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s« Abstract

52 Critical illness in COVID-19 is caused by inflammatory lung injury, mediated by the host immune
53 system. We and others have shown that host genetic variation influences the development of illness
s« Tequiring critical care! or hospitalisation?3* following SARS-Co-V2 infection. The GenOMICC
s (Genetics of Mortality in Critical Care) study is designed to compare genetic variants in critically-ill
ss  cases with population controls in order to find underlying disease mechanisms.

57 Here, we use whole genome sequencing and statistical fine mapping in 7,491 critically-ill cases
ss compared with 48,400 population controls to discover and replicate 22 independent variants that
s significantly predispose to life-threatening COVID-19. We identify 15 new independent associations
oo with critical COVID-19, including variants within genes involved in interferon signalling (IL10RB,
s PLSCR1), leucocyte differentiation (BCL11A), and blood type antigen secretor status (FUT2).
e Using transcriptome-wide association and colocalisation to infer the effect of gene expression
&3 on disease severity, we find evidence implicating expression of multiple genes, including reduced
s« expression of a membrane flippase (ATP11A), and increased mucin expression (MUCT), in critical
e disease.

e We show that comparison between critically-ill cases and population controls is highly efficient for
o7 genetic association analysis and enables detection of therapeutically-relevant mechanisms of disease.
¢ Therapeutic predictions arising from these findings require testing in clinical trials.
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« Introduction

70 Critical illness in COVID-19 is both an extreme disease phenotype, and a relatively homogeneous
7 clinical definition including patients with hypoxaemic respiratory failure® with acute lung injury,®
2 and excluding many patients with non-pulmonary clinical presentations” who are known to have
7 divergent responses to therapy.® In the UK, the critically-ill patient group is younger, less likely
7+ to have significant comorbidity, and more severely affected than a general hospitalised cohort,?
7 characteristics which may amplify observed genetic effects. In addition, since development of critical
7 illness is in itself a key clinical endpoint for therapeutic trials,® using critical illness as a phenotype
77 in genetic studies enables detection of directly therapeutically-relevant genetic effects.

7 Using microarray genotyping in 2,244 cases, we previously reported that critical COVID-19 is
7 associated with genetic variation in the host immune response to viral infection (OAS1, IFNAR2,
oo TYK2) and the inflammasome regulator DPP9.! In collaboration with international groups, we
s recently extended these findings to include a variant near TAC/ (rs77534576).% Several variants
&2 have been associated with milder phenotypes, such as the need for hospitalisation or management
s in the community, including the ABO blood type locus,? a pleiotropic inversion in chr17q21.31,°
s and associations in 5 additional loci including the T lymphocyte-associated transcription factor,
&s FOXPJ.* An enrichment of rare loss-of-function variants in candidate interferon signalling genes has
& been reported,? but this has yet to be replicated at genome-wide significance thresholds. %11

s We established a partnership between the GenOMICC Study and Genomics England to perform
s whole genome sequencing (WGS) to improve resolution and deepen fine-mapping of significant
s signals to enhance the biological insights into critical COVID-19. Here, we present results from a
o cohort of 7,491 critically-ill patients from 224 intensive care units, compared with 48,400 population
a1 controls, describing discovery and validation of 22 gene loci for susceptibility to life-threatening
2 COVID-19.

» Results

« Study design

os  Cases were defined by the presence of COVID-19 critical illness in the view of the treating clinician -
o specifically, the need for continuous cardio-respiratory monitoring. Patients were recruited from
o 224 intensive care units across the UK in the GenOMICC (Genetics Of Mortality In Critical Care)
e study. As a control population, unrelated participants recruited to the 100,000 Genomes Project
o were selected, excluding those with a known positive COVID-19 test, as severity information was
wo not available. The 100,000 Genomes Project cohort (100k cohort) is comprised of UK individuals
w with a broad range of rare diseases or cancer and their family members. We included an additional
02 prospectively-recruited cohort of volunteers (mild cohort) who self-reported testing positive for
13 SARS-CoV-2 infection, and experienced mild or asymptomatic disease.

e GWAS analysis

s Whole genome sequencing and subsequent alignment and variant calling was performed for all
s subjects as described below (Methods). Following quality control procedures, we used a logistic
w7 mixed model regression, implemented in SAIGE,'2 to perform association analyses with unrelated
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chr:pos (hg38) | rsid REF ALT RAF pop OR | OR¢r Pval HetPVal Consequence | Gene Expression
1:155066988 rs114301457 | C T 0.0058 | EUR 2.40 | 1.82-3.16 | 6.8x10~ 10 1 synonymous | EFNA4 -

1:155175305 157528026 G AT 0.032 META | 1.39 | 1.24-1.55 | 7.16x10~° 0.96 intron TRIM46 -

1:155197995 1541264915 A7 G 0.89 EUR 1.28 | 1.19-1.37 | 1.02x10~ 2 [ 0.29 intron THBS3 MUC1
2:60480453 151123573 AT B 0.61 META | 1.13 | 1.09-1.18 | 9.85x10~1 | 0.29 intron BCL11A -

3:45796521 rs2271616 8] T 0.14 EUR 1.29 | 1.21-1.37 | 9.9x10~17 0.0011 5" UTR SLC6A20 SLC6A20, CCR5
3:45859597 873064425 C T 0.077 EUR 2.71 | 2.51-2.94 | 1.97x107%3% | 0.010 intron LZTFL1 LZTFL1, CCRY
3:146517122 rs343320 G A" 0.081 EUR 1.25 | 1.16-1.35 | 4.94x107° 0.53 missense PLSCR1 -

5:131995059 1556162149 C T 0.17 EUR 1.20 | 1.13-1.26 | 7.65x10~ ! 0.17 intron ACSL6 ACSL6, FNIP1
6:32623820 159271609 T C 0.65 EUR 1.14 | 1.09-1.19 | 3.26x10~° 0.24 upstream HLA-DQA1 | HLA-DQAI1, HLA-DQA2
6:41515007 152496644 AT C 0.015 META | 1.45 | 1.32-1.60 | 7.59x10~1° 0.49 intron LINC01276 | -

9:21206606 1528368148 C €N 0.013 EUR 1.74 | 1.45-2.09 | 1.93x1077 1 missense IFNA10 -

11:34482745 1561882275 €N A 0.62 EUR 1.15 | 1.10-1.20 | 1.61x10~ 1 [ 0.29 intron ELF5 -

12:132489230 1856106917 GC G 0.49 EUR 1.13 | 1.09-1.18 | 2.08x10~7 0.90 upstream FBRSL1 -

13:112889041 189577175 C T 0.23 EUR 1.18 | 1.12-1.24 | 3.71x10~ 1 0.10 downstream | ATP11A ATP11A

193046840 154424872 T A 0.0079 | EUR 2.37 | 1.87-3.01 | 8.61x10~ 13 1.82x10~7 | intron RGMA -

