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Abstract
SEIR (Susceptible - Exposed - Infected - Recovered) approach is a classic modeling method that
has frequently been applied to the study of infectious disease epidemiology. However, in the vast
majority of SEIR models and models derived from them transitions from one population group to
another are described using the mass-action law which assumes population homogeneity. That
causes some methodological limitations or even drawbacks, particularly inability to reproduce
observable dynamics of key characteristics of infection such as, for example, the incubation
period and progression of the disease's symptoms which require considering different time scales
as well as probabilities of different disease trajectories. In this paper, we propose an alternative
approach to simulate the epidemic dynamics that is based on a system of differential equations
with time delays to precisely reproduce a duration of infectious processes (e.g. incubation period
of the virus) and competing processes like transition from infected state to the hospitalization or
recovery. The suggested modeling approach is fundamental and can be applied to the study of
many infectious disease epidemiology. However, due to the urgency of the COVID-19 pandemic
we have developed and calibrated the delay-based model of the epidemic in Germany and France
using the BioUML platform. Additionally, the stringency index was used as a generalized
characteristic of the non-pharmaceutical government interventions implemented in
corresponding countries to contain the virus spread. The numerical analysis of the calibrated
model demonstrates that adequate simulation of each new wave of the SARS-CoV-2 virus spread
requires dynamic changes in the parameter values during the epidemic like reduction of the
population adherence to non-pharmaceutical interventions or enhancement of the infectivity
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parameter caused by an emergence of novel virus strains with higher contagiousness than
original one. Both models may be accessed and simulated at
https://gitlab.sirius-web.org/covid-19/dde-epidemiology-model utilizing visual representation as
well as Jupyter Notebook.

Introduction

Mathematical modeling of the spread of infectious diseases is a powerful and widely used
approach to predict infection, lethality and mortality rates in a certain country or over the world
(Metcalf et al., 2020). It may also help reveal what should be the most effective administrative
strategies and social containment measures in order to minimize loss of life and productivity and
to curb the spread (Adam, 2020; Ciuriak and Fay, 2020; Cobey, 2020; Kucharski et al.,. 2020).
The SIR (Susceptible, Infected and Recovered) method is an often used approach to build
epidemiological models (Kermack and McKendrick, 1927). It has been widely applied to
simulating the epidemic spread, control mechanisms and economic output of the COVID-19 in
different countries (Atkeson, 2020; Calafiore et al., 2020; Fanelli and Piazza, 2020; Zhang et al.,
2020). SIR-models can be easily extended, for example, to include different aspects of the
disease. For instance, in (Banerjee et al., 2020) inclusion of the viral load and the impact on the
immune human system into the SIR-model has enabled the identification of potential causes of
two-phase exponential growth of the epidemic. Another natural extension is taking into account
incubation time of the virus. Such models are usually called SEIR-models where E means
exposed (Li and Muldowney, 1995).

SEIR-models found enormous application in theoretical studies of diverse aspects of the
novel SARS-CoV-2 pandemic. In particular, such models were used to estimate the impact of
different lockdown intensities on epidemic spread in China (Prem et al., 2020; Yang et al.,
2020), United Kingdom (Ferguson et al., 2020) and Europe (e.g. the Netherlands) (Westerhoff
and Kolodkin, 2020) for the year 2020, and even until 2025 for the USA, considering seasonal
forcing and cross-immunity from the other betacoronaviruses (Kissler et al., 2020). The SEIR
modeling has also been harnessed to estimate the effect of local and international travel
restrictions on the spread of COVID-19 outbreak (Chinazzi et al., 2020).

The typical scenario of authorities’ actions (also called NPIs for Non-Pharmaceuticals
Interventions) simulated in SEIR models is restriction on mobility and mass gatherings which
reduce the number of contacts in the population and can be represented as an additional
multiplier to the infection rate law reflecting social distancing (Westerhoff and Kolodkin, 2020).
The control parameter may be changed by means of discrete events and piecewise functions.
Other key NPIs are closing borders and quarantine on entry which diminishes the influx of
infected individuals to the simulated region and mass testing for the virus where different modes
of testing can be implemented in the model depending on the financial capabilities and
government acts and policies (random tests or testing of infected with severe/critical symptoms,
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or considering contacts of infected one etc). A number of hospital beds and intensive care units
(ICU) is another crucial factor in the fight of authority against COVID-19 which should be
considered in epidemiological modeling (Tuomisto et al., 2020).

