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Abstract 19 

Places are fundamental factors in the spread of epidemics, as they are where people 20 
agglomerate and interact. This paper explores how different types of places—activity 21 
spaces at micro-level and human settlements at macro-level—impact the transmission of 22 
infections using evidences from COVID-19. We examine eleven types of activity spaces 23 
and find heterogeneous impacts across countries, yet we also find that non-essential 24 
activity spaces tend to have larger impacts than essential ones. Contrary to common 25 
beliefs, settlement size and density are not positively associated with reproduction 26 
numbers. Further, the impacts of closing activity spaces vary with settlement types and are 27 
consistently lower in larger settlements in all sample countries, suggesting more complex 28 
pattern of virus transmission in large settlements. This work takes first steps in 29 
systematically evaluating the epistemological risks of places at multiple scales, which 30 
contributes to knowledge in urban resilience, health and livability. 31 
 32 

 33 
Teaser 34 

Activity spaces and human settlement characteristics impact the spread of epidemics in 35 
multiple ways and should be considered in policy making. 36 
 37 

MAIN TEXT 38 
 39 
Introduction 40 

Humans continue to migrate to large, dense urban settlements in the past century. The consequent 41 

growth of cities brings benefits such as economies of scale and knowledge spillovers, but also 42 

increases the vulnerability of human society to risks related to people’s agglomeration and 43 

interaction such as infectious disease, pollution and crime (1, 2), for which the on-going outbreak 44 

of COVID-19 is a prominent example. In tackling these risks, places are important aspects, as the 45 

human interactions giving rise to various risks are all associated with certain physical places. To 46 
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understand the role of different types of places in the spread of risks is important for targeted 47 

policy making to contain the risks and enhance the resilience of cities.  48 

In terms of places’ epistemological risks, the COVID-19 pandemic provides worldwide data with 49 

natural experiments to investigate the spread of infectious disease at different types of places. 50 

Place characteristics at multiple scales could have an impact. At the macro-level, for instance, 51 

dense settlements lead to physical proximity among residents which is likely to generate more 52 

contacts, and large settlements connect more people—both might increase the dissemination of 53 

diseases (3-5). At the micro-level, different activity spaces, such as restaurants, museums, sports 54 

venues, are likely to be associated with different risks of disease spread, affected by the 55 

socioeconomic interactions at these locations. 56 

Despite of a large number of researches on the spread of COVID-19, the potentially varying 57 

transmission risks at different places are still not systematically investigated. Macro-scale place 58 

characteristics are rarely examined and evidences are mixed (3, 4, 6). For micro-scale places, the 59 

most relevant body of research is those on the efficacy of non-pharmaceutical interventions on 60 

COVID-19 which include the closure of various activity spaces (7-17). However, these works 61 

mostly use broad categories when estimating the impact of activity spaces, such as “non-essential 62 

businesses”, “venues” or “lock down”, which can involve a number of distinct types of spaces (7, 63 

10, 14, 18, 19). Since the closure of any activity space could affect the daily life of certain groups, 64 

the effect estimates on broad categories are insufficient for governments to make cost-effective 65 

intervention policies. As COVID-19 persists and countries have to lock down repeatedly, it is 66 

critical that we understand which types of settlements and activity spaces need more rigorous 67 

interventions than other, thus refining policies in the on-going COVID-19 and similar crisis in the 68 

future. 69 

In this work, we take the case of COVID-19 and investigate how different types of macro-level 70 

settlement characteristics and micro-level activity spaces impact the spread of infections, as well 71 

as how they interact. We examine two basic characteristics of settlements—population size and 72 

density—which have been found to affect many social quantities (5, 20), and eleven types of 73 

activity spaces commonly included in government interventions, which are schools, childcare 74 

centers, offices, non-essential retails, restaurants, bars, entertainment venues, cultural venues, 75 

religious venues, indoor sports venues and outdoor sports grounds (detailed descriptions in Table 76 