:89196249 rs117169628 | G A7 0.15 EUR 1.19 | 1.12-1.26 | 4.4x107° 0.80 missense SLC22A31 SLC22A31, CDH15
17:46152620 152532300 T C 0.77 EUR 1.16 | 1.10-1.22 | 4.19x10~° 0.32 intron KANSL1 ARHGAP27
17:49863260 153848456 ¢ A" 0.029 | EUR 1.50 | 1.33-1.70 | 4.19x10~'" ] 0.14 regulatory . -

19:4717660 1512610495 A G 0.31 EUR 1.32 | 1.27-1.38 | 3.91x10736 0.069 missense DPP9 -

19:10305768 1573510898 G A 0.093 EUR 1.28 | 1.19-1.37 | 1.57x10~ 1! 0.011 intron ZGLP1 -

19:10352442 1534536443 G [ 0.050 EUR 1.50 | 1.36-1.65 | 6.98x10~17 [ 0.63 missense TYK?2 TYK?2, PDE}A
19:48697960 15368565 C T 0.44 EUR 1.15 | 1.1-1.2 3.55x10~ 11 0.22 intron FUT2 FUT2, NTN5, RASIP1
21:33230000 1517860115 C A 0.32 EUR 1.24 | 1.19-1.3 9.69x10~22 [ 0.63 5 UTR IFNAR2 -

21:33287378 188178521 C T 0.27 EUR 1.18 | 1.12-1.23 | 3.53x10~ 2 | 0.67 intron IL10RB -

21:33959662 1835370143 T TAC™ | 0.083 EUR 1.26 | 1.17-1.36 | 1.24x10~7 1 intron LINC00649 | -

Table 1: Lead variants from independent regions in the per-population GWAS and trans-ancestry
meta-analysis. Variants and the reference and alternate allele are reported with hg38 build coordi-
nates. Asterisk (*) indicates the risk allele. For each variant, we report the risk allele frequency
in Europeans (RAF), the odds ratio and 95% confidence interval, and the association P-value.
Consequence indicates the worst consequence predicted by VEP99, and Gene indicates the VEP99-
predicted gene, but not necessarily the causal mediator. Expression indicates genes where is evidence
of gene expression affecting COVID-19 severity, found by TWAS and colocalisation analysis.

s individuals (critically-ill cases n = 7,491, controls (100k) n = 46,770, controls (mild COVID-
w 19) n = 1,630) (Methods, Supplementary Table 2). 1,339 of these cases were included in the
o primary analysis for our previous report.! Genome wide association studies (GWAS) were performed
w separately for genetically predicted ancestry groups (European - EUR, South Asian - SAS, African
w2 - AFR, East Asian - EAS, see Methods). Subsequently, we conducted inverse-variance weighted
s fixed effects meta-analysis across the four predicted ancestry cohorts using METAL'3 (Methods).
us  In order to reduce the risk of spurious associations arising from genotyping or pipeline errors, we
us required supporting evidence from variants in linkage disequilibrium for all genome-wide significant
ue variants: observed z-scores for each variant were compared to imputed z-scores for the same variant,
s with discrepant values being excluded (see Methods, Supplementary Figure 12).

us In population-specific analyses, we discovered 22 independent genome-wide significant associations
uo  in the EUR ancestry group (Figure 1, Supplementary Figure 11 and Table 1) at a P-value threshold
120 adjusted for multiple testing for 2,264,479 independent linkage disequilibrium-pruned genetic variants:
21 2.2 x 1079 (Supplementary Table 3). The strong association at 3p21.31 also reached genome-wide
122 significance in the SAS ancestry group (Supplementary Figure 11).

123 In trans-ancestry meta-analysis, we identified an additional three loci with genome-wide significant
e associations (Figure 1, Table 1). We tested the meta-analysed set of 25 loci for heterogeneity of
s effect size between predicted ancestries and detected significant (at P < 1.83 x 10~?) evidence for
s heterogeneity for two variants (Table 1, Supplementary Figure 13).
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Figure 1: GWAS results for EUR ancestry group, and trans-ancestry meta-analysis. Manhattan
plots are shown on the left and quantile-quantile (QQ) plots of observed versus expected P values
are shown on the right, with genomic inflation () displayed for each analysis. Highlighted results in
blue in the Manhattan plots indicate variants that are LD-clumped (r?=0.1, P,=0.01, EUR LD)
with the lead variants at each locus. Gene name annotation by Variant Effect Predictor (VEP)
indicates genes impacted by the predicted consequence type of each lead variant. The red dashed
line shows the Bonferroni-corrected P-value=2.2 x 10738.
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chr:pos (hg38) | rsid REF | ALT | OR ORgy Pval ORngi23m | ORCIhgi23m | Pvalpgiosm Gene Citation
1:155066988 rs114301457 | C T 2.40 | 1.81-3.18 | 1.51x107° 1.46 1.21-1.77 0.00011 ~ EFNA4 -
1:155175305 157528026 G A 1.39 | 1.24-1.55 | 7.16x107° 1.14 1.07-1.22 0.00012 ~ TRIM/6 -
1:155197995 rs41264915 | A G 0.80 | 0.76-0.86 | 3.79x10~2 [ 0.9 0.87-0.933 1.51x107° " | THBS3 -
2:60480453 151123573 A G 0.88 | 0.85-0.92 | 9.85x1071° | 0.95 0.93-0.97 0.000018 © BCL11A -
3:45796521 12271616 G T 1.26 | 1.19-1.34 | 2.45x10~"° | 1.11 1.07-1.15 4.95%x107% 7 | SLC6A20 [6)
3:45859597 rs73064425 | C T 2.52 | 2.35-2.70 | 2.18x1071°2 | 1.46 1.4-1.51 1.02x10~77 * | LZTFL1 3
3:146517122 1s343320 G A 1.24 | 1.15-1.33 | 1.52x10°% 1.08 1.04-1.13 0.00028 ~ PLSCR1 -
5:132441275 rs10066378 | T C 1.20 | 1.13-1.27 | 4.48x10~1° | 1.05 1.02-1.08 0.00074 IRF1-AS1 -
6:32623820 s9271609 T C 0.88 | 0.84-0.92 | 1.27x10°% 1 0.98-1.03 0.89 HLA-DQAT | -
6:41515007 152496644 A C 0.69 | 0.63-0.76 | 7.59x10~1° 0.87 0.83-0.92 3171077 © LINCO01276 | -
9:21206606 1528368148 | C G 1.74 | 1.45-21 | 4.09x1077 1.21 1.07-1.37 0.0024 IFNA10 -
11:34482745 rs61882275 | G A 0.87 | 0.84-0.91 | 1.62x10~ 1 [ 0.93 0.91-0.95 1.9x10°107 | ELF5 -
12:132479205 | 154883585 G A 1.13 | 1.09-1.18 | 1.12x10~° 1.04 1.02-1.06 0.00047 ~ FBRSL1 -
13:112889041 | 189577175 C T 1.18 | 1.13-1.23 | 1.61x10~ "2 | 1.07 1.04-1.09 1.29x10° 57 | ATP11A -
15:93046840 154424872 T A 0.64 | 0.53-0.76 | 1.99x107° | - - - RGMA -
16:89196249 rs117169628 | G A 1.18 | 1.12-1.25 | 6.04x107° 1.1 1.07-1.14 6.57x1079 © | SLC22A31 | -
17:46152620 12532300 T C 0.87 | 0.82-0.91 | 1.4x10~% 0.92 0.89-0.94 2.49x10°9 " | KANSL1 9
17:49863260 1s3848456 C A 1.42 | 1.27-1.58 | 1.47x10°10 | 1.15 1.09-1.21 1.34x1077 7 | . 4
19:4717660 112610495 | A G 1.32 | 1.27-1.38 | 6.44x107%9 | 1.11 1.09-1.14 5.74x10-1 7 | DPP9 1
19:10305768 rs73510898 | G A 1.24 | 1.16-1.33 | 1.47x107° 1.08 1.04-1.12 0.00016 ~ ZGLP1
19:10352442 s34536443 | G C 1.50 | 1.37-1.66 | 4.22x10~'7 | 1.22 1.15-1.29 4.06x10~"" T | TYK2 1
19:48697960 15368565 C T 1.13 | 1.09-1.18 | 3.74x10° 1 | 1.04 1.02-1.06 0.00087 ~ FUT2 -
21:33230000 rs17860115 | C A 1.26 | 1.21-1.31 | 6.28x10~2% | 1.11 1.08-1.13 1.77x10" 7 | IFNAR2 1
21:33287378 rs8178521 C T 117 | 1.12-1.22 | 4.23x107'2 | 1.06 1.03-1.09 8.02x10°% * | IL10RB -
21:33914436 1512626438 | A G 1.22 | 1.14-1.31 | 1.78x10~% 1.1 1.06-1.14 2.33x10~7 © | LINC00649 | -