Despite the fact that initial results of the numerical study of SEIR models played an
essential role in determining both basic laws of the primary development of the COVID-19
pandemic and core characteristics of the current pandemic situation, in the overwhelming
majority this type of models uses mass action laws to describe the transitions between states (for
example, from the incubation period to the symptomatic). Because of that, such models cannot
always adequately reproduce the dynamics of such transitions. The methodological constraint of
the SEIR models can be solved by using delayed differential equations which are able to
explicitly capture the durations of the latent, quarantine, and recovery periods (Cooke and Van
Den Driessche, 1996; Martcheva, 2015). Thus, Shayak and coathours numerically investigated
the simplest retarded logistic equation with time delay to model the spread of COVID-19 in a
city and demonstrated that solution of the model is significantly sensitive to small changes in the
parameter values (Shayak et al., 2020). In the same time, more conventional SEIR-based delay
differential equation models were proposed to reproduce the COVID-19 dynamics in Germany,
China, South Korea, India and Japan (Götz and Heidrich, 2020; Menendez, 2020; Sharma et al.,
2021; Utamura et al., 2020) and to predict the epidemic dynamics in Italy and Spain when it was
in its early stages. However, these models did not take into account asymptomatic carriers and
non-testing subpopulations as well as the progression of the disease’s severity.

Herein, we propose novel modification of the original SEIR model proposed in
(Westerhoff and Kolodkin, 2020) using differential equations with weighted sums of delayed
argument mixed with instant processes, which allow us not only model transition processes
adequately to clinically observed data, but also directly quantify the proportion of hospitalized
patients with moderate and severe symptoms, on an ICU, asymptomatic, tested and untested
among them, which can be compared with the available statistics. The results of numerical
analysis and model validation are demonstrated by the example of two European countries,
Germany and France.

Methods

SEIR-like model
The overwhelming majority of SEIR-like models uses the mass action kinetiс law for

transitions between different stages of a disease(e.g. between exposed and infectious periods).
Explicit drawbacks of this approach are that:

1. Parameters of those reactions are quite abstract and can not be easily related to real
biological characteristics of the virus and

2. The model fails to correctly represent processes delayed in time. Here we will try to
address those two problems.
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In the current study we will use SBGN - Systems Biology Graphical Notation (Le Novere et al.,
2009) for visual representation of mathematical models. Let's consider a SEIR-like model with
two levels of symptom severity.(Fig. 1).

Fig. 1. SEIRHD model with mass-action kinetics

Model  equations:

With initial values: 𝑆(0) = 𝑆
0
 ,  𝐸(0) = 𝐸

0
,  𝐼(0) = 𝑅(0) =  𝐻(0) =  𝐷(0) =  0,

where S - susceptible population, E - exposed (in incubation period) population, I - infected
(with mild symptoms) population, H - infected (with severe symptoms), R - recovered
population, - infection rates for different contagious groups, a - symptom onset rate, -β

1
, β

2
, β

3
 δ

symptoms worsening rate, - death rate, - recovery rate (for mild and severe symptomsµ γ
1
, γ

2

respectively).
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Duration of processes
A numerical value of the parameter in the model (1) is related to the median incubation𝑎

period in the population. For example if we set = ln(2)/5.1 then 50% of individuals who were𝑎

exposed to the virus at time t = 0 will become symptomatic at time t = 5.1 days.
(2)𝑑𝐼

𝑑𝑡 =− 𝑑𝐸
𝑑𝑡 = 𝑙𝑛(2)/5. 1𝐸(𝑡)

Distribution of incubation period in this model compared to the experimental data from
(Lauer et al., 2020) is presented in Figure 2. A One can easily observe that it is inconsistent
with statistical data on incubation period. For example, for almost 10% of the infected,
symptoms will onset in one day after exposure.