S1). To perform the analysis, we combine data from a variety of sources including COVID-19 77 

infection case data from government data portals and open data repositories, government 78 

intervention data from national and state-level government websites, and socioeconomic 79 

characteristics of settlements from various official statistics (see Section S1 for details). Four 80 

countries from different continents which are strongly hit by the pandemic are chosen as study 81 

cases, which are Japan in Asia, the United Kingdom in Europe, the United States in North 82 

America and Brazil in South America. We take settlements with population above 100,000 as 83 

samples, since many smaller settlements do have enough cases to derive reliable estimates of 84 
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instantaneous reproduction number, which is the outcome of concern in our analysis. We use data 85 

from the first pandemic wave, that is, from March to August 2020, since there could be more 86 

uncertainties confounding the analysis in later periods of the pandemic including the so-called 87 

“lockdown fatigue”, virus variants, and vaccination (9). 88 

Ideally, we would like to take continuous built-up areas as units of analysis, which can be 89 

considered as individual settlements. However, continuous built-up areas usually do not overlap 90 

with administrative boundaries, based on which infection cases and other statistics are usually 91 

published. Given the constraint, we choose the administrative or statistical units which are most 92 

similar to continuous built-up areas and where infection case data are available as the spatial units 93 

in the analysis, that are, prefectures of Japan, local authority districts of the United Kingdom, 94 

metropolitan statistical areas of the United States and municipalities of Brazil (detailed 95 

explanations on the choice of spatial units in Section S1.1-1.4). Note that the prefectures of Japan 96 

are larger than the other spatial units and usually contain more than one continuous built-up area, 97 

however, infection case data can only be consistently acquired at this level in Japan (21). 98 

Nonetheless, we prove that the results are not likely to be affected by the issue (Section S3.3). 99 

The spatial units in each country with population above 100,000 are taken as sample, leading to 100 

45 spatial units in Japan, 234 in the United Kingdom, 308 in the United States and 319 in Brazil 101 

after cleaning missing data.  102 

Our methodology is based on an econometric approach called difference-in-differences (DiD), 103 

which is widely used in examining causal relationship in social processes (22). We first estimate 104 

the causal impacts of activity space closures on the course of the epidemic, which can also be 105 

interpreted as the risks of virus transmission associated with respective spaces. This is 106 

implemented by modelling the relationship between instantaneous reproduction numbers (Rt) in 107 

the spatial units and the corresponding status of activity spaces, controlling for other government 108 

interventions including stay-at-home-orders and gathering bans. The DiD method estimates causal 109 

impact by subtracting the course of Rt in spatial units where a certain type of activity space get 110 

closed or reopened with the course of Rt in spatial units where the same type of activity space 111 

remain unchanged, given that Rt in the two groups should move in parallel trend absence of the 112 

change. By subtracting the trends, the method can rule out the impact of common behavioral 113 

changes shared by all spatial units such as increased self-protection, which could otherwise be 114 

falsely attributed to activity spaces thus inflate the estimates (10). We estimate separate models on 115 

each country to allow for heterogeneous impacts of activity spaces across countries, which might 116 

be influenced by factors including the lifestyle, culture, urban form and building design. 117 

The fact that governments might close or reopen multiple types of activity spaces together poses 118 

obstacles for identifying the impact of individual types of activity spaces (14). But as time went, 119 

there were more timing differences, especially in the reopening stage, to facilitate more nuanced 120 

analysis. Correlation analysis shows that the Kendall’s correlation coefficients between the status 121 

of activity spaces are mostly smaller than 0.8 in our study period (Fig. 1). We merge activity 122 
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space closures with correlation coefficients larger than 0.95 as one intervention, after which there 123 

are at least 180 unit-day differences between any pair of interventions in Japan (due to only 45 124 

spatial units) and 699 in the other countries. We further verify that the estimated impacts are not 125 

sensitive to removing intervention variables, suggesting manageable collinearity (Section S3.2). 126 

The DiD estimation is implemented through a two-way fixed effect model with fixed effects of 127 

days and spatial units, which is a widely used modelling method to implement DiD analysis (23). 128 