Table 2: Replication in a combined data from external studies - combined meta-analysis of HGI
freeze 6 B2 and 23andMe. Odds ratios and P-values are shown for variants in LD with the lead
variant that were genotyped/imputed in both sources. Chromosome, reference and alternate allele
correspond to the build hg38. An asterisk (*) next to the HGI and 23andme meta-analysis P-value
indicates that the lead signal is replicated with P-value<0.002 with a concordant direction of effect.
Citation lists the first publication of confirmed genome-wide associations with critical illness or (in
brackets) any COVID-19 phenotype.

1z Replication

s Replication was performed using summary statistics generously shared by collaborators: data from
e the COVID-19 Host Genetics Initiative (HGI) data freeze 6 were combined using meta-analysis
w  with data shared by 23andMe (Methods). Although the HGI programme included an analysis
w  intended to mirror the GenOMICC study (analysis "A2"), there are currently insufficient cases
12 from other sources available to attempt replication, so we used the broader hospitalised phenotype
s (analysis "B2") for replication. We removed signals in the HGI data derived from GenOMICC cases
1 using mathematical subtraction (see Methods) to ensure independence. Using LD clumping to find
s variants genotyped in both the discovery and replication studies, we required P < 0.002 (0.05/25)
s and concordant direction of effect (Table 2) for replication.

1w We replicated 22 of the 25 significant associations identified in the population specific and/or
s trans-ancestry GWAS. Two of the three loci not replicated correspond to rare alleles that may not be
130 well represented in the replication datasets which are dominated by SNP genotyping data. Although
w  1not replicated, for rs28368148 (9:21206606:C:G, IFNA10) we observed both a consistent direction
w of effect and odds ratio. The third locus is within the human leukocyte antigen (HLA) locus (see
142 be]OW).

s We inferred credible sets of variants using Bayesian fine-mapping with susieR'4, by analysing the
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us - GWAS summaries of 17 3Mbp regions that were flanking groups of lead signals. We obtained 22
us independent credible sets of variants for EUR and one for SAS that each had posterior inclusion
us probability > 0.95.

w7 Fine mapping of the association signals revealed putative causal variants for several genes (See
1s  Supplementary Information). For example, we detected variants at 3q24 and 9p21.3 predicted to
1o be missense mutations by Variant Effect Predictor (VEP). These impact PLSCRI and IFNA10
10 respectively, and both are predicted to be deleterious by the Combined Annotation Dependent
151 Depletion (CADD) tool*® (PLSCR1 (chr3:146517122:G:A, rs343320,p.His262Tyr, OR:1.24, 95%Cls
s [1.15-1.33], CADD:22.6; IFNA10 (chr9:21206606:C:G, rs28368148,p.Trp164Cys, OR:1.74, 95% Cls
53 [1.45-2.09], CADD:23.9). Structural predictions for these loci suggest functional effects (Figure 3
152 and Supplementary Figure 15.

55 (Gene burden testing

16 'To assess the contribution of rare variants to critical illness, we performed gene-based analysis using
157 SKAT-O as implemented in SAIGE-GENE !¢, using a subset of 12,982 individuals from our cohort
s (7,491 individuals with critical COVID-19 and 5,391 controls) for which the genome sequencing
19 data were processed with the same alignment and variant calling pipeline. We tested the burden of
wo rare (MAF<0.5%) variants considering the predicted variant consequence type. We assessed burden
61 using a strict definition for damaging variants (high-confidence loss-of-function (pLoF) variants as
1> identified by LOFTEE!") and a lenient definition (pLoF plus missense variants with CADD > 10)
163, but found no significant associations at a gene-wide significance level. All individual rare variants
1« included in the tests had P-values >1075.

165 We then further examined the association with 13 genes involved in the regulation of type I and
s 111 interferon immunity that were implicated in critical COVID-19 pneumonia? but, as with other
67 recent studies!®, we did not find any significant gene burden test associations (tests for all genes
s had P-value>0.05, Supplementary File AVTsuppinfo.xlsx). We also did not replicate the reported
160 association!? for the toll-like receptor 7 (TLR7) gene.

w Transcriptome-wide association study

m  In order to infer the effect of genetically-determined variation in gene expression on disease sus-
w2 ceptibility, we performed a transcriptome-wide association study (TWAS) using gene expression
s data (GTExv8) for two disease-relevant tissues, lung and whole blood. We found 14 genes with
s significant association between predicted expression and critical COVID-19 in the lung and 6 in
s whole blood analyses (Supplementary File: TWAS.xlsx). To increase statistical power using eQTLs
we from multiple tissues, we performed a TWAS meta-analysis using all available tissues in GTExvS,
w revealing 51 transcriptome-wide significant genes. Since TWAS uses a composite signal derived
s from multiple eQTLs, we used colocalisation to find specific eQTLs in whole blood (eqtlGen and
1 GTExv8) and lung (GTExv818) which share the same signal with GWAS (EUR) associations. We
1o found 16 genes which significantly colocalise in at least one of the studied tissues, shown in Figure 2.

