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Abstract51

Critical illness in COVID-19 is caused by inflammatory lung injury, mediated by the host immune52

system. We and others have shown that host genetic variation influences the development of illness53

requiring critical care1 or hospitalisation2;3;4 following SARS-Co-V2 infection. The GenOMICC54

(Genetics of Mortality in Critical Care) study is designed to compare genetic variants in critically-ill55

cases with population controls in order to find underlying disease mechanisms.56

Here, we use whole genome sequencing and statistical fine mapping in 7,491 critically-ill cases57

compared with 48,400 population controls to discover and replicate 22 independent variants that58

significantly predispose to life-threatening COVID-19. We identify 15 new independent associations59

with critical COVID-19, including variants within genes involved in interferon signalling (IL10RB,60

PLSCR1 ), leucocyte differentiation (BCL11A), and blood type antigen secretor status (FUT2 ).61

Using transcriptome-wide association and colocalisation to infer the effect of gene expression62

on disease severity, we find evidence implicating expression of multiple genes, including reduced63

expression of a membrane flippase (ATP11A), and increased mucin expression (MUC1 ), in critical64

disease.65

We show that comparison between critically-ill cases and population controls is highly efficient for66

genetic association analysis and enables detection of therapeutically-relevant mechanisms of disease.67

Therapeutic predictions arising from these findings require testing in clinical trials.68

2

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 2, 2021. ; https://doi.org/10.1101/2021.09.02.21262965doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.02.21262965
http://creativecommons.org/licenses/by-nd/4.0/


Introduction69

Critical illness in COVID-19 is both an extreme disease phenotype, and a relatively homogeneous70

clinical definition including patients with hypoxaemic respiratory failure5 with acute lung injury,6
71

and excluding many patients with non-pulmonary clinical presentations7 who are known to have72

divergent responses to therapy.8 In the UK, the critically-ill patient group is younger, less likely73

to have significant comorbidity, and more severely affected than a general hospitalised cohort,5
74

characteristics which may amplify observed genetic effects. In addition, since development of critical75

illness is in itself a key clinical endpoint for therapeutic trials,8 using critical illness as a phenotype76

in genetic studies enables detection of directly therapeutically-relevant genetic effects.1
77

Using microarray genotyping in 2,244 cases, we previously reported that critical COVID-19 is78

associated with genetic variation in the host immune response to viral infection (OAS1, IFNAR2,79

TYK2 ) and the inflammasome regulator DPP9.1 In collaboration with international groups, we80

recently extended these findings to include a variant near TAC4 (rs77534576).4 Several variants81

have been associated with milder phenotypes, such as the need for hospitalisation or management82

in the community, including the ABO blood type locus,3 a pleiotropic inversion in chr17q21.31,9
83

and associations in 5 additional loci including the T lymphocyte-associated transcription factor,84

FOXP4.4 An enrichment of rare loss-of-function variants in candidate interferon signalling genes has85

been reported,2 but this has yet to be replicated at genome-wide significance thresholds.10;11
86

We established a partnership between the GenOMICC Study and Genomics England to perform87

whole genome sequencing (WGS) to improve resolution and deepen fine-mapping of significant88

signals to enhance the biological insights into critical COVID-19. Here, we present results from a89

cohort of 7,491 critically-ill patients from 224 intensive care units, compared with 48,400 population90

controls, describing discovery and validation of 22 gene loci for susceptibility to life-threatening91

COVID-19.92

Results93

Study design94

Cases were defined by the presence of COVID-19 critical illness in the view of the treating clinician -95

specifically, the need for continuous cardio-respiratory monitoring. Patients were recruited from96

224 intensive care units across the UK in the GenOMICC (Genetics Of Mortality In Critical Care)97

study. As a control population, unrelated participants recruited to the 100,000 Genomes Project98

were selected, excluding those with a known positive COVID-19 test, as severity information was99

not available. The 100,000 Genomes Project cohort (100k cohort) is comprised of UK individuals100

with a broad range of rare diseases or cancer and their family members. We included an additional101

prospectively-recruited cohort of volunteers (mild cohort) who self-reported testing positive for102

SARS-CoV-2 infection, and experienced mild or asymptomatic disease.103

GWAS analysis104

Whole genome sequencing and subsequent alignment and variant calling was performed for all105

subjects as described below (Methods). Following quality control procedures, we used a logistic106

mixed model regression, implemented in SAIGE,12 to perform association analyses with unrelated107
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chr:pos (hg38) rsid REF ALT RAF pop OR ORCI Pval HetPVal Consequence Gene Expression
1:155066988 rs114301457 C T* 0.0058 EUR 2.40 1.82-3.16 6.8×10−10 1 synonymous EFNA4 -
1:155175305 rs7528026 G A* 0.032 META 1.39 1.24-1.55 7.16×10−9 0.96 intron TRIM46 -
1:155197995 rs41264915 A* G 0.89 EUR 1.28 1.19-1.37 1.02×10−12 0.29 intron THBS3 MUC1
2:60480453 rs1123573 A* G 0.61 META 1.13 1.09-1.18 9.85×10−10 0.29 intron BCL11A -
3:45796521 rs2271616 G T* 0.14 EUR 1.29 1.21-1.37 9.9×10−17 0.0011 5’ UTR SLC6A20 SLC6A20, CCR5
3:45859597 rs73064425 C T* 0.077 EUR 2.71 2.51-2.94 1.97×10−133 0.010 intron LZTFL1 LZTFL1, CCR9
3:146517122 rs343320 G A* 0.081 EUR 1.25 1.16-1.35 4.94×10−9 0.53 missense PLSCR1 -
5:131995059 rs56162149 C T* 0.17 EUR 1.20 1.13-1.26 7.65×10−11 0.17 intron ACSL6 ACSL6, FNIP1
6:32623820 rs9271609 T* C 0.65 EUR 1.14 1.09-1.19 3.26×10−9 0.24 upstream HLA-DQA1 HLA-DQA1, HLA-DQA2
6:41515007 rs2496644 A* C 0.015 META 1.45 1.32-1.60 7.59×10−15 0.49 intron LINC01276 -
9:21206606 rs28368148 C G* 0.013 EUR 1.74 1.45-2.09 1.93×10−9 1 missense IFNA10 -
11:34482745 rs61882275 G* A 0.62 EUR 1.15 1.10-1.20 1.61×10−10 0.29 intron ELF5 -
12:132489230 rs56106917 GC G* 0.49 EUR 1.13 1.09-1.18 2.08×10−9 0.90 upstream FBRSL1 -
13:112889041 rs9577175 C T* 0.23 EUR 1.18 1.12-1.24 3.71×10−11 0.10 downstream ATP11A ATP11A
15:93046840 rs4424872 T* A 0.0079 EUR 2.37 1.87-3.01 8.61×10−13 1.82×10−7 intron RGMA -
16:89196249 rs117169628 G A* 0.15 EUR 1.19 1.12-1.26 4.4×10−9 0.80 missense SLC22A31 SLC22A31, CDH15
17:46152620 rs2532300 T* C 0.77 EUR 1.16 1.10-1.22 4.19×10−9 0.32 intron KANSL1 ARHGAP27
17:49863260 rs3848456 C A* 0.029 EUR 1.50 1.33-1.70 4.19×10−11 0.14 regulatory . -
19:4717660 rs12610495 A G* 0.31 EUR 1.32 1.27-1.38 3.91×10−36 0.069 missense DPP9 -
19:10305768 rs73510898 G A* 0.093 EUR 1.28 1.19-1.37 1.57×10−11 0.011 intron ZGLP1 -
19:10352442 rs34536443 G C* 0.050 EUR 1.50 1.36-1.65 6.98×10−17 0.63 missense TYK2 TYK2, PDE4A
19:48697960 rs368565 C T* 0.44 EUR 1.15 1.1-1.2 3.55×10−11 0.22 intron FUT2 FUT2, NTN5, RASIP1
21:33230000 rs17860115 C A* 0.32 EUR 1.24 1.19-1.3 9.69×10−22 0.63 5’ UTR IFNAR2 -
21:33287378 rs8178521 C T* 0.27 EUR 1.18 1.12-1.23 3.53×10−12 0.67 intron IL10RB -
21:33959662 rs35370143 T TAC* 0.083 EUR 1.26 1.17-1.36 1.24×10−9 1 intron LINC00649 -

