemic eqilibrium are valid if the following inequality holds

−µ2 − µτ − µγ − γτ + τβ > 0 (10)

namely

1 >
µ2 + µτ + µγ + γτ

τβ
. (11)

2.3 Reproduction number

To proceed with our preliminary analysis, we shall present here the derivation of the so-called
reproductive number. This is important value in the field of epidemiological modelling, as it was
revealed to help to have an understanding the stability conditions. It was documented that, if
this number is less than 1, we can expect stability, however if this number is greater than 1, we
could expect instability. Nonetheless, it was reported that the value is obtained with different ways.
However, in this case we will utilize the next matrix approach to achieve the reproductive value.

·
E =

βSI

N
− (τ + µ)E

·
I = τE − (γ + µ) I.

Using the next generation matrix approach [13], we calculate the matrices F and V −1 as

F =

[
0
βS
N

]
, V −1 =

[
1

τ+µ 0
τ

(τ+µ)(γ+µ)
1

γ+µ

]
. (12)

Then, the reproduction number is obtained as

R0 =
β

(γ + µ)
. (13)
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2.4 Strength number

Although the so-called reproductive number has been used in thousands of research papers in epi-
demiological modelling with some success and great limitations. While this concept has been em-
ployed to determine either or not the spread will be severe, some great weaknesses have been pointed
out by some researchers, for example they sadly realized that such value is not unique as it can be
obtained via different methods. Another issue was raised that, this number should have been a
function of time not a constant value. Additionally, it was also noticed that a reproductive number
cannot be used to indicate either a model will predict waves or not. Very recently an alternative
number was suggested and was called strength number, of course this number will be subjected to
several test to see either it can be used to help to detect some complexities in the spread, at least
it this number can help detect waves in a spread. The value was derived using the next generation
matrix , by taking the second derivative of infectious classes. In this section, we will present the
strength number associate to SEIR model.

∂

∂I

(
βSI

N

)
= βS

∂

∂I


(
N −

.

NI
)

N2

 (14)

= −βS
N2

.

In this case, we can have the following

FA =

[
0
−βS
N2

]
. (15)

Then
det
(
FAV

−1 − λI
)

= 0 (16)

yields

A0 = − Sβτ

N2 (τ + µ) (γ + µ)
< 0. (17)

Having obtained the strength number to be less than zero will lead us to a great conclusion that will
further be confirmed using a different analysis consisting in finding local minimum, local maximum,
and inflection points. Thus, having strength a negative number is an indication that the SEIR model
will have a single magnitude, either maximum point with two inflection points indicating a single
wave or infection will decrease rapidly from the disease-free equilibrium and with renewal process
the infection will raise after a minimum point and then be stabilized or stop latter on. This will be
confirmed while studying sign of second derivative of infectious classes.

2.5 First derivative of Lyapunov

For the endemic Lyapunov function, {S,E, I,R} ,
·
L < 0 is the endemic equilibrium E∗.

Theorem 1. When the reproductive number R0 > 1, the endemic equilibrium points E∗ of the
SEIR model is globally asymptotically stable.
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Proof. For proof, the Lyapunov function can be written as

L (S∗, E∗, I∗, R∗) =

(
S − S∗ − S∗ log

S∗

S

)
+

(
E − E∗ − E∗ log

E∗

E

)
(18)

+

(
I − I∗ − I∗ log

I∗

I

)
+

(
R−R∗ −R∗ log

R∗

R

)
.

Therefore, applying the derivative respect to t on both sides yields

dL

dt
=

·
L =

(
S − S∗
S

)
·
S +

(
E − E∗
E

)
·
E

+

(
I − I∗
I

)
·
I +

(
R−R∗
R

)
·
R. (19)

Now, we can write their values for derivatives as follows

dL

dt
=

(
S − S∗
S

)(
µN − µS − βSI

N

)
+

(
E − E∗
E

)(
βSI

N
− (τ + µ)E

)
(20)

+

(
I − I∗
I

)
(τE − (γ + µ) I)

+

(
R−R∗
R

)
(γI − µR) .