11 We repeated the TWAS analysis using models of intron excision rate from GTExv8 to obtain splicing
1.2 TWAS. We found 40 signals in lung, affecting 16 genes and 20 signals in whole blood which affect
13 9 genes. In a meta-analysis of splicing TWAS using all GTExv8 tissues, we found 91 significant
18« introns in a total of 33 genes. Using GTExv8 lung and whole blood sqtls to find colocalising


https://doi.org/10.1101/2021.09.02.21262965
http://creativecommons.org/licenses/by-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2021.09.02.21262965; this version posted September 2, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-ND 4.0 International license .

185

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

signals with splicing TWAS significant results, we found 11 genes with colocalising splicing signals
s (Supplementary File: TWAS xlsx).

192

SLC6A20 ,
1284 A
CCR9
LZTFL1 Y
64 4
“ JFNAR2 eDirection
DPP9 A Up
E: ¥ Down
IL10RB
S 164 MUC1A CCRS ¥
o TYK2 .
% ACSL6 A Coloc tissue
84 : ATPIIAY cowis NN cur2 ® Blood
A A
-------------------------------- L e St ¥ >2°¢ i (e ® Lung
4 PDE4A ® Both
24
0 T T T T T T T T T y T T y T
1 2 3 4 5 6 7 8 9 10 1" 12 13 14 15 16 17 18 19202122

Chromosome

Figure 2: Gene-level Manhattan plot showing results from TWAS meta-analysis and highlighting
genes that colocalise with GWAS signals or have strong metaTWAS associations. Highlighting
color is different for lung and blood tissue data that were used for colocalisation. Arrows show
direction of change in gene expression associated with an increased disease risk. Red dashed line
shows significance threshold at P < 2.3 x 1076,

HLA region

To investigate the contribution of specific HLA alleles to the observed association in the HLA region,
we imputed HLA alleles at a four digit (two-field) level using HIBAG®. The only allele that reached
genome-wide significance was HLA-DRB1*04:01 (OR = 0.80,95%C1 = 0.75 — 0.86, P = 1.6 x 10~1°
in EUR), which has a stronger P-value than the lead SNP in the region (OR : 0.88,95%C1Is :
0.84 — 0.92, P = 3.3 x 1072 in EUR) and is a better fit to the data (AICprB1+04.01 = 30241.34,
AIC)caasnp = 30252.93). Results are shown in supplementary figure 25.

Discussion

We report 22 replicated genetic associations with life-threatening COVID-19, and 3 additional loci,
discovered in only 7,491 cases. This demonstrates the efficiency of the design of the GenOMICC
study, which is an open-source international research programme?° focusing on critically-ill patients
with infectious disease and other critical illness phenotypes (https://genomicc.org). By using whole
genome sequencing we were able to detect multiple distinct signals with high confidence for several
of the associated loci, in some cases implicating different biological mechanisms.

Several variants associated with life-threatening disease are linked to interferon signalling. A coding
variant in a ligand, IFNA10A, and reduced expression of its receptor IFNAR2 (Figure 2), were
associated with critical COVID-19. The narrow failure of replication for the IFNA10 variant
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200 (1828368148, replication P = 0.00243, significance threshold P < 0.002) may be due to limited power
205 in the replication cohort. The lead variant in TYK2 in whole genome sequencing is a well-studied
26 protein-coding variant with reduced phosphorylation activity, consistent with that reported recently,*
207 but associated with significantly increased TYK2 expression (Figure 2, Methods). Fine mapping
28 reveals a significant critical illness association with an independent missense variant in IL10RB, a
20 receptor for Type III (lambda) interferons (rs28368148,p.Trpl164Cys, Table 1). Overall, variants
a0 predicted to be associated with reduction in interferon signalling are associated with critical disease.
an Importantly, systemic administration of interferon in a large clinical trial, albeit late in disease, did
2z not reduce mortality. 2!

23 Phospholipid scramblase 1 (PLSCR1; chr3:146517122:G:A) functions as a nuclear signal for the
24 antiviral effect of interferon,?? and has been shown to control replication of other RNA viruses
25 including vesicular stomatitis virus, encephalomyocarditis virus and Influenza A virus. 2322 The risk
26 allele at the lead variant (chr3:146517122:G:A, rs343320) encodes a substitution, H262Y, which
a7 is predicted to disrupt the non-canonical nuclear localisation signal?* by eliminating a hydrogen
28 bond with importin (Figure 3). Deletion of this nuclear localisation signal has been shown to
20 prevent neutrophil maturation.?® Although PLSCRI is strongly up-regulated when membrane lipid
2 asymmetry is lost (see below), it may not act directly on this process. 2%

21 We report significant associations in several genes implicated in B-cell lymphopoesis and differentia-
22 tion of myeloid cells. BCL11A is essential in B- and T-lymphopoiesis?” and promotes plasmacytoid
2 dendritic cell differentiation.?® TACY, reported previously,* encodes a regulator of B-cell lymphopoe-
2 sis?? and antibody production,3® and promotes survival of dendritic cells.?! Finally, although
»s the strongest fine mapping signal at 5q31.1 (chr5:131995059:C:T, rs56162149) is in an intron of
26 ACSL6 (locus, p), the credible set includes a missense variant in CSF2 of uncertain significance
27 (chrb:132075767:T:C). CSF2 encodes granulocyte-macrophage colony stimulating factor, a key
»s  differentiation factor in the mononuclear phagocyte system which is strongly up-regulated in critical
2 COVID-19,%2 and is already under investigation as a target for therapy. 33

20  Several new genetic associations implicate genes known to be involved in lung disease. The second
2n  variant in the credible set at 13q14 (chr13:112882313:A:G, rs1278769, in ATP11A), has been reported
22 as a lead variant for idiopathic pulmonary fibrosis.?* ATP11A encodes a flippase which maintains
23 the asymmetric distribution of phospholipids in cell membranes;3° disruption of this asymmetry
24 is a phagocytic signal on apoptotic cells, and is required for platelet activation.3¢3” TWAS and
25 colocalisation demonstrate that genetic variants predicted to decrease expression of ATP11A in lung
26 are associated with critical illness. A combination of fine mapping, colocalisation with eQTL signals
27 (GTEx and eQTLgen) and TWAS results provide evidence in support of MUC! as the mediator of
2 the association with rs41264915 (Table 1). This may indicate an important role for mucins in the
20 development of critical illness in COVID-19. The direction of effect (Figure 2) suggests that agents
20 that reduce MUC! expression, and by extension its abundance, may be a therapeutic option. Finally,
21 the association on 11p13 (rs61882275) includes GTEx eQTL for the lung fibroblast transcription
22 factor ELFS in lung tissue, and the gene encoding the antioxidant enzyme catalase (CAT) in whole
23 blood with evidence of colocalisation in both signals ( supplementary material: TWAS xlsx).!® The
24 protective allele at this locus is weakly associated with reduced lung function in a previous GWAS. 38