The fixed effects of spatial units can be interpreted as the intrinsic reproduction number in the 129 

spatial units absence of any voluntary or compulsory behavioral changes, based on which we 130 

estimate the impacts of settlement size and density while controlling for socioeconomic 131 

characteristics of settlements. In addition to measuring the independent impacts of micro-level 132 

activity spaces and macro-level settlement characteristics on infections, we also examine how the 133 

impacts of activity space closures interact with settlement size and density. This is implemented 134 

by repeating the DiD analysis on separate samples of relatively large and small, and high-and 135 

low-density spatial units and then comparing the effect sizes of activity space closures. More 136 

details on the specification of the models and sensitivity tests can be found in Materials and 137 

Methods and Section S3. 138 

 139 
Results  140 

Impact of micro-level activity spaces 141 

We first estimate the causal impact of closing eleven types of activity spaces on Rt by fitting a 142 

two-way fixed effect model on each country’s data, controlling for other government 143 

interventions including gathering bans and stay-at-home orders (Fig. 2, full model results in Table 144 

S2). The estimated impacts vary across countries, which could stem from varying profiles of 145 

visitors to each type of activity space in different countries, varying behaviors in the activity 146 

spaces, as well as varying physical conditions of relevant spaces. The activity space closures that 147 

show a statistically significant impact on reducing Rt in each country are: entertainment venues 148 

(53%, 4 ~ 77%) in Japan; restaurants and cultural venues (combined with indoor gathering bans 149 

whose effect is inseparable, 25%, 5 ~ 41%) and indoor sports venues (43%, 13 ~ 63%) in the 150 

United Kingdom; entertainment venues (17%, 1 ~ 31%) in the United States; and non-essential 151 

retails (20%, 9 ~ 31%) and indoor sports venues (36%, 27 ~ 43%) in Brazil. The percentage 152 

reductions in Rt are transformed from direct model outputs (as shown in Fig. 2) as 1-ex, where x 153 

denotes the direct outputs. These estimates can also be interpreted as the proportions of total 154 

infections related to the respective activity spaces, which may either happen inside these places or 155 

on the way travelling to these places.  156 

Most of the activity space closures satisfy the parallel trend assumption, meaning that the 157 

estimates are not biased by potentially different pre-trends of Rt in areas that close or reopen an 158 

activity space and those that do not (detailed methodology and results of the parallel trend test in 159 
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Section S2.2 and Table S3). The estimates are also generally robust to a number of alternative 160 

settings in the analysis, including withholding spatial units from the sample and increasing or 161 

decreasing confounding variables in the model, suggesting that they are not likely to be affected 162 

by individual influential spatial units and the correlation among variables (detailed methodology 163 

and results in Section S3.1 and S3.2). 164 

Considering that governments often need to devise strategies on closing a set of activity spaces in 165 

an epidemic, we further estimate the combined effects of multiple activity spaces. We compute 166 

the effects and uncertainties of closing all possible combinations of activity spaces in each 167 

country based on the modelling results in the last step. The full results are provided on this 168 

project’s Github repository https://github.com/lunliu454/infect_place for readers to explore. Here 169 

we present the maximum reduction in Rt that can be achieved by closing a given number of types 170 

of activity spaces (Fig. 3). Our analysis suggests that the largest reductions in Rt are achieved by 171 

closing two to six types of activity spaces, while more closures do not further bring reproduction 172 

numbers down. Governments could resort to this kind of analysis when making cost-effective 173 

intervention strategies. 174 

The combinations that generate the maximum effects are: closing schools, childcare centers, 175 

entertainment, religious, indoor sports venues and outdoor sports grounds in Japan (67%, 46 ~ 176 

80%); closing non-essential retails, restaurants, cultural venues and indoor sports venues in the 177 

United Kingdom (plus banning indoor gatherings whose effect is inseparable, 75%, 45 ~ 88%); 178 

closing schools, restaurants, entertainment and indoor sports venues in the United States (29%, 9 179 