Putting S = S − S∗, E = E − E∗, I = I − I∗, R = R−R∗ leads to

dL

dt
=

(
S − S∗
S

)(
µN − µ (S − S∗)− β (S − S∗) (I − I∗)

N

)
+

(
E − E∗
E

)(
β (S − S∗) (I − I∗)

N
− (τ + µ) (E − E∗)

)
(21)

+

(
I − I∗
I

)
(τ (E − E∗)− (γ + µ) (I − I∗))

+

(
R−R∗
R

)
(γ (I − I∗)− µ (R−R∗)) .
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We can organize the above as follows

dL

dt
= µN − µN S∗

S
− (S − S∗)2

S
µ− (S − S∗)2

S

βI

N
+

(S − S∗)2

S

βI∗

N

−E
∗

E

β

N
SI +

E∗

E

β

N
SI∗ +

E∗

E

β

N
S∗I − E∗

E

β

N
S∗I∗ (22)

− (E − E∗)2

E
(τ + µ)− (I − I∗)2

I
(γ + µ) + τE − τE∗

−I
∗

I
τE +

I∗

I
τE∗ + γI − γI∗ − R∗

R
γI +

R∗

R
γI∗ − (R−R∗)2

R
µ.

To avoid the complexity, the above can be written as

dL

dt
= Σ− Ω (23)

where

Σ = µN +
(S − S∗)2

S

βI∗

N
+
E∗

E

β

N
SI∗ +

E∗

E

β

N
S∗I

+τE +
I∗

I
τE∗ + γI +

R∗

R
γI∗

and

Ω = µN
S∗

S
+

(S − S∗)2

S
µ+

(S − S∗)2

S

βI

N
+
E∗

E

β

N
SI +

E∗

E

β

N
S∗I∗

+
(E − E∗)2

E
(τ + µ) +

(I − I∗)2

I
(γ + µ) + τE∗

+
I∗

I
τE + γI∗ +

R∗

R
γI +

(R−R∗)2

R
µ.

It is concluded that if Σ < Ω, this yields dLdt < 0, however when S = S∗, E = E∗, I = I∗, R = R∗

0 = Σ− Ω ⇒ dL

dt
= 0. (24)

We can see that the largest compact invariant set for the suggested model model in{
(S∗, E∗, I∗, R∗) ∈ Γ :

dL

dt
= 0

}
(25)

is the point {E∗} the endemic equilibrium of the considered model. By the help of the Lasalle’s
invariance concept, it follows that E∗ is globally asymptotically stable in Γ if Σ < Ω.

2.6 Second derivative of Lyapunov

While the sign of the first derivative of a Lyapunov function helps to appreciate the stability, one
should note that, analysis of first derivative of a given function cannot fully help to understand the
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variabilities of the function under study. Further analysis are required to all the particularities of
the variations. We thus present an analysis of second derivative of the associated Lyapunov function
of our model.

d
·
L

dt
=

d

dt


(

1− S∗

S

) ·
S +

(
1− E∗

E

) ·
E +

(
1− I∗

I

) ·
I

+
(

1− R∗

R

) ·
R

 (26)

=

 ·
S

S

2

S∗ +

 ·
E

E

2

E∗ +

 ·I
I

2

I∗ +

 ·
R

R

2

R∗ +

(
1− S∗

S

)
··
S

+

(
1− E∗

E

)
··
E +

(
1− I∗

I

)
··
I +

(
1− R∗

R

)
··
R.

Here

··
S = µ

·
N − µ

·
S − β


(
·
SI +

·
IS

)
N −

·
NSI

N2

 (27)

··
E = β


(
·
SI +

·
IS

)
N −

·
NSI

N2

− (τ + µ)
·
E

··
I = τ

·
E − (γ + µ)

·
I

··
R = γ

·
I − µ

·
R.