25 FUT2 encodes alpha-(1,2)fucosyltransferase, which controls the secretion of ABO blood type glycans
26 into body fluids and expression on epithelial surfaces. An association with critical COVID-19 was
a7 reported previously in a candidate gene association study by Mankelow et al.3? The credible set for the
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Figure 3: (a) Predicted structural consequences of lead variant at PLSCR1. Left panel shows
the crystal structure of PLSCRI1 nuclear localization signal (orange, Gly257-11e266, numbering
correspond to UniProt entry 015162) in complex with Importin « (blue), Protein Data Bank (PDB)
ID 1Y2A. Side chains of PLSCR1 are shown as connected spheres with carbon atoms coloured in
orange, nitrogens in blue and oxygens in red. Hydrogen atoms were not determined at this resolution
(2.20 A) and are not shown. Right panel: a closeup view showing side chains of PLSCR1 Ser260,
His262 and Importin Glul07 as sticks. Distance (in A) between selected atoms (PLSCR1 His262
Ne2 and Importin Glul07 carboxyl O) is indicated. A hydrogen bond between PLSCR1 His262
and Importin GlulO7 is indicated with a dashed line. The risk variant is predicted to eliminate this
bond, disrupting nuclear import, an essential step for effect on antiviral signalling?? and neutrophil
maturation. 2% (b) Regional detail showing fine-mapping to separate two adjacent independent signals.
Top two panels: variants in linkage disequilibrium with the lead variants shown. The loci that are
included in two independent credible sets are displayed with black outline circles. Bottom panel:
locations of protein-coding genes, coloured by TWAS P-value.
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28 FUT2 locus includes rs492602 (chr19:48703160:A:G) which is linked to a stop codon gain mutation
uo  (chr19:48703417:G:A), leading to the well-described non-secretor phenotype in homozygotes. 4041
0 We show that the stop-gain, non-secretor allele is protective against life-threatening COVID-19.
»s1 The protective variant in our study has been previously reported to protect against other viruses
x  (rotavirus,*? mumps and common colds*?), to enhance antibody responses to polyomavirus BK 44
23 and to increase susceptibility to infection with some encapsulated bacteria.*®

s Limitations

»s5  In contrast to microarray genotyping, whole genome sequencing is rapidly evolving and a relatively
6 new technology for genome-wide association studies, with relatively few sources of population
»s7 - controls. We used selected controls from the 100,000 genomes project, sequenced on a different
s platform (illumina HiSeqX) from the cases (illumina NovaSeq6000)(Supplementary Table 1). To
9 minimise the risk of false positive associations arising due to sequencing or genotyping errors, we
x0 required all significant associations to be supported by local variants in linkage disequilibrium,
2 which may be excessively stringent (see Methods). Although this approach may remove some true
%2 associations, our priority is to maximise confidence in the reported signals. Of 25 variants meeting
%3 this requirement, 22 are replicated in an independent study, and the remaining 3 may well be true
xs associations that have failed due to a lack of coverage or power in the replication dataset.

s The design of our study incorporates genetic signals for every stage in the disease progression
»%6 into a single phenotype. This includes exposure, viral replication, inflammatory lung injury and
27 hypoxaemic respiratory failure. Although we can have considerable confidence that the replicated
x%s associations with critical COVID-19 we report are robust, we cannot determine at which stage in
20 the disease process, or in which tissue, the relevant biological mechanisms are active, which can have
o therapeutic implications.

- Conclusions

a2 The genetic associations here implicate new biological mechanisms underlying the development of
a3 life-threatening COVID-19, several of which may be amenable to therapeutic targeting. In the
aa - context of the ongoing global pandemic, translation to clinical practice is an urgent priority. As
a5 with our previous work, large-scale randomised trials are essential before translating our findings
a6 into clinical practice.
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335 Ethics

1 GenOMICC was both approved by the following research ethics committees: Scotland "A" Research
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s0  are available at genomicc.org/protocol. All participants gave informed consent.

1w Recruitment of cases

s Patients recruited to the GenOMICC study (genomicc.org) had confirmed COVID-19 according to
s local clinical testing and were deemed, in the view of the treating clinician, to require continuous
sz cardiorespiratory monitoring. In UK practice this kind of monitoring is undertaken in high-
s dependency or intensive care units. This study was approved by research ethics committees in the
us recruiting countries (Scotland 15/SS/0110, England, Wales and Northern Ireland: 19/WM/0247).
us  Current and previous versions of the study protocol are available at genomicc.org/protocol. All
a7 participants gave informed consent.
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# Recruitment of controls
s Mild/asymptomatic controls

0 Participants were recruited to the mild COVID-19 cohort on the basis of having experienced mild
31 (non-hospitalised) or asymptomatic COVID-19. Participants volunteered to take part in the study
2 via a microsite and were required to self-report the details of a positive COVID-19 test. Volunteers
33 were prioritised for genome sequencing based on demographic matching with the critical COVID-19
s cohort considering self-reported ancestry, sex, age and location within the UK. We refer to this
35 cohort as the covid-mild cohort.

s 100,000 Genomes project controls

7 Participants were enrolled in the 100,000 Genomes Project from families with a broad range of
s rare diseases, cancers and infection by 13 regional NHS Genomic Medicine Centres across England
9 and in Northern Ireland, Scotland and Wales. For this analysis, participants for whom a positive
w0 SARS-CoV-2 test had been recorded as of March, 2021 were not included due to uncertainty in the
s severity of COVID-19 symptoms. Only participants for whom genome sequencing was performed
2 from blood derived DNA were included and participants with haematological malignancies were
363 excluded to avoid potential tumour contamination.

s« DINA extraction

35 For critical COVID-19 cases and mild cohort controls, DNA was extracted from whole blood using
s Nucleon Kit (Cytiva) with the BACC3 protocol. DNA samples were re-suspended in 1 ml TE buffer
7 pH 7.5 (10mM Tris-Cl pH 7.5, ImM EDTA pH 8.0). The yield of the DNA was measured using
s Qubit and normalised to 50ng/ul before WGS or genotyping.

w WGS sequencing

s For all three cohorts, DNA was extracted from whole-blood using standard protocols. Sequencing
sn  libraries were generating using the Illumina TruSeq DNA PCR-Free High Throughput Sample
sz Preparation kit and sequenced with 150bp paired-end reads in a single lane of an Illumina Hiseq
ss X instrument (for 100,000 Genomes Project samples) or NovaSeq instrument (for the COVID-19
s critical and mild cohorts).

s Sequencing data QC

s All genome sequencing data were required to meet minimum quality metrics and quality control
s7 - measures were applied for all genomes as part of the bioinformatics pipeline. The minimum data
ws  requirements for all genomes were > 85 x 1079 bases with @ > 30 and > 95% of the autosomal
s genome covered at > 152 calculated from reads with mapping quality > 10 after removing duplicate
w0 reads and overlapping bases, after adaptor and quality trimming. Assessment of germline cross-
s1  sample contamination was performed using VerifyBamID and samples with > 3% contamination
sz were excluded. Sex checks were performed to confirm that the sex reported for a participant was
3 concordant with the sex inferred from the genomic data.
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w WGS Alignment and variant calling
s COVID-19 cohorts

s For the critical and mild COVID-19 cohorts, sequencing data alignment and variant calling was
sr - performed with Genomics England pipeline 2.0 which uses the DRAGEN software (v3.2.22). Align-
s ment was performed to genome reference GRCh38 including decoy contigs and alternate haplotypes
30 (ALT contigs), with ALT-aware mapping and variant calling to improve specificity.

w0 100,000 Genome Project cohort (100K-genomes)

s All genomes from the 100,000 Genomes Project cohort were analysed with the Illumina North Star
32 Version 4 Whole Genome Sequencing Workflow (NSV4, version 2.6.53.23); which is comprised of
w3 the iISAAC Aligner (version 03.16.02.19) and Starling Small Variant Caller (version 2.4.7). Samples
s were aligned to the Homo Sapiens NCBI GRCh38 assembly with decoys.