Table 1: Lead variants from independent regions in the per-population GWAS and trans-ancestry
meta-analysis. Variants and the reference and alternate allele are reported with hg38 build coordi-
nates. Asterisk (*) indicates the risk allele. For each variant, we report the risk allele frequency
in Europeans (RAF), the odds ratio and 95% confidence interval, and the association P -value.
Consequence indicates the worst consequence predicted by VEP99, and Gene indicates the VEP99-
predicted gene, but not necessarily the causal mediator. Expression indicates genes where is evidence
of gene expression affecting COVID-19 severity, found by TWAS and colocalisation analysis.

individuals (critically-ill cases n = 7, 491, controls (100k) n = 46, 770, controls (mild COVID-108

19) n = 1, 630) (Methods, Supplementary Table 2). 1,339 of these cases were included in the109

primary analysis for our previous report.1 Genome wide association studies (GWAS) were performed110

separately for genetically predicted ancestry groups (European - EUR, South Asian - SAS, African111

- AFR, East Asian - EAS, see Methods). Subsequently, we conducted inverse-variance weighted112

fixed effects meta-analysis across the four predicted ancestry cohorts using METAL13 (Methods).113

In order to reduce the risk of spurious associations arising from genotyping or pipeline errors, we114

required supporting evidence from variants in linkage disequilibrium for all genome-wide significant115

variants: observed z-scores for each variant were compared to imputed z-scores for the same variant,116

with discrepant values being excluded (see Methods, Supplementary Figure 12).117

In population-specific analyses, we discovered 22 independent genome-wide significant associations118

in the EUR ancestry group (Figure 1, Supplementary Figure 11 and Table 1) at a P -value threshold119

adjusted for multiple testing for 2,264,479 independent linkage disequilibrium-pruned genetic variants:120

2.2× 10−08 (Supplementary Table 3). The strong association at 3p21.31 also reached genome-wide121

significance in the SAS ancestry group (Supplementary Figure 11).122

In trans-ancestry meta-analysis, we identified an additional three loci with genome-wide significant123

associations (Figure 1, Table 1). We tested the meta-analysed set of 25 loci for heterogeneity of124

effect size between predicted ancestries and detected significant (at P < 1.83× 10−3) evidence for125

heterogeneity for two variants (Table 1, Supplementary Figure 13).126
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Figure 1: GWAS results for EUR ancestry group, and trans-ancestry meta-analysis. Manhattan
plots are shown on the left and quantile–quantile (QQ) plots of observed versus expected P values
are shown on the right, with genomic inflation (λ) displayed for each analysis. Highlighted results in
blue in the Manhattan plots indicate variants that are LD-clumped (r2=0.1, P2=0.01, EUR LD)
with the lead variants at each locus. Gene name annotation by Variant Effect Predictor (VEP)
indicates genes impacted by the predicted consequence type of each lead variant. The red dashed
line shows the Bonferroni-corrected P -value=2.2× 10−8.
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chr:pos (hg38) rsid REF ALT OR ORCI Pval ORhgi.23m ORCIhgi.23m Pvalhgi.23m Gene Citation
1:155066988 rs114301457 C T 2.40 1.81-3.18 1.51×10−9 1.46 1.21-1.77 0.00011 * EFNA4 -
1:155175305 rs7528026 G A 1.39 1.24-1.55 7.16×10−9 1.14 1.07-1.22 0.00012 * TRIM46 -
1:155197995 rs41264915 A G 0.80 0.76-0.86 3.79×10−12 0.9 0.87-0.933 1.51×10−9 * THBS3 -
2:60480453 rs1123573 A G 0.88 0.85-0.92 9.85×10−10 0.95 0.93-0.97 0.000018 * BCL11A -
3:45796521 rs2271616 G T 1.26 1.19-1.34 2.45×10−15 1.11 1.07-1.15 4.95×10−9 * SLC6A20 (4)
3:45859597 rs73064425 C T 2.52 2.35-2.70 2.18×10−152 1.46 1.4-1.51 1.02×10−77 * LZTFL1 3

3:146517122 rs343320 G A 1.24 1.15-1.33 1.52×10−8 1.08 1.04-1.13 0.00028 * PLSCR1 -
5:132441275 rs10066378 T C 1.20 1.13-1.27 4.48×10−10 1.05 1.02-1.08 0.00074 * IRF1-AS1 -
6:32623820 rs9271609 T C 0.88 0.84-0.92 1.27×10−8 1 0.98-1.03 0.89 HLA-DQA1 -
6:41515007 rs2496644 A C 0.69 0.63-0.76 7.59×10−15 0.87 0.83-0.92 3.17×10−7 * LINC01276 -
9:21206606 rs28368148 C G 1.74 1.45-2.1 4.09×10−9 1.21 1.07-1.37 0.0024 IFNA10 -
11:34482745 rs61882275 G A 0.87 0.84-0.91 1.62×10−11 0.93 0.91-0.95 1.9×10−10 * ELF5 -
12:132479205 rs4883585 G A 1.13 1.09-1.18 1.12×10−9 1.04 1.02-1.06 0.00047 * FBRSL1 -
13:112889041 rs9577175 C T 1.18 1.13-1.23 1.61×10−12 1.07 1.04-1.09 1.29×10−6 * ATP11A -
15:93046840 rs4424872 T A 0.64 0.53-0.76 1.99×10−6 - - - RGMA -
16:89196249 rs117169628 G A 1.18 1.12-1.25 6.04×10−9 1.1 1.07-1.14 6.57×10−9 * SLC22A31 -
17:46152620 rs2532300 T C 0.87 0.82-0.91 1.4×10−8 0.92 0.89-0.94 2.49×10−9 * KANSL1 9