Then, we have

d
·
L

dt
=

 ·
S

S

2

S∗ +

 ·
E

E

2

E∗ +

 ·I
I

2

I∗ +

 ·
R

R

2

R∗ (28)

+

(
1− S∗

S

)µ ·N − µ ·S − β

(
·
SI +

·
IS

)
N −

·
NSI

N2




+

(
1− E∗

E

)β

(
·
SI +

·
IS

)
N −

·
NSI

N2

− (τ + µ)
·
E


+

(
1− I∗

I

)(
τ
·
E − (γ + µ)

·
I

)
+

(
1− R∗

R

)(
γ
·
I − µ

·
R

)

8
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and

d2L

dt2
=

·
Π (S,E, I,R) + µ

(
1− S∗

S

)
·
N − µ

(
1− S∗

S

)
·
S (29)

−β
(

1− S∗

S

)
(
·
SI +

·
IS

)
N −

·
NSI

N2



+

(
1− E∗

E

)
β


(
·
SI +

·
IS

)
N −

·
NSI

N2

− (1− E∗

E

)
(τ + µ)

·
E

+

(
1− I∗

I

)
τ
·
E − (γ + µ)

(
1− I∗

I

)
·
I0

+

(
1− R∗

R

)
γ
·
I −

(
1− R∗

R

)
µ
·
R.

After replacing
·
S (t) ,

·
E (t) ,

·
I (t) and

·
R (t) by their formula from the considered model and putting

all together, we can get

d2L

dt2
=

·
Π (S,E, I,R)− µ

(
1− S∗

S

)(
µN − µS − βSI

N

)
(30)

−β
(

1− S∗

S

)
((
µN − µS − βSI

N

)
I + (τE − (γ + µ) I)S

)
N


+

(
1− E∗

E

)
β


((
µN − µS − βSI

N

)
I + (τE − (γ + µ) I)S

)
N


−
(

1− E∗

E

)
(τ + µ)

(
βSI

N
− (τ + µ)E

)
+

(
1− I∗

I

)
τ

(
βSI

N
− (τ + µ)E

)
− (γ + µ)

(
1− I∗

I

)
(τE − (γ + µ) I)

+

(
1− R∗

R

)
γ (τE − (γ + µ) I)−

(
1− R∗

R

)
µ (γI − µR) .

For simplicity, we can write
d2L

dt2
= Ω1 − Ω2 (31)

9
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where

Ω1 =
·
Π (S,E, I,R) + µ2S + µ

βSI

N
+ µ2S

∗

S
N + β

S∗

S
µI (32)

+β
S∗

S

τES

N
+
β2SI2

N2
+ β

µSI + (γ + µ) IS

N
+ βµI + β

τES

N

+
E∗

E

β2SI2

N2
+ β

E∗

E

(µSI + (γ + µ) IS)

N
+
E∗

E
(τ + µ)

βSI

N
+ (τ + µ)

2
E

+τ
βSI

N
+
I∗

I
τ (τ + µ)E + (γ + µ)

2
I + (γ + µ)

I∗

I
τE

+γτE +
R∗

R
γ (γ + µ) I +

R∗

R
γIµ+ µ2R

and

Ω2 = µ2N + µ2S∗ + µS∗
βI

N
+ βµI + β

τES

N
+ β

S∗

S

(
βSI2

N2
+
µSI + (γ + µ) IS

N

)
(33)

+

(
β2SI2

N2
+ β

µSI + (γ + µ) IS

N

)
+
E∗

E
β

(
µI +

τES

N

)
+ (τ + µ)

βSI

N
+
E∗

E
(τ + µ)

βSI

N
+ τ (τ + µ)E +

I∗

I
τ
βSI

N

+ (γ + µ) τE +
I∗

I
(γ + µ)

2
I + (γ (γ + µ) I)

+
R∗

R
γτE + µγI +

R∗

R
µ2R.