35 A subset of the genomes from the Cancer program of the 100,000 Genomes Project were reprocessed
ws (alignment and variants calling) using the same pipeline used for the COVID-19 cohorts (DRAGEN
7 v3.2.22) for equity of alignment and variant calling.

w  Aggregation

0 Aggregation was conducted separately for the samples analysed with Genomics England pipeline 2.0
wo  (severe-cohort, mild-cohort, cancer-realigned-100K), and those analysed with the Illumina North
w1 Star Version 4 pipeline (100K-Genomes).

w2 For the first three, the WGS data were aggregated from single sample gVCF files to multi-sample
w3 VCF files using GVCFGenotyper (GG) v3.8.1, which accepts gVCF files generated via the DRAGEN
w0 pipeline as input. GG outputs multi-allelic variants (several ALT variants per position on the same
ws  Tow), and for downstream analyses the output was decomposed to bi-allelic variants per row using
ws  software vt v0.57721. We refer to the aggregate as aggCOVID__vX, where X is the specific freeze.
w7 The analysis in this manuscript uses data from freeze v4.2 and the respective aggregate is referred
w8 to as aggCOVID_ v4.2.

wo  Aggregation for the 100K-Genomes cohort was performed using [llumina’s gvcfgenotyper v2019.02.26,
a0 merged with beftools v1.10.2 and normalised with vt v0.57721.

a1 Sample Quality Control (QC)

a2 Samples that failed any of the following four BAM-level QC filters: freemix contamination (>3%),
a3 mean autosomal coverage (<25X), percent mapped reads (<90%), and percent chimeric reads (>5%)
as  were excluded from the analysis.

a5 Additionally, a set of VCF-level QC filters were applied post-aggregation on all autosomal bi-allelic
ss SNVs (akin to gnomAD v3.117). Samples were filtered out based on the residuals of eleven QC metrics
a7 (calculated using beftools) after regressing out the effects of sequencing platform and the first three
sg  ancestry assignment principal components (including all linear, quadratic, and interaction terms)
a0 taken from the sample projections onto the SNP loadings from the individuals of 1000 Genomes
220 Project phase 3 (1IKGP3). Samples were removed that were four median absolute deviations (MADs)
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o1 above or below the median for the following metrics: ratio heterozygous-homozygous, ratio insertions-
w22 deletions, ratio transitions-transversions, total deletions, total insertions, total heterozygous snps,
23 total homozygous snps, total transitions, total transversions. For the number of total singletons
w24 (snps), samples were removed that were more than 8 MADs above the median. For the ratio of
a5 heterozygous to homozygous alternate snps, samples were removed that were more than 4 MADs
26 above the median.

w27 After quality control, 79,803 individuals were included in the analysis with the breakdown according
w28 to cohort shown in Supplementary Table 2.

2 Selection of high-quality (HQ) independent SNPs

a0 We selected high-quality independent variants for inferring kinship coefficients, performing PCA,
a1 assigning ancestry and for the conditioning on the Genetic Relatedness matrix by the logistic mixed
2 model of SAIGE and SAIGE-GENE. To avoid capturing platform and/or analysis pipeline effects
i3 for these analyses, we performed very stringent variant QC as described below.

s HQ common SNPs

15 We started with autosomal, bi-allelic SNPs which had frequency > 5% in aggV2 (100K participant
ws  aggregate) and in the 1IKGP3. We then restricted to variants that had missingness <1%, median
w7 genotype quality QC>30, median depth (DP) >=30 and >= 90% of heterozygote genotypes passing
s an ABratio binomial test with P-value > 1072 for aggV?2 participants. We also excluded variants in
19 complex regions from the list available in , and variants where the ref/alt combination was CG or AT
w (C/G, G/C, A/T, T/A). We also removed all SNPs which were out of Hardy Weinberg Equilibrium
w (HWE) in any of the AFR, EAS, EUR or SAS super-populations of aggV2, with a P-value cutoff of
w2 pHWE < 107°. We then LD-pruned using plink v1.9 with an 72 = 0.1 and in 500kb windows. This
w3 resulted in a total of 63,523 high-quality sites from aggV2.

s We then extracted these high-quality sites from the aggCOVID_v4.2 aggregate and further applied
ws  variant quality filters (missingness <1%, median QC>30, median depth >=30 and >= 90% of
ws heterozygote genotypes passing an ABratio binomial test with P-value > 1072), per batch of
wr sequencing platform (i.e, HiseqX, NovaSeq6000).

ws  After applying variant filters in aggV2 and aggCOVID_ v4.2, we merged the genomic data from the
wo  two aggregates for the intersection of the variants which resulted in a final total of 58,925 sites.

0 HQ rare SNPs

s We selected high-quality rare (MAF< 0.005) bi-allelic SNPs to be used with SAIGE for aggregate
s variant testing analysis. To create this set, we applied the same variant QC procedure as with
»s3  the common variants: We selected variants that had missingness <1%, median QC>30, median
s depth >=30 and >= 90% of heterozygote genotypes passing an ABratio binomial test with P-value
w5 > 1072 per batch of sequencing and genotyping platform (i.e, HiSeq+NSV4, HiSeq+Pipeline 2.0,
16 NovaSeq+Pipeline 2.0). We then subsetted those to the following groups of MAC/MAF categories:
w1 MAC 1, 2, 3, 4, 5, 6-10, 11-20, MAC 20 - MAF 0.001, MAF 0.001 - 0.005.
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= Relatedness, ancestry and principal components
459 Kinship

w0 We calculated kinship coefficients among all pairs of samples using software plink2 and its imple-
w1 mentation of the KING robust algorithm. We used a kinship cutoff < 0.0442 to select unrelated
w2 individuals with argument “—king-cutoff".