17:49863260 rs3848456 C A 1.42 1.27-1.58 1.47×10−10 1.15 1.09-1.21 1.34×10−7 * . 4

19:4717660 rs12610495 A G 1.32 1.27-1.38 6.44×10−39 1.11 1.09-1.14 5.74×10−19 * DPP9 1

19:10305768 rs73510898 G A 1.24 1.16-1.33 1.47×10−9 1.08 1.04-1.12 0.00016 * ZGLP1 -
19:10352442 rs34536443 G C 1.50 1.37-1.66 4.22×10−17 1.22 1.15-1.29 4.06×10−11 * TYK2 1

19:48697960 rs368565 C T 1.13 1.09-1.18 3.74×10−10 1.04 1.02-1.06 0.00087 * FUT2 -
21:33230000 rs17860115 C A 1.26 1.21-1.31 6.28×10−28 1.11 1.08-1.13 1.77×10−18 * IFNAR2 1

21:33287378 rs8178521 C T 1.17 1.12-1.22 4.23×10−12 1.06 1.03-1.09 8.02×10−6 * IL10RB -
21:33914436 rs12626438 A G 1.22 1.14-1.31 1.78×10−8 1.1 1.06-1.14 2.33×10−7 * LINC00649 -

Table 2: Replication in a combined data from external studies - combined meta-analysis of HGI
freeze 6 B2 and 23andMe. Odds ratios and P -values are shown for variants in LD with the lead
variant that were genotyped/imputed in both sources. Chromosome, reference and alternate allele
correspond to the build hg38. An asterisk (*) next to the HGI and 23andme meta-analysis P -value
indicates that the lead signal is replicated with P -value<0.002 with a concordant direction of effect.
Citation lists the first publication of confirmed genome-wide associations with critical illness or (in
brackets) any COVID-19 phenotype.

Replication127

Replication was performed using summary statistics generously shared by collaborators: data from128

the COVID-19 Host Genetics Initiative (HGI) data freeze 6 were combined using meta-analysis129

with data shared by 23andMe (Methods). Although the HGI programme included an analysis130

intended to mirror the GenOMICC study (analysis "A2"), there are currently insufficient cases131

from other sources available to attempt replication, so we used the broader hospitalised phenotype132

(analysis "B2") for replication. We removed signals in the HGI data derived from GenOMICC cases133

using mathematical subtraction (see Methods) to ensure independence. Using LD clumping to find134

variants genotyped in both the discovery and replication studies, we required P < 0.002 (0.05/25)135

and concordant direction of effect (Table 2) for replication.136

We replicated 22 of the 25 significant associations identified in the population specific and/or137

trans-ancestry GWAS. Two of the three loci not replicated correspond to rare alleles that may not be138

well represented in the replication datasets which are dominated by SNP genotyping data. Although139

not replicated, for rs28368148 (9:21206606:C:G, IFNA10 ) we observed both a consistent direction140

of effect and odds ratio. The third locus is within the human leukocyte antigen (HLA) locus (see141

below).142

We inferred credible sets of variants using Bayesian fine-mapping with susieR14, by analysing the143
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GWAS summaries of 17 3Mbp regions that were flanking groups of lead signals. We obtained 22144

independent credible sets of variants for EUR and one for SAS that each had posterior inclusion145

probability > 0.95.146

Fine mapping of the association signals revealed putative causal variants for several genes (See147

Supplementary Information). For example, we detected variants at 3q24 and 9p21.3 predicted to148

be missense mutations by Variant Effect Predictor (VEP). These impact PLSCR1 and IFNA10149

respectively, and both are predicted to be deleterious by the Combined Annotation Dependent150

Depletion (CADD) tool15 (PLSCR1 (chr3:146517122:G:A, rs343320,p.His262Tyr, OR:1.24, 95%CIs151

[1.15-1.33], CADD:22.6; IFNA10 (chr9:21206606:C:G, rs28368148,p.Trp164Cys, OR:1.74, 95% CIs152

[1.45-2.09], CADD:23.9). Structural predictions for these loci suggest functional effects (Figure 3153

and Supplementary Figure 15.154

Gene burden testing155

To assess the contribution of rare variants to critical illness, we performed gene-based analysis using156

SKAT-O as implemented in SAIGE-GENE16, using a subset of 12,982 individuals from our cohort157

(7,491 individuals with critical COVID-19 and 5,391 controls) for which the genome sequencing158

data were processed with the same alignment and variant calling pipeline. We tested the burden of159

rare (MAF<0.5%) variants considering the predicted variant consequence type. We assessed burden160

using a strict definition for damaging variants (high-confidence loss-of-function (pLoF) variants as161

identified by LOFTEE17) and a lenient definition (pLoF plus missense variants with CADD ≥ 10)15
162

, but found no significant associations at a gene-wide significance level. All individual rare variants163

included in the tests had P -values >10−5.164

We then further examined the association with 13 genes involved in the regulation of type I and165

III interferon immunity that were implicated in critical COVID-19 pneumonia2 but, as with other166

recent studies10, we did not find any significant gene burden test associations (tests for all genes167

had P -value>0.05, Supplementary File AVTsuppinfo.xlsx). We also did not replicate the reported168

association10 for the toll-like receptor 7 (TLR7 ) gene.169

Transcriptome-wide association study170

In order to infer the effect of genetically-determined variation in gene expression on disease sus-171

ceptibility, we performed a transcriptome-wide association study (TWAS) using gene expression172

data (GTExv8) for two disease-relevant tissues, lung and whole blood. We found 14 genes with173

significant association between predicted expression and critical COVID-19 in the lung and 6 in174

whole blood analyses (Supplementary File: TWAS.xlsx). To increase statistical power using eQTLs175

from multiple tissues, we performed a TWAS meta-analysis using all available tissues in GTExv8,176

revealing 51 transcriptome-wide significant genes. Since TWAS uses a composite signal derived177

from multiple eQTLs, we used colocalisation to find specific eQTLs in whole blood (eqtlGen and178