Unfortunately, having only one parameter we can not fit the curve to this statistical𝑎
data.  This is also the case for other processes delayed in time with certain distribution of length.
A possible solution to overcome the issue  is use of different forms of the kinetic law:

𝑑𝐼
𝑑𝑡 =− 𝑑𝐸

𝑑𝑡 =
𝑖=0

𝑚

∑ 𝑘
𝑖
𝐸(𝑡 − △

𝑖
).                                                       (3)

Herein, we use a weighted sum of the delayed number of exposed individuals. We have a
2*m parameters which can be estimated to reproduce an experimental data. Typically, m = 1 or
m = 2 is enough to comprehensively fit the data, keeping the number of parameters reasonably
low.
For example, to fit the data from (Lauer et al., 2020) we employ two delays only:

(4)𝑑𝐼
𝑑𝑡 =− 𝑑𝐸

𝑑𝑡 = 0. 14𝐸(𝑡 − 2) + 0. 42𝐸(𝑡 − 3)

Simulation results of the incubation period’s model demonstrating differences between
theoretical curves obtained using two methodologies are presented in Figure 2.

Another benefit of the time-delay based approach is an opportunity to reproduce an
experimental data on diverse epidemiological processes (incubation period, recovery, worsening
of symptoms from mild to severe and others) once and separately from the rest of the model
structure based on the known distributions of duration of those processes for particular infectious
disease only.
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Fig. 2. A comparison between two models of the incubation period: (A): based on the mass-action
kinetics law (2). B: using weighted sum of delays (4). Statistical data of the incubation period quantiles
are taken from (Lauer et al., 2020).

Competing processes
Another opportunity to improve the original model and bring it closer to reality is to

consider different possible transitions from the same subgroup. For example, infected patients
may either recover or progress to severe symptoms (Fig. 1). In that case parameters and areδ γ

1

related not only to durations of corresponding processes but also with recovery rate for mild
symptomatic (or fraction of severe symptomatic among mild symptomatic). An issue with two
alternatives arises when the fast process has less probability and therefore less fraction of
patients involved in this direction of the infectious process. According to the statistics (Boelle et
al., 2020), the process of worsening of symptoms (median time is 5 days) is faster than recovery
(median time equals to 14 days) implying that value should be larger than value. As in theδ γ

1

previous subsection, we may set these parameters as However,δ = 𝑙𝑛(2)/5,  γ
1

= 𝑙𝑛(2)/14.

in that case (Fig. 3) the model will show that the fraction of patients that transit to the severe
symptoms is larger than the fraction recovered which is not the case in reality (WHO report,
2020).
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Fig. 3. The simple mass-action model with two competing processes. (A): SBGN representation of the
model, here I - infected individuals, R - recovered, H - patients with severe symptoms; (B): Simulation
results of the model.

The possible solution to overcome the discrepancy is to consider those two processes
separately. Firstly, patients will instantaneously transit from “Symptomatic” to “Symptomatic
who will recover in future” ( and then from to R. In similar way another fraction of𝐼

𝑅
) 𝐼

symptomatic patient will instantaneously transit to “Symptomatic who will need hospitalization”
( and only afterwards from to The updated model is presented in Figure 4 and𝐼

𝐻
) 𝐼

𝐻
𝐻.

corresponding  model equations are:

Where - a fraction of infectious individuals who will not have worse symptoms.𝐹
𝑅

= 0. 2

- a fraction of infectious individuals who will have worse symptoms.𝐹
𝐻

= 0. 8

𝐹
𝑅

+ 𝐹
𝐻

= 1.

- constant value which is large enough to render reactions instant.𝐾
𝐿𝑎𝑟𝑔𝑒

The total number of individuals with mild symptoms is calculated as a sum of all subgroups:
𝐼 = 𝐼

𝑂
+ 𝐼

𝑅
+ 𝐼

𝐻

Fig. 4. A part of the epidemiological model with alternative competing processes. (A): Visual
representation in SBGN format; (B): Simulation results of the model for fractions of recovered and
patients with severe symptoms.
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This technique can be combined with delayed equations described in the previous
section. Thus, we can construct a version of the model (1) taking into account the duration of
some infectious processes and the existence of competing processes. The final version of the
model is presented in Figure 5.

Fig. 5. SEIR-like model with instant and delay-based processes (2)

Advantage of the updated model is that instead of 8 parameters which do not explicitly
correspond to real characteristics of infectious processes and has to be fitted to experimental data
we have only three parameters, two fraction parameters: - fraction of symptomatic individuals𝐹

𝐻

with severe symptoms, - disease lethality that can be drawn from statistical data and processes𝐹
𝐷

that are fitted to experimental data separately from the rest of the model. Comparison is given in
Table 1.