13  Genetic Ancestry Prediction

s To infer the ancestry of each individual we performed principal components analysis (PCA) on
w5 unrelated 1IKGP3 individuals with GCTA v1.93.1_ beta software using HQ common SNPs and
ws inferred the first 20 PCs. We calculated loadings for each SNP which we used to project aggV2 and
w7 aggCOVID_v4.2 individuals onto the 1IKGP3 PCs. We then trained a random forest algorithm
s from R-package randomForest with the first 10 1IKGP3 PCs as features and the super-population
w0 ancestry of each individual as labels. These were ‘AFR’ for individuals of African ancestry, ‘AMR’
a0 for individuals of American ancestry, ‘EAS’ for individuals of East Asian ancestry, ‘EUR’ for
a  individuals of European ancestry, and ‘SAS’ for individuals of South Asian ancestry. We used
a2 500 trees for the training. We then used the trained model to assign probability of belonging to
a3 a certain super-population class for each individual in our cohorts. We assigned individuals to a
a super-population when class probability >=0.8. Individuals for which no class had probability
a5 >=0.8 were labelled as “unassigned” and were not included in the analyses.

w6 Principal component analysis

ar After labelling each individual with predicted genetic ancestry, we calculated ancestry-specific PCs
s using GCTA v1.93.1_beta, i.e.. We computed 20 PCs for each of the ancestries that were used in
a9 the association analyses (AFR, EAS, EUR, and SAS).

« Variant Quality Control

s Variant QC was performed to ensure high quality of variants and to minimise batch effects due to
.2 using samples from different sequencing platforms (NovaSeq6000 and HiseqX) and different variant
w3 callers (Strelka2 and DRAGEN). We first masked low-quality genotypes setting them to missing,
s merged aggregate files and then performed additional variant quality control separately for the two
5 major types of association analyses, GWAS and AVT, which concerned common and rare variants,
a5 respectively.

w7 Masking

s Prior to any analysis we masked low quality genotypes using bcftools setGT module. Genotypes
w0 with DP<10, GQ<20, and heterozygote genotypes failing an AB-ratio binomial test with P-value <
w0 1073 were set to missing.

w1 We then converted the masked VCF files to plink and bgen format using plink v.2.0.
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w2  Merging of aggregate samples

23 Merging of aggV2 and aggCOVID_ v4.2 samples was done using plink files with masked genotypes
s and the merge function of plink v.1.9.4¢ for variants that were found in both aggregates.

s GWAS analyses
w5 Variant QC

w7 We restricted all GWAS analyses to common variants applying the following filters using plink v1.9:
ws  MAF > 0 in both cases and controls, MAF> 0.5% and MAC >20, missingness < 2%, Differential
w0 Missingness between cases and controls, mid-P-value < 10~°, HWE deviations on unrelated controls,
s0  mid-P-value < 1075, Multi-allelic variants were additionally required to have MAF > 0.1% in both
so aggV2 and aggCOVID__v4.2.

s Control-control QC filter

s3 100K aggV2 samples that were aligned and genotype called with the Illumina North Star Version 4
soa  pipeline represented the majority of control samples in our GWAS analyses, whereas all of the cases
ss were aligned and called with Genomics England pipeline 2.0 (Supplementary Table 1). Therefore,
ss the alignment and genotyping pipelines partially match the case/control status which necessitates
sor additional filtering for adjusting for between-pipeline differences in alignment and variant calling. To
see control for potential batch effects, we used the overlap of 3,954 samples from the Genomics England
so 100K participants that were aligned and called with both pipelines. For each variant, we computed
s and compared between platforms the inferred allele frequency for the population samples. We then
su filtered out all variants that had > 1% relative difference in allele frequency between platforms. The
s relative difference was computed on a per-population basis for EUR (n=3,157), SAS (n=373), AFR
sz (n=354) and EAS (n=_81).

s Model

si5. - We used a 2-step logistic mixed model regression approach as implemented in SAIGE v0.44.5 for
si6 - single variant association analyses. In step 1, SAIGE fits the null mixed model and covariates. In
sz step 2, single variant association tests are performed with the saddlepoint approximation (SPA)
sis8  correction to calibrate unbalanced case-control ratios. We used the HQ common variant sites for
so fitting the null model and sex, age, age?, age * sex and 20 principal components as covariates in
s0 step 1. The principal components were computed separately by predicted genetic ancestry (i.e,
s EUR-specific, AFR-specific, etc.), to capture subtle structure effects.

s Analyses

s23 All analyses were done on unrelated individuals with pairwise kinship coefficient < 0.0442. We
s« conducted GWAS analyses per genetic ancestry, for all populations for which we had >100 cases
s and >100 controls (AFR, EAS, EUR, and SAS).

s Multiple testing correction

sz As our study is testing variants that were directly sequenced by WGS and not imputed, we calculated
s the P-value significance threshold by estimating the effective number of tests. After selecting the
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s20  final filtered set of tested variants for each population, we LD-pruned in a window of 250Kb and
so 2 = 0.8 with plink 1.9. We then computed the Bonferroni-corrected P-value threshold as 0.05
sn divided by the number of LD-pruned variants. The P-value thresholds that were used for declaring
s statistical significance are given in Supplementary Table 3.

53 LD-clumping

s We used plink1.9 to do clumping of variants that were genome-wide significant for each analysis with
s P1 set to per-population P-value from table X, P2 = 0.01, clump distance 1500Mb and % = 0.1.

s Conditional analysis

ss7. 1o find the set of independent variants in the per-population analyses, we performed a step-wise
s3 conditional analysis with the GWAS summary statistics for each population using GTCA 1.9.3
s:  —cojo-slct function. The parameters for the function were pval = 2.2 x 1078, a distance of 10,000 kb
s and a colinear threshold of 0.947.

s Fine-mapping

sz We performed fine-mapping for genome-wide significant signals using Rpackage SusieR v0.11.4248.
si3 For each genome-wide significant variant locus, we selected the variants 1.5 Mbp on each side and
s computed the correlation matrix among them with plink v1.9. We then run the susieR summary-
ss  statistics based function susie rss and provided the summary z-scores from SAIGE (i.e, effect size
s.6  divided by its standard error) and the correlation matrix computed with the same samples that
sev were used for the corresponding GWAS. We required coverage >0.95 for each identified credible set
ses  and minimum and median correlation coefficients (purity) of r=0.1 and 0.5, respectively.

s00  Functional annotation of credible sets

ss0  We annotated all variants included in each credible set identified by SusieR using VEP v99. We also
ss1 selected the worst consequence across transcripts using beftools +split-vep -s worst. We also ranked
ss2 each variant within each credible set according to the predicted consequence and the ranking was
s based on the table provided by Ensembl: https://www.ensembl.org/info/genome/variation/predicti
s« on/predicted__data.html.