GTExv8) and lung (GTExv818) which share the same signal with GWAS (EUR) associations. We179

found 16 genes which significantly colocalise in at least one of the studied tissues, shown in Figure 2.180

We repeated the TWAS analysis using models of intron excision rate from GTExv8 to obtain splicing181

TWAS. We found 40 signals in lung, affecting 16 genes and 20 signals in whole blood which affect182

9 genes. In a meta-analysis of splicing TWAS using all GTExv8 tissues, we found 91 significant183

introns in a total of 33 genes. Using GTExv8 lung and whole blood sqtls to find colocalising184
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signals with splicing TWAS significant results, we found 11 genes with colocalising splicing signals185

(Supplementary File: TWAS.xlsx).186

Figure 2: Gene-level Manhattan plot showing results from TWAS meta-analysis and highlighting
genes that colocalise with GWAS signals or have strong metaTWAS associations. Highlighting
color is different for lung and blood tissue data that were used for colocalisation. Arrows show
direction of change in gene expression associated with an increased disease risk. Red dashed line
shows significance threshold at P < 2.3× 10−6.

HLA region187

To investigate the contribution of specific HLA alleles to the observed association in the HLA region,188

we imputed HLA alleles at a four digit (two-field) level using HIBAG19. The only allele that reached189

genome-wide significance was HLA-DRB1*04:01 (OR = 0.80, 95%CI = 0.75− 0.86, P = 1.6× 10−10
190

in EUR), which has a stronger P -value than the lead SNP in the region (OR : 0.88, 95%CIs :191

0.84 − 0.92, P = 3.3 × 10−9 in EUR) and is a better fit to the data (AICDRB1∗04:01 = 30241.34,192

AICleadSNP = 30252.93). Results are shown in supplementary figure 25.193

Discussion194

We report 22 replicated genetic associations with life-threatening COVID-19, and 3 additional loci,195

discovered in only 7,491 cases. This demonstrates the efficiency of the design of the GenOMICC196

study, which is an open-source international research programme20 focusing on critically-ill patients197

with infectious disease and other critical illness phenotypes (https://genomicc.org). By using whole198

genome sequencing we were able to detect multiple distinct signals with high confidence for several199

of the associated loci, in some cases implicating different biological mechanisms.200

Several variants associated with life-threatening disease are linked to interferon signalling. A coding201

variant in a ligand, IFNA10A, and reduced expression of its receptor IFNAR2 (Figure 2), were202

associated with critical COVID-19. The narrow failure of replication for the IFNA10 variant203
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(rs28368148, replication P = 0.00243, significance threshold P < 0.002) may be due to limited power204

in the replication cohort. The lead variant in TYK2 in whole genome sequencing is a well-studied205

protein-coding variant with reduced phosphorylation activity, consistent with that reported recently,4
206

but associated with significantly increased TYK2 expression (Figure 2, Methods). Fine mapping207

reveals a significant critical illness association with an independent missense variant in IL10RB, a208

receptor for Type III (lambda) interferons (rs28368148,p.Trp164Cys, Table 1). Overall, variants209

predicted to be associated with reduction in interferon signalling are associated with critical disease.210

Importantly, systemic administration of interferon in a large clinical trial, albeit late in disease, did211

not reduce mortality.21
212

Phospholipid scramblase 1 (PLSCR1 ; chr3:146517122:G:A) functions as a nuclear signal for the213

antiviral effect of interferon,22 and has been shown to control replication of other RNA viruses214

including vesicular stomatitis virus, encephalomyocarditis virus and Influenza A virus.23;22 The risk215

allele at the lead variant (chr3:146517122:G:A, rs343320) encodes a substitution, H262Y, which216

is predicted to disrupt the non-canonical nuclear localisation signal24 by eliminating a hydrogen217

bond with importin (Figure 3). Deletion of this nuclear localisation signal has been shown to218

prevent neutrophil maturation.25 Although PLSCR1 is strongly up-regulated when membrane lipid219

asymmetry is lost (see below), it may not act directly on this process.26
220

We report significant associations in several genes implicated in B-cell lymphopoesis and differentia-221

tion of myeloid cells. BCL11A is essential in B- and T-lymphopoiesis27 and promotes plasmacytoid222

dendritic cell differentiation.28 TAC4, reported previously,4 encodes a regulator of B-cell lymphopoe-223

sis29 and antibody production,30 and promotes survival of dendritic cells.31 Finally, although224

the strongest fine mapping signal at 5q31.1 (chr5:131995059:C:T, rs56162149) is in an intron of225

ACSL6 (locus, p), the credible set includes a missense variant in CSF2 of uncertain significance226

(chr5:132075767:T:C). CSF2 encodes granulocyte-macrophage colony stimulating factor, a key227

differentiation factor in the mononuclear phagocyte system which is strongly up-regulated in critical228

COVID-19,32 and is already under investigation as a target for therapy.33
229

Several new genetic associations implicate genes known to be involved in lung disease. The second230

variant in the credible set at 13q14 (chr13:112882313:A:G, rs1278769, in ATP11A), has been reported231

as a lead variant for idiopathic pulmonary fibrosis.34 ATP11A encodes a flippase which maintains232

the asymmetric distribution of phospholipids in cell membranes;35 disruption of this asymmetry233

is a phagocytic signal on apoptotic cells, and is required for platelet activation.36;37 TWAS and234

colocalisation demonstrate that genetic variants predicted to decrease expression of ATP11A in lung235

are associated with critical illness. A combination of fine mapping, colocalisation with eQTL signals236

(GTEx and eQTLgen) and TWAS results provide evidence in support of MUC1 as the mediator of237

the association with rs41264915 (Table 1). This may indicate an important role for mucins in the238

development of critical illness in COVID-19. The direction of effect (Figure 2) suggests that agents239

that reduce MUC1 expression, and by extension its abundance, may be a therapeutic option. Finally,240

the association on 11p13 (rs61882275) includes GTEx eQTL for the lung fibroblast transcription241

factor ELF5 in lung tissue, and the gene encoding the antioxidant enzyme catalase (CAT ) in whole242

blood with evidence of colocalisation in both signals ( supplementary material: TWAS.xlsx).18 The243

protective allele at this locus is weakly associated with reduced lung function in a previous GWAS.38
244