Table 1. Comparison of parameters in models (1) and (2)

Modeled process Parameters

SEIRHD Model (1) Delay-based Model (2)

Exposure to the virus Infection rates β
1
, β

2
, β

3
Infection rates .β

1
, β

2
, β

3

Incubation period α Fitted process.

Recovery with mild symptoms γ
1

Fraction of severe symptomatic , Fitted𝐹
𝐻

process.

Progress to severe symptoms δ Fraction of severe symptomatic , Fitted𝐹
𝐻

process.
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Recovery with severe symptoms γ
2

Disease lethality , Fitted process.𝐹
𝐷

Death µ Disease lethality , Fitted process.𝐹
𝐷

Initial model
As a basis for our model we used the previously created SEIR model (Westerhoff and

Kolodkin, 2020) of the Covid-19 epidemic. This model differs from the most SEIR models by
differentiating between tested and non-tested infected subjects. It was created in the Systems
Biology software COPASI (Hoops et al., 2006) which allows one to specify the kinetics of the
process mechanistically. COPASI translates these specifications into differential equations which
it integrates either as a function of time, or by requiring steady state. The software honors
restrictions as specified in terms of algebraic equations and ‘events’ which instantaneously
change numeric values of the model parameters triggered by logical expressions transiting from
“false” to “true”. COPASI models are SBML compatible, and can be exported into the format.
The latter greatly facilitates model reuse and reproduction.

Data sources
Statistical data for Germany and France was taken from Our World In Data web site

(https://ourworldindata.org/). This web-portal provides the data on the total number of cases, new
cases each day, number of hospitalized, transferred to ICU patients, vaccinated individuals and
total number of deaths.

To take into account statistical data on government actions in the model we employed the
Stringency Index developed by the Blavatnik School of Government of the University of Oxford
(Hale et al., 2021) which incorporates data on 10 different measures corresponded to: C1 -
School closing, C2 - Workplace closing, C3 - Public events cancellation, C4 - Restriction on
gatherings, C5 - Public transport closing, C6 - Stay at home requirements, C7 - Internal
movement, C8 - International movement, H1 - public information campaigns.
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Fig. 6. Stringency of government measures  (blue) and new reported cases per day (yellow)

BioUML Platform
BioUML (http://www.biouml.org) used in the study is an integrated Java platform for

modeling of biological systems (Kolpakov, 2019). It supports different mathematical
formulations for the model development including ODE, delay-based, algebraic systems, discrete
events, agent-based, and stochastic modeling. The platform also incorporates a module for the
automatic and manual parameter fitting to an experimental data. Models developed in the
BioUML are based on main standards in systems biology: 1) SBML - Systems Biology markup
Language (Hucka et al., 2018) for mathematical description and 2) SBGN for visual
representation. A model can be built and edited in the platform as a visual diagram (e.g. in
SBGN notation) based on which a Java code is generated for model simulations. Additionally,
BioUML is integrated with Jupyter hub (https://jupyter.org/) for interactive data and model
analysis as well as an essential and user-friendly tool for reproducibility of the simulation results.

Results

Model structure
The final version of the proposed delay differential equations (DDE) model consists of

the next set of subpopulations or groups (Fig. 7):
1. - Susceptible to the SARS-CoV-2 virus.𝑆
2. - Non susceptible due to previously existing immunity (Doshi, 2020; Mateus et al.,𝑁

2020; Ng et al., 2020; Pinto et al., 2020; Shrock et al., 2020). Those individuals can not
be infected and can not infect anyone else accordingly. Note that this group does not
include vaccinated individuals.

3. - vaccinated subpopulation, considered to be immune to the virus.𝑉
4. - exposed to the virus. After the incubation period they will transit either to𝐸

asymptomatic or symptomatic. Here we do not use additional subgroups due to equal
time intervals for both transitions.

5. - asymptomatic individuals, which will recover over time but can infect others (Oran et𝐴
al., 2021).

6. - mild symptomatic group. It comprises three subgroups: with onset symptoms ( then𝐼 𝐼
𝑂

)

they are instantly divided into those who will recover ( and those who will progress to𝐼
𝑅

)

the severe symptomatic ( . Transition is done according to the fraction of severe𝐼
𝐻

)

symptomatic among those who show any symptoms  ( .𝐹
𝐻

)
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7. - severe symptomatic group which comprises four subgroups: 1) with just onset𝐻
symptoms ( ). They instantaneously transit into subgroups of individuals who will𝐻

𝑂

eventually recover ( , die ( or progress to critically ill ( . Transitions are𝐻
𝑅

) 𝐻
𝐷

) 𝐻
𝐶
)

performed according to the disease lethality ( ) and the fraction of critically ill ( ).𝐹
𝐷

𝐹
𝐶

8. - critically ill group where ICU is required in order to recover. If no ICU is available𝐶
these patients will die. All critically ill patients are considered to be automatically tested
for the virus infection.