~ 45%); and non-essential retails and outdoor sports grounds (27%, 13 ~ 38%) in Brazil. Closing 180 

these sets of activity spaces could bring Rt below 1 for previous Rt up to 3.0 (1.9 ~ 5.0) in Japan, 181 

4.0 (1.8 ~ 8.3) in the United Kingdom, 1.4 (1.1 ~ 1.8) in the United States and 1.4 (1.1 ~ 1.6) in 182 

Brazil. Note that the few activity space closures not satisfying the parallel trend assumption are 183 

excluded from this joint effect analysis since their impact estimates are not reliable (Table S3), 184 

but they may actually be able to further contribute to the reduction of Rt.  185 

Impact of macro-level settlement characteristics 186 

The results on the relationship between settlements’ population size and density and the fixed 187 

effects of spatial units are fairly consistent across the four countries (Table 1). Population size is 188 

negatively correlated with spatial unit’s fixed effect on Rt and this is statistically significant in 189 

three of the four countries, where the effect size ranges between 2.0% (1.1 ~ 3.2%) to 4.9% (2.3 ~ 190 

7.5%) reduction of Rt per one million increase of population. The impact of density is less clear, 191 

yet none of the estimates is positively significant as suggested by the common beliefs mentioned 192 

in the Introduction. These results contradict the impression that large and densely populated cities 193 

tend to be epicenters and suggest that in terms of the reproduction number, large and dense cities 194 

are not riskier, but even less. Explanations for the negative relationship between settlement size 195 
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and Rt might include better health infrastructures in large cities and people’s stronger awareness 196 

of the risk thus more cautious behavior (24, 25). 197 

Interaction between settlement characteristics and activity space closures 198 

We also examine the interaction between macro-level settlement characteristics and activity space 199 

closures, to investigate whether the impacts of closing activity spaces would differ across 200 

different types of settlements. To do this, we re-estimate the maximum joint effects of activity 201 

space closures on separate samples of relatively large and small population, and separate samples 202 

of relatively high and low density. The high/low samples are split by the median population size 203 

(174,980 people) and density (681 people per squared kilometer) of all sample spatial units, 204 

except for Japan where the population size and density are generally much higher so that we use 205 

the median of its own (314,082 people and 5,671 people per squared kilometer respectively). 206 

The comparisons are remarkably consistent across the four countries in terms of the interaction 207 

with settlement size, that the impacts of activity space closures are larger in relatively small 208 

settlements (Fig. 4A). The differences in the reductions of Rt by closing activity spaces range 209 

between 3% and 18%. The impacts are also larger in relatively low-density settlements except for 210 

in the United Kingdom and United States where the impacts are close to each other. The disparity 211 

in effect size reflects different share of infections accounted for by the specific activity spaces in 212 

different types of settlements, suggesting that a higher proportion of virus transmission in large 213 

settlements is related to places other than the specific activity spaces, which might include public 214 

transit, streets and other public spaces (26). 215 

To test whether the results hold when the population and density thresholds change, we repeat the 216 

analysis with a series of cut-off values between the first and third quantiles of population size and 217 

density in each country. The results are generally stable regardless of the threshold used to split 218 

the samples, and are particularly consistent in terms of settlement size: the effect sizes in 219 

relatively small settlements are always bigger than in large settlements in all sample countries 220 

(Fig. 4B). Similar pattern also exists with regard to density in Japan and less prominently in 221 

Brazil.  222 

 223 
Discussion  224 

Our analysis quantifies the heterogenous risks of virus transmission associated with different 225 

activity spaces and settlements using evidences from the COVID-19 pandemic, and takes the first 226 

steps towards building systematic knowledge on the epistemological risks of places at multiple 227 

scales. The results demonstrate that governments could more cost-effectively contain the 228 

pandemic by closing a relatively small set of non-essential activity spaces, and such interventions 229 

would be more effective in relatively small settlements. Besides, contrary to common beliefs, 230 

settlements with relatively large population and density are not associated with higher risks of 231 
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virus transmission. To our knowledge, this study is the first to attempt to estimate the impacts of 232 