FUT2 encodes alpha-(1,2)fucosyltransferase, which controls the secretion of ABO blood type glycans245

into body fluids and expression on epithelial surfaces. An association with critical COVID-19 was246

reported previously in a candidate gene association study by Mankelow et al.39 The credible set for the247
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a

b

Figure 3: (a) Predicted structural consequences of lead variant at PLSCR1. Left panel shows
the crystal structure of PLSCR1 nuclear localization signal (orange, Gly257–Ile266, numbering
correspond to UniProt entry O15162) in complex with Importin α (blue), Protein Data Bank (PDB)
ID 1Y2A. Side chains of PLSCR1 are shown as connected spheres with carbon atoms coloured in
orange, nitrogens in blue and oxygens in red. Hydrogen atoms were not determined at this resolution
(2.20 Å) and are not shown. Right panel: a closeup view showing side chains of PLSCR1 Ser260,
His262 and Importin Glu107 as sticks. Distance (in Å) between selected atoms (PLSCR1 His262
Nε2 and Importin Glu107 carboxyl O) is indicated. A hydrogen bond between PLSCR1 His262
and Importin Glu107 is indicated with a dashed line. The risk variant is predicted to eliminate this
bond, disrupting nuclear import, an essential step for effect on antiviral signalling22 and neutrophil
maturation.25 (b) Regional detail showing fine-mapping to separate two adjacent independent signals.
Top two panels: variants in linkage disequilibrium with the lead variants shown. The loci that are
included in two independent credible sets are displayed with black outline circles. Bottom panel:
locations of protein-coding genes, coloured by TWAS P -value.
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FUT2 locus includes rs492602 (chr19:48703160:A:G) which is linked to a stop codon gain mutation248

(chr19:48703417:G:A), leading to the well-described non-secretor phenotype in homozygotes.40;41
249

We show that the stop-gain, non-secretor allele is protective against life-threatening COVID-19.250

The protective variant in our study has been previously reported to protect against other viruses251

(rotavirus,42 mumps and common colds43), to enhance antibody responses to polyomavirus BK44
252

and to increase susceptibility to infection with some encapsulated bacteria.45
253

Limitations254

In contrast to microarray genotyping, whole genome sequencing is rapidly evolving and a relatively255

new technology for genome-wide association studies, with relatively few sources of population256

controls. We used selected controls from the 100,000 genomes project, sequenced on a different257

platform (illumina HiSeqX) from the cases (illumina NovaSeq6000)(Supplementary Table 1). To258

minimise the risk of false positive associations arising due to sequencing or genotyping errors, we259

required all significant associations to be supported by local variants in linkage disequilibrium,260

which may be excessively stringent (see Methods). Although this approach may remove some true261

associations, our priority is to maximise confidence in the reported signals. Of 25 variants meeting262

this requirement, 22 are replicated in an independent study, and the remaining 3 may well be true263

associations that have failed due to a lack of coverage or power in the replication dataset.264

The design of our study incorporates genetic signals for every stage in the disease progression265

into a single phenotype. This includes exposure, viral replication, inflammatory lung injury and266

hypoxaemic respiratory failure. Although we can have considerable confidence that the replicated267

associations with critical COVID-19 we report are robust, we cannot determine at which stage in268

the disease process, or in which tissue, the relevant biological mechanisms are active, which can have269

therapeutic implications.270

Conclusions271

The genetic associations here implicate new biological mechanisms underlying the development of272

life-threatening COVID-19, several of which may be amenable to therapeutic targeting. In the273

context of the ongoing global pandemic, translation to clinical practice is an urgent priority. As274

with our previous work, large-scale randomised trials are essential before translating our findings275

into clinical practice.276
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Recruitment of controls348

Mild/asymptomatic controls349

Participants were recruited to the mild COVID-19 cohort on the basis of having experienced mild350

(non-hospitalised) or asymptomatic COVID-19. Participants volunteered to take part in the study351

via a microsite and were required to self-report the details of a positive COVID-19 test. Volunteers352

were prioritised for genome sequencing based on demographic matching with the critical COVID-19353

cohort considering self-reported ancestry, sex, age and location within the UK. We refer to this354

cohort as the covid-mild cohort.355

100,000 Genomes project controls356

Participants were enrolled in the 100,000 Genomes Project from families with a broad range of357

rare diseases, cancers and infection by 13 regional NHS Genomic Medicine Centres across England358

and in Northern Ireland, Scotland and Wales. For this analysis, participants for whom a positive359

SARS-CoV-2 test had been recorded as of March, 2021 were not included due to uncertainty in the360

severity of COVID-19 symptoms. Only participants for whom genome sequencing was performed361

from blood derived DNA were included and participants with haematological malignancies were362

excluded to avoid potential tumour contamination.363

DNA extraction364

For critical COVID-19 cases and mild cohort controls, DNA was extracted from whole blood using365

Nucleon Kit (Cytiva) with the BACC3 protocol. DNA samples were re-suspended in 1 ml TE buffer366

pH 7.5 (10mM Tris-Cl pH 7.5, 1mM EDTA pH 8.0). The yield of the DNA was measured using367

Qubit and normalised to 50ng/µl before WGS or genotyping.368

WGS sequencing369

For all three cohorts, DNA was extracted from whole-blood using standard protocols. Sequencing370

libraries were generating using the Illumina TruSeq DNA PCR-Free High Throughput Sample371

Preparation kit and sequenced with 150bp paired-end reads in a single lane of an Illumina Hiseq372

X instrument (for 100,000 Genomes Project samples) or NovaSeq instrument (for the COVID-19373

critical and mild cohorts).374

Sequencing data QC375

All genome sequencing data were required to meet minimum quality metrics and quality control376

measures were applied for all genomes as part of the bioinformatics pipeline. The minimum data377

requirements for all genomes were > 85 × 10−9 bases with Q ≥ 30 and ≥ 95% of the autosomal378

genome covered at ≥ 15x calculated from reads with mapping quality > 10 after removing duplicate379

reads and overlapping bases, after adaptor and quality trimming. Assessment of germline cross-380

sample contamination was performed using VerifyBamID and samples with > 3% contamination381

were excluded. Sex checks were performed to confirm that the sex reported for a participant was382

concordant with the sex inferred from the genomic data.383
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WGS Alignment and variant calling384

COVID-19 cohorts385

For the critical and mild COVID-19 cohorts, sequencing data alignment and variant calling was386

performed with Genomics England pipeline 2.0 which uses the DRAGEN software (v3.2.22). Align-387

ment was performed to genome reference GRCh38 including decoy contigs and alternate haplotypes388

(ALT contigs), with ALT-aware mapping and variant calling to improve specificity.389

100,000 Genome Project cohort (100K-genomes)390

All genomes from the 100,000 Genomes Project cohort were analysed with the Illumina North Star391