It can be seen that

If Ω1 > Ω2 then
d2L

dt2
> 0

If Ω1 < Ω2 then
d2L

dt2
< 0 (34)

If Ω1 = Ω2 then
d2L

dt2
= 0.

2.7 Equilibrium points for second order

Since the equilibrium points also help to get information on curvatures, in this subsection, we aim
to find the equilibrium points of second order derivative of our solutions. Thus, we write

10
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··
S = −µ2N + µ2S − βµI + 2βµ

SI

N
+ β2S

(
I

N

)2

− βτ SE
N

+ (γ + µ)β
SI

N
(35)

··
E = βµI − βµSI

N
− β2S

(
I

N

)2

+ β
S

N
τE − β S

N
(γ + µ) I − (τ + µ)

βSI

N
+ (τ + µ)

2
E

··
I = τ

βSI

N
− τ (τ + µ)E − (γ + µ) τE + (γ + µ)

2
I

··
R = γτE − γ (γ + µ) I − µγI + µ2R.

The disease-free equilibrium point of second order derivative of model is

E∗◦ = (N, 0, 0, 0) . (36)

and the endemic equilibrium points of second order derivative of the model is

S∗◦ =
N
(
µ2 + µτ + µγ + γτ

)
τβ

(37)

E∗◦ = −
(
µ2 + µτ + µγ − τβ + γτ

)
µN

τβ (τ + µ)

I∗◦ = −
Nµ

(
µ2 + µτ + µγ − τβ + γτ

)
β (µ2 + µτ + µγ + γτ)

R∗◦ = −
Nγ

(
µ2 + µτ + µγ − τβ + γτ

)
β (µ2 + µτ + µγ + γτ)

.

For the classes I (t) , E (t) to increase, we need

.

E (t) =
βSI

N
− (τ + µ)E (38)

.

I (t) = τE − (γ + µ) I.

Indeed for the endemic process, we can consider the following{ .

E (t) > 0⇒ βSI
N > (τ + µ)E

.

I (t) > 0⇒ τE > (γ + µ) I
(39)

and since S
N < 1 {

βI > (τ + µ)E
τ

γ+µ >
I
E

. (40)

Thus, {
I
E > (τ+µ)

β
τ

γ+µ >
I
E

⇒ (τ + µ)

β
<

I

E
<

τ

γ + µ
. (41)
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E (t) and I (t) classes will increase if the following conditions

(τ + µ)

β
<

I

E
<

τ

γ + µ
. (42)

We are noıw checking local maximum, local minimum or inflection points. We have two equilibrium
point including the disease-free and endemic. To achieve this, we consider the second derivative of
the infectious classes

..

E (t) = β

[ .

SIN +
.

ISN −
.

NSI

N2

]
− (τ + µ)

.

E (43)

..

I (t) = τ
.

E − (γ + µ)
.

I.

At E0, we have that
..

E (t) = 0 (44)
..

I (t) = 0

which can be considered as a changing point of the spread. Meaning at this point, we could see any
increase in number of infectious classes.Also, at E0∗, endemic equilibrium

.

S (t) =
.

E (t) =
.

I (t) = 0.
Thus

..

E (t) =
..

I (t) = 0 also. The model predicts two changing points, therefore, it is expected to
have either a maximum or minimum point.
We shall evaluate the sign of

..

E and
..

I functions

β

[ .

SIN +
.

ISN −
.

NSI

N2

]
− (τ + µ)

.

E > 0 (45)

τ
.

E − (γ + µ)
.