closing individual types of activity spaces and to identify the varying effects of activity space 233 

closures in different types of settlements. 234 

Though the risk of virus transmission at different types of activity spaces can also be evaluated 235 

with mechanistic modelling (27, 28), actual human behavior could be more complicated than 236 

experimental settings and our work provides data-driven evaluations. Our results demonstrate that 237 

closing a selected set of activity spaces could reduce Rt by 27-75% in our sample countries, 238 

without imposing a full lock down. Actually, the stay-at-home order does not demonstrate a 239 

statistically significant impact in reducing Rt in three of the four countries after controlling for 240 

other interventions and day and unit fixed effects (Table S2). This contradicts some previous 241 

findings, which however either do not rule out simultaneous voluntary behavioral changes or omit 242 

certain confounders (14, 15, 19). The magnitudes of the impacts are heterogeneous across 243 

countries, which could be affected by how people behave and interact at relevant places, the 244 

socioeconomic profile of the visitors, the physical conditions of relevant facilities, the intensity of 245 

intervention enforcement and so on. For example, the small effect size in the United States and 246 

Brazil might be explained by the relatively loose enforcement and non-compliance (29, 30). The 247 

heterogeneous results suggest that while some previous works seek to derive general conclusions 248 

on the effectiveness of interventions across countries (8, 10), such conclusions could run the risk 249 

of over-simplification and be misleading for policy making in individual countries given the 250 

factors mentioned above. Despite of the heterogeneity, it is common in the four sample countries 251 

that the closures of essential places including schools, childcare centers and offices do not 252 

demonstrate statistically significant effects in reducing Rt and non-essential activity spaces tend to 253 

be more effective, suggesting that governments could consider closing non-essential activity 254 

spaces as cost-effective interventions. 255 

At the macro-level, our findings on the impacts of settlement size and density on Rt contradict the 256 

common belief that large and densely populated cities are more vulnerable to infectious disease 257 

(31). This could either because the seemingly increased connectivity and proximity among people 258 

do not actually enhance the chance for one infected person to transmit the virus to others, or such 259 

effect does exist but is offset by other positive factors of large and dense cities such as more 260 

healthcare resources driven by economy of scale and more cautious behavior of people. The exact 261 

causal chain could also involve the demography, economy even partisanship in different types of 262 

settlements (25, 32), which is subject to further study. Either way, these results lend more 263 

confidence to encouraging agglomeration of people and high-density development, as in the end, 264 

they are not associated with higher epistemological risks. 265 

The finding that specific activity spaces account for a smaller proportion of transmission in 266 

relatively large settlements suggests that the pattern of virus transmission in these settlements is 267 

more complicated, which might be related to longer travel, more contacts on public transit and 268 

streets, home transmission in crowded residences and so on. It indicates that governments might 269 
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need to take extra measures other than locking down to contain the pandemic in large cities, such 270 

as contact tracing or providing assistance to those living in poor conditions.  271 

There are a number of limitations associated with our methodology. In terms of the causal 272 

identification strategy, the DiD method requires both parallel trend and exogeneity of the 273 

treatment. While the parallel trend assumption is examined with an event-study design, the 274 

exogeneity assumption could be challenged by unobserved confounders that affect both Rt and 275 

activity space closures. Though we are able to rule out a number of confounders by including a 276 

large set of interventions as well as unit and day fixed effects, there could still be endogeneity 277 

arising from omitted unit-specific time-varying factors. For instance, a sudden outburst of cases in 278 

a hotspot may affect both governments’ interventions and local residents’ cautionary behavior 279 

which then affects Rt. 280 

Second, since the impacts of closing different types of activity spaces are estimated in one model, 281 

the results could be subject to the so-called “table 2 fallacy” which refers to that the coefficients 282 

of confounders in a model are wrongly interpreted as full causal effects while they are actually 283 

only the direct effects (33). This problem applies if decisions to close activity spaces affect each 284 

other so that they become confounders. While this is possible, we suppose such relationship 285 

should be weak since the decision to close or reopen activity spaces tend to be more directly 286 

affected by the trends of infections, instead of the status of each other. 287 

Third, we assume linear relationship between Rt and the independent variables in the entire 288 

analysis, which is a convenient assumption made by many studies on intervention effects in 289 