Version 4 Whole Genome Sequencing Workflow (NSV4, version 2.6.53.23); which is comprised of392

the iSAAC Aligner (version 03.16.02.19) and Starling Small Variant Caller (version 2.4.7). Samples393

were aligned to the Homo Sapiens NCBI GRCh38 assembly with decoys.394

A subset of the genomes from the Cancer program of the 100,000 Genomes Project were reprocessed395

(alignment and variants calling) using the same pipeline used for the COVID-19 cohorts (DRAGEN396

v3.2.22) for equity of alignment and variant calling.397

Aggregation398

Aggregation was conducted separately for the samples analysed with Genomics England pipeline 2.0399

(severe-cohort, mild-cohort, cancer-realigned-100K), and those analysed with the Illumina North400

Star Version 4 pipeline (100K-Genomes).401

For the first three, the WGS data were aggregated from single sample gVCF files to multi-sample402

VCF files using GVCFGenotyper (GG) v3.8.1, which accepts gVCF files generated via the DRAGEN403

pipeline as input. GG outputs multi-allelic variants (several ALT variants per position on the same404

row), and for downstream analyses the output was decomposed to bi-allelic variants per row using405

software vt v0.57721. We refer to the aggregate as aggCOVID_vX, where X is the specific freeze.406

The analysis in this manuscript uses data from freeze v4.2 and the respective aggregate is referred407

to as aggCOVID_v4.2.408

Aggregation for the 100K-Genomes cohort was performed using Illumina’s gvcfgenotyper v2019.02.26,409

merged with bcftools v1.10.2 and normalised with vt v0.57721.410

Sample Quality Control (QC)411

Samples that failed any of the following four BAM-level QC filters: freemix contamination (>3%),412

mean autosomal coverage (<25X), percent mapped reads (<90%), and percent chimeric reads (>5%)413

were excluded from the analysis.414

Additionally, a set of VCF-level QC filters were applied post-aggregation on all autosomal bi-allelic415

SNVs (akin to gnomAD v3.117). Samples were filtered out based on the residuals of eleven QC metrics416

(calculated using bcftools) after regressing out the effects of sequencing platform and the first three417

ancestry assignment principal components (including all linear, quadratic, and interaction terms)418

taken from the sample projections onto the SNP loadings from the individuals of 1000 Genomes419

Project phase 3 (1KGP3). Samples were removed that were four median absolute deviations (MADs)420
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above or below the median for the following metrics: ratio heterozygous-homozygous, ratio insertions-421

deletions, ratio transitions-transversions, total deletions, total insertions, total heterozygous snps,422

total homozygous snps, total transitions, total transversions. For the number of total singletons423

(snps), samples were removed that were more than 8 MADs above the median. For the ratio of424

heterozygous to homozygous alternate snps, samples were removed that were more than 4 MADs425

above the median.426

After quality control, 79,803 individuals were included in the analysis with the breakdown according427

to cohort shown in Supplementary Table 2.428

Selection of high-quality (HQ) independent SNPs429

We selected high-quality independent variants for inferring kinship coefficients, performing PCA,430

assigning ancestry and for the conditioning on the Genetic Relatedness matrix by the logistic mixed431

model of SAIGE and SAIGE-GENE. To avoid capturing platform and/or analysis pipeline effects432

for these analyses, we performed very stringent variant QC as described below.433

HQ common SNPs434

We started with autosomal, bi-allelic SNPs which had frequency > 5% in aggV2 (100K participant435

aggregate) and in the 1KGP3. We then restricted to variants that had missingness <1%, median436

genotype quality QC>30, median depth (DP) >=30 and >= 90% of heterozygote genotypes passing437

an ABratio binomial test with P -value > 10−2 for aggV2 participants. We also excluded variants in438

complex regions from the list available in , and variants where the ref/alt combination was CG or AT439

(C/G, G/C, A/T, T/A). We also removed all SNPs which were out of Hardy Weinberg Equilibrium440

(HWE) in any of the AFR, EAS, EUR or SAS super-populations of aggV2, with a P -value cutoff of441

pHWE < 10−5. We then LD-pruned using plink v1.9 with an r2 = 0.1 and in 500kb windows. This442

resulted in a total of 63,523 high-quality sites from aggV2.443

We then extracted these high-quality sites from the aggCOVID_v4.2 aggregate and further applied444

variant quality filters (missingness <1%, median QC>30, median depth >=30 and >= 90% of445

heterozygote genotypes passing an ABratio binomial test with P -value > 10−2), per batch of446

sequencing platform (i.e, HiseqX, NovaSeq6000).447

After applying variant filters in aggV2 and aggCOVID_v4.2, we merged the genomic data from the448

two aggregates for the intersection of the variants which resulted in a final total of 58,925 sites.449

HQ rare SNPs450

We selected high-quality rare (MAF< 0.005) bi-allelic SNPs to be used with SAIGE for aggregate451

variant testing analysis. To create this set, we applied the same variant QC procedure as with452

the common variants: We selected variants that had missingness <1%, median QC>30, median453

depth >=30 and >= 90% of heterozygote genotypes passing an ABratio binomial test with P -value454

> 10−2 per batch of sequencing and genotyping platform (i.e, HiSeq+NSV4, HiSeq+Pipeline 2.0,455

NovaSeq+Pipeline 2.0). We then subsetted those to the following groups of MAC/MAF categories:456

MAC 1, 2, 3, 4, 5, 6-10, 11-20, MAC 20 - MAF 0.001, MAF 0.001 - 0.005.457
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Relatedness, ancestry and principal components458

Kinship459

We calculated kinship coefficients among all pairs of samples using software plink2 and its imple-460

mentation of the KING robust algorithm. We used a kinship cutoff < 0.0442 to select unrelated461

individuals with argument “–king-cutoff".462

Genetic Ancestry Prediction463

To infer the ancestry of each individual we performed principal components analysis (PCA) on464

unrelated 1KGP3 individuals with GCTA v1.93.1_beta software using HQ common SNPs and465

inferred the first 20 PCs. We calculated loadings for each SNP which we used to project aggV2 and466

aggCOVID_v4.2 individuals onto the 1KGP3 PCs. We then trained a random forest algorithm467

from R-package randomForest with the first 10 1KGP3 PCs as features and the super-population468

ancestry of each individual as labels. These were ‘AFR’ for individuals of African ancestry, ‘AMR’469

for individuals of American ancestry, ‘EAS’ for individuals of East Asian ancestry, ‘EUR’ for470

individuals of European ancestry, and ‘SAS’ for individuals of South Asian ancestry. We used471