9. - recovered.𝑅
10. - dead.𝐷
11. All infected subgroups (except critically) also have registered or tested counterparts:

In the model patients may be tested at three different stages:𝐴𝑇,  𝐸𝑇, 𝐼𝑇,  𝐻𝑇, 𝑅𝑇, 𝐷𝑇.  
1) When being exposed to the virus. It is done through contact tracing procedures.

Percent of exposed to the virus who will be tested and registered is set by 𝑇
𝐸

parameter.
2) Upon symptoms onset. Percent of mildly symptomatic individuals who will be

registered is given by parameter .𝑇
𝐼

3) Upon severe symptoms onset. Percent of severely symptomatic individuals who
will be registered is given by parameter .𝑇

𝐻

Most transitions in the model are described as either instant processes or as preliminary
fitted processes (blue and green arrows, correspondingly, in Fig. 7). To fit delayed processes we
used data from (Lauer et al., 2020) for incubation period and (Boelle et al., 2020) for other
processes. We also harnessed data provided by Our World in Data for France for recovery\dying
in hospitals. To this end we constructed a partial model describing the process of admitting
hospital, transition to ICU and leaving hospital (Fig. 8). As one can see in Table 2, obtained
quartiles are quite different from those presented in (Lauer et al., 2020). Givendaily numbers of
hospital admission, daily number of ICU admissions and daily number of hospital patients we
fitted the process of leaving hospital utilizing formula (3). It should be noted that we assume that
all severely ill patients are tested and moved to the hospital ( . However, it is not always𝑇

𝐻
= 1)

the case and should be addressed in the updated version of the model. Overall scheme of the
partial model in SBGN format as well as a result of the model fitting to data on hospitalization in
France are presented in Fig. 8.

There are also three transitions in the model treated differently:
1. Vaccination. Based on the known statistical data we established the number of

individuals vaccinated each day in a certain country. This number is divided
proportionally between all subgroups eligible for vaccination which are susceptible,
non-susceptible and recovered (registered and not registered) individuals. Among them,
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vaccination of susceptible subpopulation only affects the model dynamics and thus is
presented on the diagram and model equations. The kinetic law for this process is
zeroth-order: with changed each day based on the tabular data for a𝑑𝑉/𝑑𝑡 =  𝑘

𝑉
 𝑘

𝑉

country. We also assume that vaccines have 100% efficiency, and the vaccinated can not
be infected in the current version of the model.
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Fig. 7. Overall SEIR-like model with instant and delayed processes.
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Fig. 8. (A): Partial model of the hospitalization due to Covid-19 using delay equations for hospital
release. Data on daily hospital and ICU admission taken from ourworldindata.org. (B): Results of the

model fitting to the number of hospitalized patients not in ICU in France.

Table 2. Processes fitted using formula (3) and data from (Boelle et al., 2020; Lauer et al., 2020). More
details are provided in supplementary materials (Supplementary figs. 1-7).

Process Median [Quartiles]
(Observed)

Calculated quartiles Results of the fitting

Incubation
period

5.1 [2.2, 3.8, 5.1, 6.7,
11.5]
(Lauer et al., 2020)

[2.13, 3.56, 5, 6.9, 11.6] 0. 14 · 𝑥(𝑡 − 2) + 0. 04 · 𝑥(𝑡 − 3)

Recovery with
mild or no
symptoms

14 [ 8, 20 ] (Boelle et
al., 2020)

14.9 [8.13, 21.2] 0. 048 · 𝑥(𝑡 − 3) +  0. 0017 · 𝑥(𝑡 − 4) +  0. 0166

Onset of severe
symptoms

5 [ 2 , 9 ] (Boelle et
al., 2020)

4.9 [ 2, 9] 0. 14 ·  𝑥(𝑡) +  0. 014 ·  𝑥(𝑡 − 5)

Release from
hospital
(without ICU)