I > 0,

β


(
µN − µS − βSI

N

)
I + (τE − (γ + µ) I)S

N

 > (τ + µ)
βSI

N
− (τ + µ)E (46)

τ
βSI

N
− (γ + µ)

2
I > (γ + 2µ+ τ) τE,

βµI − βµSI − β2SI2

N2
+
βSτE

N
− β (γ + µ) IS

N
> (τ + µ)

βSI

N
− (τ + µ)

2
E (47)(

βτ + (γ + µ)
2
)
I > (γ + 2µ+ τ) τE,

and

βµI +
βSτE

N
+ (τ + µ)

2
E > (τ + µ)

βSI

N
+ βµSI +

β2SI2

N2
+
β (γ + µ) IS

N
(48)(

βτ + (γ + µ)
2
)
I > (γ + 2µ+ τ) τE .
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Since S
N < 1, then we can write βµI + βτE + (τ + µ)

2
E > βS

N

[
µI + βI2

N + (γ + µ) I + (τ + µ) I
](

βτ + (γ + µ)
2
)
I > (γ + 2µ+ τ) τE

, (49)

 βµ I
E + βτ + (τ + µ)

2
> βS

N

[
µ I
E + βI2

NE + (γ + µ) I
E + (τ + µ) I

E

]
I
E > (γ+2µ+τ)τ

(βτ+(γ+µ)2)

, (50)

{
βτ + (τ + µ)

2
> βSI

NE [γ + 3µ+ τ ]− βµ I
E

I
E > (γ+2µ+τ)τ

(βτ+(γ+µ)2)
, (51)

 βτ + (τ + µ)
2
> I

E

[
βS
N (γ + 3µ+ τ)− βµ

]
I
E > (γ+2µ+τ)τ

(βτ+(γ+µ)2)

, (52)


βτ+(τ+µ)2

βS
N (γ+3µ+τ)−βµ >

I
E

I
E > (γ+2µ+τ)τ

(βτ+(γ+µ)2)

, (53)

with S
N > µ

(γ+3µ+τ) . Thus we have the following condition

(γ + 2µ+ τ) τ(
βτ + (γ + µ)

2
) < I

E
<

βτ + (τ + µ)
2

βS
N (γ + 3µ+ τ)− βµ

. (54)

On the other hand if
..

E (t) < 0 (55)
..

I (t) < 0.

From this inequality, we have

βµI + (τ + µ)
2
E < (τ + µ)βI + βµI + β2I2 + β (γ + µ) I (56)

(γ + µ)
2
I < (γ + 2µ+ τ) τE

and {
(τ+µ)2

(β2N+β(γ+µ))
< I

E
I
E < (γ+2µ+τ)τ

(γ+µ)2

. (57)

Therefore { ..

E (t) < 0
..

I (t) < 0
⇒ (τ + µ)

2(
β2N + β (γ + µ)

) < I

E
<

(γ + 2µ+ τ) τ

(γ + µ)
2 . (58)
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In Figure 1, we present a numerical simulation showing the condition under which the two infection
classses admit negative second derivatives. The theoretical interpretation of such condition will
therefore follow;

Figure 1. Waves test condition.

Under this condition, the SEIR model may not be able to depict more than two waves. The model
shows that the spread will have only one peak and then die out later with no renewal force. In
literature, however such model has been used to depict spread of infectious diseases with different
waves.

3 Numerical solution of the model with exponential decay
process

In this section, we present a numerical scheme based on Newton polynomial for the numerical
solution of the considered model with piecewise differential and integral operators [14,15]. We start
with the piecewise SEIR model with classical and stochastic Caputo-Fabrizio case which is given by

X′ = F (t,X) , if 0 ≤ t ≤ T1

Xi (0) = xi,0,
CF
0 Dα

t X = F (t,X) dt+ σiXiBi′ (t) if T1 ≤ t ≤ T2

Xi (T1) = xi,0, 0 < α ≤ 1

. (59)

Here
X = (S,E, I,R) , F (t,X) = (fi (t,X))i=1,..,4 .
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Applying the associated integral, we can have

X′ = Xi (0) +
∫ t

0
F (τ ,X) dτ , if 0 ≤ t ≤ T1

Xi (0) = xi,0,

X =

{
Xi (T1) + 1−α

M(a)F (t,X) + α
M(a)

∫ t
0
F (τ ,X) dτ

+ 1−α
M(a)σiXiBi′ (t) + α

M(a)

∫ t
0
σiXiBi′ (τ) dτ

if T1 ≤ t ≤ T2

Xi (T1) = xi,0, i = 1, .., 4, 0 < α ≤ 1

. (60)

We divide [0, T ] in two

0 ≤ t0 ≤ t1 ≤ ... ≤ tn1 = T1 ≤ tn1+1 ≤ tn1+2 ≤ ... ≤ tn2 = T2.