500 trees for the training. We then used the trained model to assign probability of belonging to472

a certain super-population class for each individual in our cohorts. We assigned individuals to a473

super-population when class probability >=0.8. Individuals for which no class had probability474

>=0.8 were labelled as “unassigned” and were not included in the analyses.475

Principal component analysis476

After labelling each individual with predicted genetic ancestry, we calculated ancestry-specific PCs477

using GCTA v1.93.1_beta, i.e.. We computed 20 PCs for each of the ancestries that were used in478

the association analyses (AFR, EAS, EUR, and SAS).479

Variant Quality Control480

Variant QC was performed to ensure high quality of variants and to minimise batch effects due to481

using samples from different sequencing platforms (NovaSeq6000 and HiseqX) and different variant482

callers (Strelka2 and DRAGEN). We first masked low-quality genotypes setting them to missing,483

merged aggregate files and then performed additional variant quality control separately for the two484

major types of association analyses, GWAS and AVT, which concerned common and rare variants,485

respectively.486

Masking487

Prior to any analysis we masked low quality genotypes using bcftools setGT module. Genotypes488

with DP<10, GQ<20, and heterozygote genotypes failing an AB-ratio binomial test with P-value <489

10−3 were set to missing.490

We then converted the masked VCF files to plink and bgen format using plink v.2.0.491
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Merging of aggregate samples492

Merging of aggV2 and aggCOVID_v4.2 samples was done using plink files with masked genotypes493

and the merge function of plink v.1.9.46 for variants that were found in both aggregates.494

GWAS analyses495

Variant QC496

We restricted all GWAS analyses to common variants applying the following filters using plink v1.9:497

MAF > 0 in both cases and controls, MAF> 0.5% and MAC >20, missingness < 2%, Differential498

missingness between cases and controls, mid-P -value < 10−5, HWE deviations on unrelated controls,499

mid-P -value < 10−6, Multi-allelic variants were additionally required to have MAF > 0.1% in both500

aggV2 and aggCOVID_v4.2.501

Control-control QC filter502

100K aggV2 samples that were aligned and genotype called with the Illumina North Star Version 4503

pipeline represented the majority of control samples in our GWAS analyses, whereas all of the cases504

were aligned and called with Genomics England pipeline 2.0 (Supplementary Table 1). Therefore,505

the alignment and genotyping pipelines partially match the case/control status which necessitates506

additional filtering for adjusting for between-pipeline differences in alignment and variant calling. To507

control for potential batch effects, we used the overlap of 3,954 samples from the Genomics England508

100K participants that were aligned and called with both pipelines. For each variant, we computed509

and compared between platforms the inferred allele frequency for the population samples. We then510

filtered out all variants that had > 1% relative difference in allele frequency between platforms. The511

relative difference was computed on a per-population basis for EUR (n=3,157), SAS (n=373), AFR512

(n=354) and EAS (n=81).513

Model514

We used a 2-step logistic mixed model regression approach as implemented in SAIGE v0.44.5 for515

single variant association analyses. In step 1, SAIGE fits the null mixed model and covariates. In516

step 2, single variant association tests are performed with the saddlepoint approximation (SPA)517

correction to calibrate unbalanced case-control ratios. We used the HQ common variant sites for518

fitting the null model and sex, age, age2, age ∗ sex and 20 principal components as covariates in519

step 1. The principal components were computed separately by predicted genetic ancestry (i.e,520

EUR-specific, AFR-specific, etc.), to capture subtle structure effects.521

Analyses522

All analyses were done on unrelated individuals with pairwise kinship coefficient < 0.0442. We523

conducted GWAS analyses per genetic ancestry, for all populations for which we had >100 cases524

and >100 controls (AFR, EAS, EUR, and SAS).525

Multiple testing correction526

As our study is testing variants that were directly sequenced by WGS and not imputed, we calculated527

the P -value significance threshold by estimating the effective number of tests. After selecting the528
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final filtered set of tested variants for each population, we LD-pruned in a window of 250Kb and529

r2 = 0.8 with plink 1.9. We then computed the Bonferroni-corrected P -value threshold as 0.05530

divided by the number of LD-pruned variants. The P -value thresholds that were used for declaring531

statistical significance are given in Supplementary Table 3.532

LD-clumping533

We used plink1.9 to do clumping of variants that were genome-wide significant for each analysis with534

P1 set to per-population P -value from table X, P2 = 0.01, clump distance 1500Mb and r2 = 0.1.535

Conditional analysis536

To find the set of independent variants in the per-population analyses, we performed a step-wise537

conditional analysis with the GWAS summary statistics for each population using GTCA 1.9.3538

–cojo-slct function. The parameters for the function were pval = 2.2× 10−8, a distance of 10,000 kb539

and a colinear threshold of 0.947.540

Fine-mapping541

We performed fine-mapping for genome-wide significant signals using Rpackage SusieR v0.11.4248.542

For each genome-wide significant variant locus, we selected the variants 1.5 Mbp on each side and543

computed the correlation matrix among them with plink v1.9. We then run the susieR summary-544

statistics based function susie_rss and provided the summary z-scores from SAIGE (i.e, effect size545

divided by its standard error) and the correlation matrix computed with the same samples that546

were used for the corresponding GWAS. We required coverage >0.95 for each identified credible set547

and minimum and median correlation coefficients (purity) of r=0.1 and 0.5, respectively.548

Functional annotation of credible sets549

We annotated all variants included in each credible set identified by SusieR using VEP v99. We also550

selected the worst consequence across transcripts using bcftools +split-vep -s worst. We also ranked551

each variant within each credible set according to the predicted consequence and the ranking was552

based on the table provided by Ensembl: https://www.ensembl.org/info/genome/variation/predicti553

on/predicted_data.html.554

Trans-ancestry meta-analysis555

We performed a meta-analysis across all ancestries using a inverse-variance weighted method and556

control for population stratification for each separate analysis in the METAL software13. The557

meta-analysed variants were filtered for variants with heterogeneity P -value p < 2.22× 10−8 and558

variants that are not present in at least half of the individuals. We used the meta R package to plot559

forest plots of the clumped trans-ancestry meta-analysis variants49.560

LD-based validation of lead GWAS signals561

In order to quantify the support for genome-wide significant signals from nearby variants in LD, we
assessed the internal consistency of GWAS results of the lead variants and their surroundings. To
this end, we compared observed z-scores at lead variants with the expected z-scores based on those
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observed at neighbouring variants. Specifically, we computed the observed z-score for a variant i as
si = β̂/σ̂β̂ and, following the approach of50, the imputed z-score at a target variant t as