COVID-19 (8, 10, 12, 16, 18). However, the impact of closing one type of activity space may rely 290 

on the status of other activity spaces, since the corresponding activities could be complementary 291 

or substitutive to each other, leading to interacting effects. It is encouraging that studies which 292 

examine nonlinear relationships and sequence of interventions do not find significant patterns (8, 293 

19, 34), but the issue cannot be fully closed.  294 

By evaluating the infection risks of places, this work contributes to an emerging literature on the 295 

resilience and health of cities (35-37), as cities have become the dominant form of human 296 

settlement. Actually, health concerns have been a key factor in shaping the planning and policy in 297 

cities as early as the time of John Snow and Ebenezer Howard at the advent of modern cities. Our 298 

findings suggest that with increased human agglomeration and interaction, controlling epidemics 299 

is no longer only about confined areas such as hospitals, residences or the water supply system, 300 

but also the entire urban space. Understanding the linkage between places, human activities and 301 

diseases would be important for long- and short-term policy making in public health, urban 302 

planning, urban economy and other relevant fields.  303 

 304 
Materials and Methods 305 
 306 
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Data. We curate a data set combining daily infection cases, government interventions (including 307 

activity space closures, stay-at-home orders and gathering bans) and the spatial, demographic and 308 

economic characteristics of the spatial units in our study, from the onset of the pandemic till 309 

August 15 2020. The infection case data are sourced from Japan Broadcasting Corporation’s case 310 

reports, the UK government, Johns Hopkins University and the Brazilian Ministry of Health. The 311 

timetable of government interventions is manually collected from the websites of national and 312 

state-level governments, which are the main levels of government making decisions on 313 

interventions. The settlement-related information is gathered from a number of official websites. 314 

More details on data sources are provided in Section S1. 315 

Estimating impacts of closing individual types of activity spaces. The causal impacts of 316 

closing individual types of activity spaces across all spatial units and subgroups of spatial units in 317 

a country are estimated with a two-way fixed effect model specified as follows 318 

 319 

  (1) 320 

where log(Rc,i,t) is the log-transformed instantaneous reproduction number in unit i of country c 321 

on day t; Xc,i,t is a vector denoting the status of the eleven types of activity spaces and βc denotes 322 

the corresponding coefficients to estimate. We log-transform Rc,i,t following the practice of 323 

relevant works (10, 14), based on the plausible assumption that the reduction of Rc,i,t by the 324 

closure of activity spaces should be proportional to the proportion of contacts avoided instead of 325 

an absolute value, and the impacts should be smaller when Rc,i,t is already low. Zc,i,t and θc denote 326 

the status of five other government interventions and their coefficients (detailed description of 327 

these interventions in Table S1); αc,i and τc,t denote the unit and time fixed effects, respectively; 328 

and εc,i,t denotes the error term. For the uncertainty over the parameters, we estimate robust 329 

standard errors allowing for εc,i,t to cluster at the unit level, to account for heterogeneity in the 330 

treatment effects (38). 331 

Estimating joint impacts of closing multiple types of activity spaces. The point estimates of 332 

the joint impacts are computed by summing the corresponding coefficients estimated by Eq. 1: 333 

, where βc,s denotes the coefficient of closing activity space s in country c and P denotes a 334 

set of activity spaces. The standard errors are computed from the robust standard errors and 335 

covariances as follows 336 

 337 

  (2) 338 

 339 

where SEc,P denotes the standard error of the joint impacts of set P in country c; SEc,s denotes the 340 

robust standard error of closing activity space s estimated by Eq. 1; and COVc,s,s’ is the covariance 341 

between the impacts of activity space s and s’. 342 
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Estimating impacts of macro-level settlement characteristics. We take the unit fixed effects 343 

estimated by Eq. 1, which can be interpreted as the intrinsic reproduction number in each spatial 344 

unit, and model their relationship with the size and density of settlements while controlling for the 345 

proportion of elder population (over 65 or 60 years old depending on data availability), proportion 346 

of Black and Asian (in the United Kingdom and the United States only), the average income of 347 

residents and the per capita gross domestic product, using simple linear regression. 348 