Interpolating fi (t,Xi) using the Newton polynomial within [tn, tn+1] yields

Xn1
i = Xi (0) +

∑n1
j1=2

 23
12F (tj1 , Xj1)

− 4
3F (tj1−1, Xj1−1)

+ 5
12F (tj1−2, Xj1−2)

∆t, 0 ≤ t ≤ T1

Xn2
i = Xi (T1) + (1−α)

M(α) F (tn2 , Xn2)

+ α∆t
M(α)

∑n2
j2=n1+3



23
12f (tj1 , Xj1)

+σiXj1 (Bi (tj1+1)−Bi (tj1))
− 4

3f (tj1−1, Xj1−1)
+σiXj1 (Bi (tj1)−Bi (tj1−1))

+ 5
12f (tj1−2, Xj1−2)

+σiXj1 (Bi (tj1−1)−Bi (tj1−2))

 , T1 ≤ t ≤ T2

. (61)

The parameters and initial conditions are given as

X1 (0) = 1000, X2 (0) = 1, X3 (0) = 0, X4 (0) = 0, X1 (T1) = 999.2, (62)

X2 (T2) = 0.4924, X1 (T3) = 0.1847, X1 (T4) = 0.1109

and

N = 1000, T1 = 50, β = 64/30, µ = 0.5, τ = 0.3, γ = 0.3,

σ1 = 0.2, σ2 = 0.12, σ3 = 0.2, σ4 = 0.24. (63)
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The simulation of the numerical solution of the model is depicted in Figure 2.

Figure 2. Numerical simulation of SEIR model for α = 0.7.

In this example, some parameters of the model are chosen such that τβ
(γ+µ)(τ+µ) = 1 which can be

observed from the equation (39).

4 Numerical solution of the model withMittag-Leffl er process

In this section, we adopt the numerical scheme for the model where first part is classical and second
part is the fractional derivative with the generalized Mittag-Leffl er kernel. It is important noting that
a model with the generalized Mittag-Leffl er helps capture processes,with a passage from streched
exponential to power-law with no steady state.

X = F (t,X) , if 0 ≤ t ≤ T1

Xi (0) = xi,0,
ABC
0 Dα

t X = F (t,X) dt+ σiXiBi′ (t) if T1 ≤ t ≤ T2

Xi (T1) = xi,0, 0 < α ≤ 1

. (64)

Applying the Atangana-Baleanu integral, we obtain the following equality

X′ = Xi (0) +
∫ t

0
F (τ ,X) dτ , if 0 ≤ t ≤ T1

Xi (0) = xi,0,

X =

{
Xi (T1) + 1−α

AB(a)F (t,X) + α
AB(a)Γ(a)

∫ t
0
F (τ ,X) (t− τ)

α−1
dτ

+ 1−α
AB(a)σiXiBi′ (t) + α

AB(a)Γ(a)

∫ t
0
σiXiBi′ (τ) (t− τ)

α−1
dτ

if T1 ≤ t ≤ T2

Xi (T1) = xi,0, 0 < α ≤ 1

. (65)
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We divide [0, T ] in three

0 ≤ t0 ≤ t1 ≤ ... ≤ tn1 = T1 ≤ tn1+1 ≤ tn1+2 ≤ ... ≤ tn2 = T2.