ŝt = Σt,P (ΣP,P + λI)−1sP
where sP are the observed z-scores at a set P of predictor variants, Σx,y is the empirical correlation562

matrix of dosage coded genotypes computed on the GWAS sample between the variants in x and y,563

and λ is a regularization parameter set to 10−5. The set P of predictor variants consisted of all564

variants within 100 kb of the target variant with a genotype correlation with the target variant565

greater than 0.25.566

Replication567

We used the Host Genetic Initiative (HGI) GWAS meta-analysis round 6 hospitalised COVID vs568

population (B2 analysis), including all genetic ancestries. In order to remove overlapping signals569

we performed a mathematical subtraction of the GenOMICC GWAS of European genetic ancestry.570

The HGI data was downloaded from https://www.covid19hg.org/results/r6/. The subtraction was571

performed using MetaSubtract package (version 1.60) for R (version 4.0.2) after removing variants572

with the same genomic position and using the lambda.cohortswith genomic inflation calculated on573

the GenOMICC summary statistics. Then, we calculated a trans-ancestry meta-analysis for the three574

ancestries with summary statistics in 23andMe: African, Latino and European using variants that575

passed the 23andMe ancestry QC, with imputation score > 0.6 and with maf > 0.005. And finally576

we performed a final meta-analysis of 23andMe and HGI B2 without GenOMICC to create the final577

replication set. Meta-analysis were performed using METAL13, with the inverse-variance weighting578

method (STDERR mode) and genomic control ON. We considered that a hit was replicating if the579

direction of effect in the GenOMICC-subtracted HGI summary statistics was the same as in our580

GWAS, and the P -value was significant after Bonferroni correction for the number of attempted581

replications (pval < 0.05/25). If the main hit was not present in the HGI-23andMe meta-analysis or582

if the hit was not replicating we looked for replication in variants in high LD with the top variant583

(r2 > 0.9), which helped replicate two regions.584

Stratified analysis585

We also performed sex-specific analysis (male and females separately) as well as analysis stratified586

by age (i.e., participants <60 and >=60 years old) for each super-population set. To compare effect587

of variants within groups for the age and sex stratified analysis we first adjusted the effect and error588

of each variant for the standard deviation of the trait in each stratified group and then used the589

following t-statistic, as in previous studies51;52
590

t = b1−b2√
se2

1+se2
2−2·rse1·rse2

591

where b1 is the adjusted effect for group 1, b2 is the adjusted effect for group 2, se1 and se2 are592

the adjusted standard errors for group 1 and 2 respectively and r is the Spearman rank correlation593

between groups across all genetic variants.594

HLA Imputation and Association Analysis595

HLA types were imputed at two field (4-digit) resolution for all samples within aggV2 and ag-596

gCOVID_v4.2 for the following seven loci: HLA-A, HLA-C, HLA-B, HLA-DRB1, HLA-DQA1,597
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HLA-DQB1, and HLA-DPB1 using the HIBAG package in R19. At time of writing, HLA types598

were also imputed for 82% of samples using HLA*LA53. Inferred HLA alleles between HIBAG and599

HLA*LA were >96% identical at 4-digit resolution. HLA association analysis was run under an600

additive model using SAIGE; in an identical fashion to the SNV GWAS. The multi-sample VCF601

of aggregated HLA type calls from HIBAG were used as input where any allele call with posterior602

probability (T ) < 0.5 were set to missing.603

Aggregate variant testing (AVT)604

Aggregate variant testing on aggCOVID_v4.2 was performed using SKAT-O as implemented in605

SAIGE-GENE v0.44.516 on all protein-coding genes. Variant and sample QC for the preparation606

and masking of the aggregate files has been described elsewhere. We further excluded SNPs with607

differential missingness between cases and controls (mid-P value < 10−5) or a site-wide missingness608

above 5%. Only bi-allelic SNPs with a MAF<0.5% were included.609

We filtered the variants to include in the aggregate variant testing by applying two functional610

annotation filters: A putative loss of function (pLoF) filter, where only variants that are annotated611

by LOFTEE17 as high confidence loss of function were included, and a more lenient (missense)612

filter where variants that have a consequence of missense or worse as annotated by VEP, with a613

CADD_PHRED score of ≥ 10, were also included. All variants were annotated using VEP v99.614

SAIGE-GENE was run with the same covariates used in the single variant analysis: sex, age, age2,615

age ∗ sex and 20 (population-specific) principal components generated from common variants (MAF616

≥ 5%).617

We ran the tests separately by genetically predicted ancestry, as well as across all four ancestries as618

a mega-analysis. We considered a gene-wide significant threshold on the basis of the genes tested619

per ancestry, correcting for the two masks (pLoF and missense, Supplementary Table 4).620

Post-GWAS analysis621

Transcriptome-wide Association Studies (TWAS)622

We performed TWAS in the MetaXcan framework and the GTExv8 eQTL and sQTL MASHR-M623

models available for download in (http://predictdb.org/). We first calculated, using the European624

summary statistics, individual TWAS for whole blood and lung with the S-PrediXcan function54;55.625

Then we performed a metaTWAS including data from all tissues to increase statistical power using626

s-MultiXcan56. We applied Bonferroni correction to the results in order to choose significant genes627

and introns for each analysis.628

Colocalisation analysis629

Significant genes from TWAS, splicing TWAS, metaTWAS and splicing metaTWAS, as well as genes630

where one of the top variants was a significant eQTL or sQTL were selected for a colocalisation631

analysis using the coloc R package57. We chose the lead SNPS from the European ancestry GWAS632

summary statistics and a region of ±200 kb around each SNP to do the colocalisation with the633

identified genes in the region. GTExv8 whole blood and lung tissue summary statistics and eqtlGen634

(which has blood eQTL summary statistics for > 30, 000 individuals) were used for the analysis18;58.635

We first performed a sensitivity analysis of the posterior probability of colocalisation (PPH4) on the636
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prior probability of colocalisation (p12), going from p12 = 10−8 to p12 = 10−4 with the default637

threshold being p12 = 10−5. eQTL signal and GWAS signals were deemed to colocalise if these638

two criteria were met: (1) At P12 = 5× 10−5 the probability of colocalisation PPH4 > 0.5 and639

(2) At p12 = 10−5 the probability of independent signal (PPH3) was not the main hypothesis640

(PPH3 < 0.5). These criteria were chosen to allow eQTLs with weaker P -values due to lack of641

power in GTExv8, to be colocalised with the signal when the main hypothesis using small priors642

was that there wasn’t any signal in the eQTL data.643

As the chromosome 3 associated interval is larger than 200 kb, we performed additional colocalisation644

including a region up to 500 kb, but no further colocalisations were found.645
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