9 [ 6, 15 ] (Boelle et
al., 2020)

9.2 [ 5.8, 14.7] 0. 086 · 𝑥(𝑡 − 3) + 0. 67 · 𝑥(𝑡 − 14. 9)

13.8 [5.7, 27.7]
Fitted based on
hospitalization data
from
ourworldindata.org

13.8 [5.75, 27.7] 0. 051 · 𝑥(𝑡)

Onset of critical
symptoms

1 [ 0 , 2 ] (Boelle et
al., 2020)

0.96 [0.4 , 1.9] 0. 717 · 𝑥(𝑡)

Discharge from
ICU

20 [ 10 , 39 ] (Boelle
et al., 2020)

20.4 [9.6, 38.7] -1.585)0. 007 · 𝑥(𝑡 − 3. 583) + 0. 028· 𝑥(𝑡
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2. ICU admittance. We considered this process to require a free ICU and be instant in most
cases. However, lower value of the kinetic constant may be used to reflect the fact that
not everyone who needs ICU gets it:

𝑑𝐶
𝐼𝐶𝑈

/𝑑𝑡 = 𝑘
𝐼𝐶𝑈

· 𝐼𝐶𝑈 · 𝐶 ,  𝑘
𝐼𝐶𝑈

≤ 𝑘
𝐿𝑎𝑟𝑔𝑒

.

3. Process of infection. Transition from susceptible to exposed is defined using Total
Infection Coefficient (TIC) which we calculated according to the original version of the
SEIR model (Westerhoff and Kolodkin, 2020):

𝑑𝐸/𝑑𝑡 =  𝑇𝐼𝐶 · 𝑆 · 1
𝑆𝐼𝐹 ,  𝑇𝐼𝐶 = с

𝑃
𝑗

∑ 𝐼𝐶
𝑗

· (𝑗 + 𝑄
𝑗

· 𝑗𝑇),  𝑗 ∈ {𝐴,  𝐸,  𝐼,  𝐻},

where - average number of contacts for individuals per day in the simulated region which can𝑐
be drawn from statistical surveys, - a probability to be infected by a member of the𝐼𝐶

𝑗

corresponding group upon contact, - quarantine coefficient for corresponding group. Only𝑄
𝑗

registered individuals are subject to quarantine, is a stringency index factor calculated based𝑆𝐼𝐹
on the Stringency Index which reflects government NPIs and imposed limits such as mask
regime, limit on mass gatherings, school closing etc. Stringency index ranges from 0 (no
interventions) to 100 (maximum possible interventions). In the current study we recalculated it
to SIF as follows:

𝑆𝐼𝐹 = 100/(100 − 𝑆𝐼
𝐶𝑜𝑚𝑝𝑙𝑦

· 𝑆𝐼(𝑡 − 𝑆𝐼
𝑑𝑒𝑙𝑎𝑦)

),

where identifies extent of the population compliance to government𝑆𝐼
𝐶𝑜𝑚𝑝𝑦

∈ [0, 1]

interventions, - time delay between government interventions enacting and their effect.𝑆𝐼
𝑑𝑒𝑙𝑎𝑦

Table 3. Model parameters. * means value depends on the model region (see Table 4).

# Symbol Description Value Units Source

1 𝑆
𝐹

Fraction of susceptible to the virus in the population * % Statistics

2 𝐴
𝐹

Fraction of asymptomatic among susceptible 50 % Statistics

3 𝐻
𝐹

Fraction of severe among mild * % Statistics

4 𝐶
𝐹

Fraction of critically ill among severe * % Statistics

5 𝐷
𝐻

Fatality rate for severe symptoms * % Statistics

6 𝐷
𝐼𝐶𝑈

Fatality rate for patients in ICU * % Statistics

7 𝑇
𝐸

Percent of registered while in incubation period or asymptomatic * % Fitting

8 𝑇
𝑀 Percent of registered while having mild symptoms * % Fitting

9 𝑇
𝐻

Percent of registered with severe symptoms 100 % Fitting
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10 𝑄
𝐸

Mobility limit for registered in incubation period 0.7 - Fitting

11 𝑄
𝐴

Mobility limit for registered asymptomatic 0.7 - Fitting

12 𝑄
𝐻

Mobility limit for registered with severe symptoms 0.1 - Fitting

13 𝑄
𝑀

Mobility limit for registered with mild symptoms 0.27 - Fitting

14 𝐼С
𝐸

Probability of being infected upon contact with exposed in incubation period 5.6 % Fitting