(3) 349 

where DENSITYc,i, POPULATIONc,i, OLDc,i, BLACKc,i, ASIANc,i, INCOMEc,i, GDPc,i denote the 350 

density, population size, proportion of elder population, proportion of Black, proportion of Asian, 351 

residents’ income and per capita gross domestic product in unit i; σc,1 to σc,7 are their coefficients; 352 

ξc,i is the error term. 353 
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Figures and Tables 551 

 552 
Fig. 1. Correlation between the status of activity spaces and other government interventions. 553 
The matrices show pairwise Kendall’s correlation coefficients between the status of activity 554 
spaces and other government interventions across the spatial units in each country during the 555 
study period. Bold texts indicate the activity spaces and regular texts are the other government 556 
interventions that we control for. Grey cells indicate missing data. The correlation coefficients are 557 
estimated based on samples excluding unit-day observations where the coefficient of variance for 558 
Rt estimate is larger than 0.3 (suggesting unreliable estimates). 559 
  560 
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 561 
Fig. 2. Estimated impacts of closing individual types of activity spaces. The numbers are direct 562 

model outputs on the relationship between activity space status (0, 0.5 or 1) and Δlog(Rt). Full 563 
results are presented in Table S2. 564 
  565 
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 566 
Fig. 3. Maximum joint impacts of closing a number of activity spaces. We show the maximum 567 
impacts that could be achieved by closing a given number of types of activity spaces, till the 568 
maximum joint impacts are produced. 569 
  570 
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 571 

Fig. 4. Impact of activity space closures in settlements with different population size and 572 

density. The error bars and ribbons indicate 95% confidence intervals.  573 

  574 
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Table 1. Settlement characteristics on the fixed effects of spatial units 575 

 576 

Characteristics Japan United 
Kingdom 

United 
States 

Brazil 

Size -0.118 
(0.113) 

-0.029** 
(0.0111) 

-0.0219*** 
(0.00531) 

-
0.0506*** 
(0.0139) 

Density -0.203 
(0.392) 

-0.00108 
(0.00539) 

0.00453 
(0.0201) 

-0.0184** 
(0.00648) 

Proportion of elderly 
population 

-0.102 
(2.29) 

-0.0325 
(0.2) 

0.535*** 
(0.155) 

-0.228 
(0.387) 

Proportion of Black - -0.105 
(0.425) 

-0.000726 
(0.000542) 

- 

Proportion of Asian - 0.162 
(0.124) 

0.00304* 
(0.00148) 

- 

Personal income -0.125 
(0.105) 

- -
0.00686*** 
(0.000926) 

0.105* 
(0.0435) 

GDP per capita 0.00494 
(0.00855) 

-0.00123* 
(0.000592) 

0.002** 
(0.000635) 

-0.000228 
(0.000374) 

(Intercept) 0.781 
(1.68) 

-0.158** 
(0.0514) 

0.101** 
(0.0386) 

0.217*** 
(0.0463) 

Observations 44 234 307 319 

R-squared 0.294 0.0622 0.345 0.125 

Adjusted R-squared 0.198 0.0373 0.329 0.111 

*p<0.05, **p<0.01, ***p<0.001 577 
 578 
Note: Results in this table are based on samples excluding outliers (Shimane in Japan, Mendip in 579 
the United Kingdom, and Indianapolis-Carmel-Anderson, Pittsfield and San Angelo in the United 580 
Sates), so that the residuals are normally distributed (Shapiro-Wilk test p>0.05). Results on full 581 
samples are very similar (shown in Table S4). The variance inflation factors are all below 7. 582 
 583 
 584 
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