5 'Trans-ancestry meta-analysis

sss  We performed a meta-analysis across all ancestries using a inverse-variance weighted method and
7 control for population stratification for each separate analysis in the METAL software'®. The
s meta-analysed variants were filtered for variants with heterogeneity P-value p < 2.22 x 1078 and
ss0  variants that are not present in at least half of the individuals. We used the meta R package to plot
0 forest plots of the clumped trans-ancestry meta-analysis variants®.

sse  LD-based validation of lead GWAS signals

In order to quantify the support for genome-wide significant signals from nearby variants in LD, we
assessed the internal consistency of GWAS results of the lead variants and their surroundings. To
this end, we compared observed z-scores at lead variants with the expected z-scores based on those
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observed at neighbouring variants. Specifically, we computed the observed z-score for a variant ¢ as
si=p/ 63 and, following the approach of®?, the imputed z-score at a target variant ¢ as

'§t = 2t7P(2P7P + )\I)ilsp

s2  where sp are the observed z-scores at a set P of predictor variants, 3, , is the empirical correlation
ss3 matrix of dosage coded genotypes computed on the GWAS sample between the variants in x and y,
s« and A is a regularization parameter set to 107°. The set P of predictor variants consisted of all
ses  variants within 100 kb of the target variant with a genotype correlation with the target variant
ss  greater than 0.25.

ss7  Replication

ses  We used the Host Genetic Initiative (HGI) GWAS meta-analysis round 6 hospitalised COVID vs
so0  population (B2 analysis), including all genetic ancestries. In order to remove overlapping signals
s we performed a mathematical subtraction of the GenOMICC GWAS of European genetic ancestry.
sn The HGI data was downloaded from https://www.covid19hg.org/results/r6/. The subtraction was
s»  performed using MetaSubtract package (version 1.60) for R (version 4.0.2) after removing variants
s3 with the same genomic position and using the lambda.cohortswith genomic inflation calculated on
st the GenOMICC summary statistics. Then, we calculated a trans-ancestry meta-analysis for the three
sis - ancestries with summary statistics in 23andMe: African, Latino and European using variants that
st passed the 23andMe ancestry QC, with imputation score > 0.6 and with maf > 0.005. And finally
sz we performed a final meta-analysis of 23andMe and HGI B2 without GenOMICC to create the final
sw  replication set. Meta-analysis were performed using METAL '3, with the inverse-variance weighting
so method (STDERR mode) and genomic control ON. We considered that a hit was replicating if the
ss0  direction of effect in the GenOMICC-subtracted HGI summary statistics was the same as in our
ssi  GWAS, and the P-value was significant after Bonferroni correction for the number of attempted
se2  replications (pval < 0.05/25). If the main hit was not present in the HGI-23andMe meta-analysis or
se3  if the hit was not replicating we looked for replication in variants in high LD with the top variant
e (r? > 0.9), which helped replicate two regions.

sss  Stratified analysis

.6 We also performed sex-specific analysis (male and females separately) as well as analysis stratified
se7 by age (i.e., participants <60 and >=60 years old) for each super-population set. To compare effect
sss  Of variants within groups for the age and sex stratified analysis we first adjusted the effect and error
ss0  of each variant for the standard deviation of the trait in each stratified group and then used the
so following t-statistic, as in previous studies®!i%?

by —by

so1 = S >
\/sel+55272-7‘sel-r562

s where by is the adjusted effect for group 1, by is the adjusted effect for group 2, se; and sey are
so3  the adjusted standard errors for group 1 and 2 respectively and r is the Spearman rank correlation
s between groups across all genetic variants.

s HLA Imputation and Association Analysis

s6  HLA types were imputed at two field (4-digit) resolution for all samples within aggV2 and ag-
sv gCOVID__v4.2 for the following seven loci: HLA-A, HLA-C, HLA-B, HLA-DRB1, HLA-DQA1,
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ss  HLA-DQB1, and HLA-DPBI using the HIBAG package in R'°. At time of writing, HLA types
s0  were also imputed for 82% of samples using HLA*LA 3. Inferred HLA alleles between HIBAG and
oo HLA*LA were >96% identical at 4-digit resolution. HLA association analysis was run under an
s additive model using SAIGE; in an identical fashion to the SNV GWAS. The multi-sample VCF
o2 of aggregated HLA type calls from HIBAG were used as input where any allele call with posterior
s03 probability (7') < 0.5 were set to missing.

« Aggregate variant testing (AVT)

ws Aggregate variant testing on aggCOVID_v4.2 was performed using SKAT-O as implemented in
o0s  SAIGE-GENE v0.44.5'6 on all protein-coding genes. Variant and sample QC for the preparation
o7 and masking of the aggregate files has been described elsewhere. We further excluded SNPs with
es  differential missingness between cases and controls (mid-P value < 107°) or a site-wide missingness
oo above 5%. Only bi-allelic SNPs with a MAF<0.5% were included.

e We filtered the variants to include in the aggregate variant testing by applying two functional
su annotation filters: A putative loss of function (pLoF) filter, where only variants that are annotated
sz by LOFTEE!'7 as high confidence loss of function were included, and a more lenient (missense)
sz filter where variants that have a consequence of missense or worse as annotated by VEP, with a
e CADD__PHRED score of > 10, were also included. All variants were annotated using VEP v99.
a5 SAIGE-GENE was run with the same covariates used in the single variant analysis: sex, age, age?,
a5 age x sex and 20 (population-specific) principal components generated from common variants (MAF
617 > 5%)

sis  We ran the tests separately by genetically predicted ancestry, as well as across all four ancestries as
e10  a mega-analysis. We considered a gene-wide significant threshold on the basis of the genes tested
20 per ancestry, correcting for the two masks (pLoF and missense, Supplementary Table 4).

o Post-GWAS analysis
2 Transcriptome-wide Association Studies (TWAS)

s23 We performed TWAS in the MetaXcan framework and the GTExv8 eQTL and sQTL MASHR-M
s2« models available for download in (http://predictdb.org/). We first calculated, using the European
s summary statistics, individual TWAS for whole blood and lung with the S-PrediXcan function®#%°.
e Then we performed a metaTWAS including data from all tissues to increase statistical power using
ez s-MultiXcan®. We applied Bonferroni correction to the results in order to choose significant genes
es and introns for each analysis.

e20 Colocalisation analysis

60 Significant genes from TWAS, splicing TWAS, metaTWAS and splicing metaTWAS, as well as genes
e where one of the top variants was a significant eQTL or sQTL were selected for a colocalisation
s analysis using the coloc R package®”. We chose the lead SNPS from the European ancestry GWAS
63 summary statistics and a region of £200 kb around each SNP to do the colocalisation with the
e3¢ identified genes in the region. GTExv8 whole blood and lung tissue summary statistics and eqtlGen
e (which has blood eQTL summary statistics for > 30,000 individuals) were used for the analysis 858,
s We first performed a sensitivity analysis of the posterior probability of colocalisation (PPH4) on the
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sw  prior probability of colocalisation (p12), going from pl12 = 10~ 8 to p12 = 10~ 4 with the default
es  threshold being pl12 = 1075. eQTL signal and GWAS signals were deemed to colocalise if these
30  two criteria were met: (1) At P12 =5 x 1075 the probability of colocalisation PPH4 > 0.5 and
s0 (2) At pl2 = 1075 the probability of independent signal (PPH3) was not the main hypothesis
o1 (PPH3 < 0.5). These criteria were chosen to allow eQTLs with weaker P-values due to lack of
s2  power in GTExv8, to be colocalised with the signal when the main hypothesis using small priors
&3 was that there wasn’t any signal in the eQTL data.

sas  As the chromosome 3 associated interval is larger than 200 kb, we performed additional colocalisation
«s including a region up to 500 kb, but no further colocalisations were found.
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