15 𝐼С
𝐴

Probability of being infected upon contact with asymptomatic 3.4 % Fitting

16 𝐼С
𝑀

Probability of being infected upon contact with mild symptoms 3.1 % Fitting

17 𝐼С
𝐻

Probability of being infected upon contact with severe symptoms 1.8 % Fitting

18 𝐶𝐹 Average number of contacts per day for one individual * # Statistics

20 𝑆𝐼
𝐷𝑒𝑙𝑎𝑦

Delay between  government interventions enacting an their effect 3.8 day Fitting

21 𝑆𝐼
𝐶𝑜𝑚𝑝𝑙𝑦

An extent of the population compliance to government interventions * - Fitting

Simulation results
The final version of the DDE based model (Fig. 7) was fitted to Covid-19 epidemic data

in Germany and France from 01.01.2020 (model time t = 0) to 23.08.2021 (model time t = 600).
We have divided the overall time duration into three intervals: first, second and third pandemic
waves. Values of some model parameters were changed between waves to reflect changes in the
properties of the disease and reaction to it. All model parameters whose values were different
between models fitted to the data on two countries or varied during the pandemic are presented
in Table 4. Simulation results with corresponding statistical data for Germany and France are
presented in Figures 9 and 10.

1. The First wave: This interval starts somewhere in January 2020. From this time point
infected individuals started to arrive in the country in significant amounts. Patient zero in
Germany entered the country on 20 January and was registered on 27 January (Bohmer et al.,
2020). We assumed in the model that import of infection to Germany has begun since 20
January. The import rate was estimated to be 130 infected individuals per day. This import was
ended on 16 March 2020 (t = 76), when the European Union as a whole announced the closure of
all its external borders to non-citizens (European Commission, 2020). For France the first case
was identified on 24th January. However, individuals infected by SARS-CoV-2 were present as
early as December 2019 according to some sources (Deslandes et al., 2021; Carrat et al., 2021).
Unfortunately, we do not have data on how many infected individuals arrived in France or
Germany before borders were closed on 16 march 2020. Thus, for any starting date we may
obtain the number of infected arriving per day to fit the same observable data. We kept the same

16

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 5, 2021. ; https://doi.org/10.1101/2021.09.01.21263002doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.01.21263002
http://creativecommons.org/licenses/by/4.0/


value of 130 persons per day for France and estimated the start of mass influx to France on 15
January. In the current study we have added a constant influx of exposed individuals (E) in the
model with constant rate . Of course, this process was more complicated in reality.𝐼𝑚𝑝𝑜𝑟𝑡

𝐼𝑛𝑖𝑡𝑖𝑎𝑙

Eventually, the number of new cases falls in both countries in the first half of the year.
2. Second wave - starting from summer 2020 the number of new cases began to rise again

implying the second epidemic wave in the region with many more registered cases. It may be
attributed to relaxing anti epidemic restrictions which can be traced by lower level of Stringency
Index. In the France model it caused a second wave in accordance with existing statistics. For
Germany, however, the model fitted for the first wave was not able to predict the second wave.
Thus, Stringency Index in the form currently used in the model can not accurately predict the
second wave in Germany. Possible solution was to decrease population compliance to
government interventions from 1 to 0.8. Despite a larger number of cases - number of𝑆𝐼

𝐶𝑜𝑚𝑝𝑙𝑦

deaths and ICU admissions did not rise as significantly. According to (Karagiannidis et al., 2021)
the number of patients requiring ICU dropped by 50% during the second wave. This may be
attributed to changing in patients' average age or better treatment procedures. In both models it
was reflected by changing next parameters: the fraction of severely ill among symptomatic as
well as the fraction of critically ill among severely ill and mortality of patients with severe
symptoms.

3. Third wave - starting from February 2021 a new significant rise in numbers of cases
begins in both countries. It may be connected with the spread of new strains of the virus. Indeed,
new virus lineage with additional mutations in the spike region, B.1.1.7 strain (Frampton et al.,
2021), was rapidly spreading in some European countries at this time period (Hodcroft, 2021).
New strains are much more contagious but less deadlier (Andersson et al., 2021; Kirby, 2021;
Sheikh et al., 2021). However, the latter is debatable and discussed below. This was modeled by
multiplying all probabilities to be infected upon contact by the same multiplier. The multiplier’s
value was fitted for both countries separately, but the obtained numerical value was the same -
probability increased by 36%.