Replacing the functions fi (t,Xi) by their the Newton polynomial within [tn, tn+1] , the following
numerical scheme is obtained

Xn1
i = Xi (0) +

∑n1
j1=2

 23
12F (tj1 , Xj1)

− 4
3F (tj1−1, Xj1−1)

+ 5
12F (tj1−2, Xj1−2)

∆t, 0 ≤ t ≤ T1

xn2 = x (T1) + (1−α)∆t
AB(α) f (tn2 , Xn2) + α∆t

AB(α)Γ(α+1)

∑n2
j2=n1+3 F (tj2−2, Xj2−2) Λ1

+ α∆t
AB(α)Γ(α+2)

∑n2
j2=n1+3

[
F (tj2−1, Xj2−1)
−F (tj2−2, Xj2−2)

]
Λ2

+ α∆t
2AB(α)Γ(α+3)

∑n2
j2=n1+3

 F (tj2 , Xj2)
−2F (tj2−1, Xj2−1)
+F (tj2−2, Xj2−2)

Λ3

(66)



+ α∆t
AB(α)Γ(α+1)

∑n2
j2=n1+3 σiXj1 (Bi (tj1−1)−Bi (tj1−2)) Λ1

+ α∆t
AB(α)Γ(α+2)

∑n2
j2=n1+3

[
σiXj2−1 (Bi (tj1)−Bi (tj1−1))
−σiXj2−2 (Bi (tj1−1)−Bi (tj1−2))

]
Λ2

+ α∆t
2AB(α)Γ(α+3)

∑n2
j2=n1+3

 σiXj2 (Bi (tj1+1)−Bi (tj1))
−2σiXj2−1 (Bi (tj1)−Bi (tj1−1))
+σiXj2−2 (Bi (tj1−1)−Bi (tj1−2))

Λ3

, T1 ≤ t ≤ T2 (67)

where

Λ1 = (n2 − j2 + 1)
α − (n2 − j2)

α (68)

Λ2 =

{
(n2 − j2 + 1)

α
(n2 − j2 + 3 + 2α)

− (n2 − j2)
α

(n2 − j2 + 3 + 3α)

}
,

Λ3 =


(n2 − j2 + 1)

α

[
2 (n2 − j2)

2
+ (3α+ 10) (n2 − j2)

+2α2 + 9α+ 12

]
− (n2 − j2)

α

[
2 (n2 − j2)

2
+ (5α+ 10) (n2 − j2)

+6α2 + 18α+ 12

]
 .

For this model, the parameters and initial conditions are considered as

X1 (0) = 1000, X2 (0) = 1, X3 (0) = 0, X4 (0) = 0, X1 (T1) = 1000, (69)

X2 (T1) = 4.642× 10−5, X1 (T1) = 2.315× 10−5, X1 (T1) = 0.0069

and

N = 1000, T1 = 50, β = 0.001, µ = 0.1, τ = 0.1, γ = 0.3,

σ1 = 0.0000025, σ2 = 0.011, σ3 = 0.0091, σ4 = 0.017. (70)
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The simulation of the numerical solution of the model is performed in Figure 3.

Figure 3. Numerical simulation of SEIR model for α = 0.6.

In this example, the parameters of the model are chosen such that τβ
(γ+µ)(τ+µ) < 1 which is seen

from the equation (39).

5 Numerical solution of the model with power-law process

In this section, we consider the following model
X = F (t,X) , if 0 ≤ t ≤ T1

Xi (0) = xi,0,
C
0 D

α
t X = F (t,X) dt+ σiXiBi′ (t) if T1 ≤ t ≤ T2

Xi (T1) = xi,0, 0 < α ≤ 1

(71)

where first part is classical and second part is the fractional derivative with the generalized Mittag-
Leffl er kernel. Applying the associated integral, we obtain the following equality

X = Xi (0) +
∫ t

0
F (τ ,X) dτ , if 0 ≤ t ≤ T1

Xi (0) = xi,0,

X =

{
Xi (T1) + 1

Γ(a)

∫ t
0
F (τ ,X) (t− τ)

α−1
dτ

+ 1
Γ(a)

∫ t
0
σiXiBi′ (τ) (t− τ)

α−1
dτ

if T1 ≤ t ≤ T2

Xi (T1) = xi,0, 0 < α ≤ 1

. (72)
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We divide [0, T ] in three

0 ≤ t0 ≤ t1 ≤ ... ≤ tn1 = T1 ≤ tn1+1 ≤ tn1+2 ≤ ... ≤ tn2 = T2.

Replacing the functions fi (t,Xi) by their the Newton polynomial within [tn, tn+1] , the associated
model can be solved by the following algorithm

Xn1
i = Xi (0) +

∑n1
j1=2

 23
12F (tj1 , Xj1)

− 4
3F (tj1−1, Xj1−1)

+ 5
12F (tj1−2, Xj1−2)

∆t, 0 ≤ t ≤ T1

Xn2
i = Xi (T1) + ∆t

Γ(α+1)

∑n2
j2=n1+3 F (tj2−2, Xj2−2) Λ1

+ ∆t
Γ(α+2)

∑n2
j2=n1+3

[
F (tj2−1, Xj2−1)
−F (tj2−2, Xj2−2)

]
Λ2

+ ∆t
2Γ(α+3)

∑n2
j2=n1+3

 F (tj2 , Xj2)
−2F (tj2−1, Xj2−1)
+F (tj2−2, Xj2−2)

Λ3

(73)



+ ∆t
Γ(α+1)

∑n2
j2=n1+3 σiXj2 (Bi (tj1−1)−Bi (tj1−2)) Λ1

+ ∆t
Γ(α+2)

∑n2
j2=n1+3

[
σiXj2−1 (Bi (tj1)−Bi (tj1−1))
−σiXj2−2 (Bi (tj1−1)−Bi (tj1−2))

]
Λ2

+ ∆t
2Γ(α+3)

∑n2
j2=n1+3

 σiXj2 (Bi (tj1+1)−Bi (tj1))
−2σiXj2−1 (Bi (tj1)−Bi (tj1−1))
+σiXj2−2 (Bi (tj1−1)−Bi (tj1−2))

Λ3

, T1 ≤ t ≤ T2. (74)

The parameters and initial conditions are given as

X1 (0) = 1000, X2 (0) = 1, X3 (0) = X4 (0) = 0, X1 (T1) = 28.03, (75)

X2 (T1) = 78.01, X3 (T1) = 593.1, X4 (T1) = 301.4,

and

N = 1000, T1 = 50, β = 0.6, µ = 0.01, τ = 0.2, γ = 0.03,

σ1 = 0.000005, σ2 = 0.008, σ3 = 0.0071, σ4 = 0.017. (76)
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The simulation of the numerical solution of the model is presented in Figure 4.

Figure 4. Numerical simulation of SEIR model for α = 0.75.

In this example, the parameters of the model are chosen such that τβ
(γ+µ)(τ+µ) > 1 which is seen

from the equation (39).

6 Conclusion

In classical calculus, analysis of the first derivative of a given function helps to understand the change
in such a function. On the other hand, this formula is used to calculate the velocity of a moving
object. However, analysis using first derivative does not always a priori provide clear indication
variation of function, therefore, an analysis of second derivative is required. The analysis of the
second derivative provides information of inflection points, local maximum and minimum. These
elementary analyses can be used to better understand spread patterns in epidemiological modelling.
A new concept was recently introduced and named Strength number that is obtained by considering
the second derivative of the nonlinear part of a given model of an infectious disease, then, the next
generation matrix methodology is used to obtain the strength number. It was argued that such
numbers could help detect waves or instability in a model. In this work, such a concept is applied
together with second derivative analysis in a simple SEIR problem. The obtained strength number
was negative, one equilibrium point for the model with second derivatives, a clear indication that
such a model could have only one wave then die out. We have used piecewise differential operators
to add stochastic behavior in the model.
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