Table 4. Estimated parameter values.

Parameter description Germany France

1st wave 2nd wave 3rd wave 1st wave 2nd wave 3rd wave

Start date 20.01.2020 08.06.2020 14.02.2021 15.01.2020 24.06.2020 24.02.2021

Daily infection import 130 0 0 130 0 0

Infection probability multiplier 1 1 1.36 1 1 1.36

Average number of contacts per day
for one individual

7.5 (Del Fava et al., 2020) 9.28 (Del Fava et al., 2020)
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Fraction of susceptible to the virus in
the population

76% 82.5%

Percent of registered while in the
incubation period or
asymptomatic

75% 44.5%

Percent of registered while
having mild symptoms

78% 65.4%

Adherence of the  population to
government interventions

1 0.8 1

Fraction of patients with at least
severe symptoms among
symptomatic

26,18% 20.5% 32.4% 5.6%

Fraction of patients with critical
symptoms among those having at
least severe symptoms

21%; 8% 18% 13%

Fatality rate for severe symptoms 24.47% 12% 49.2% 43% 27%

Fatality rate for patients in ICU 30% (Karagiannidis et al., 2021) 31% (Rimmele et al., 2021)

It should be noted that although there are estimates of the proportions of different severity of
symptoms of the disease, nevertheless, these probabilities strongly depend on the patient's age
and, therefore, for each individual country, these proportions may differ. In addition, according to
statistics, these parameters have changed over time (possible reasons: a change in the age
composition of patients, the development of new therapies in hospitals, mutations and the
emergence of new strains of the virus). For these reasons, in the current study, these parameters
were the objects of assessment on a country-by-country basis.

As can be seen from simulation results (Figures 9 and 10) the model accurately
reproduces the reported new cases per week and total number of cases as well as the number of
hospitalized patients on ICU and total deaths in each country over time of the pandemic.

To assess the impact of vaccination to control COVID-19 burden in Germany we applied
the proposed DDE fitted model. Number of people vaccinated each day was brought from
ourworldindata statistics, according to which Mass vaccination in Germany began 27 December
2020 which corresponds to model time t = 363 (while t = 1 corresponds to 1 January 2020. It
should be noted that we consider every individual administered with at least one dose of the
vaccine as completely immune to the virus. According to the model predictions, the vaccination
campaign and coverage in Germany significantly reduces the cumulative numbers of cases and
deaths, while a no-vaccination scenario would lead to approximately 5 times more infected cases
and 2.5 times more deaths in this country
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Fig. 9. Simulation results and corresponding statistics for Germany. (A): Registered in total. (B): In ICU.
(C): Registered per week. (D): Deaths due to Covid-19 in total. Time is counted from the start of 2020, t
= 1 means 01.01.2020. Statistics were taken from ourworldindata.org web-site.

Fig. 10. Simulation results and corresponding statistics for France. (A): Registered in total. (B): The
number of hospitalized patients (blue) and in ICU (pink). (C): Registered per week. (D): Deaths due to
Covid-19 in total. Time is counted from the start of 2020, i.e. model time point t = 1 means 01.01.2020.
Statistics were taken from ourworldindata.org web site. It should be noted that 346261 cases were
officially deducted from the total number of registered cases on 20 May 2021 because they were counted
twice.
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Fig. 11. Simulation results for Covid-19 epidemic in Germany with current level of vaccination (red) and
without vaccination (blue). (A) Registered in total. (B) Deaths due to Covid-19 in total.

Discussion
We have proposed the methodology to overcome some shortcomings of the classic

SEIR-based epidemiological models via the novel epidemiological model which utilizes DDEs
to take into account different time scales of epidemiological processes and instantaneous
splitting procedure to describe competing processes. The essential benefits of the developed
model comprises:

1. Most of the epidemiological processes (symptoms onset, recovery, dying etc.) are
described using kinetic laws with delayed arguments. These modeling processes can be
fitted separately from the rest of the model and applied kinetic laws provide more precise
reproduction of real properties of those processes than mass-action laws with a single
parameter.

2. If a model has two or more competing transitions, a division into separate
subpopulations removes their undesired mutual influence and allows to simulate fast and
slow transitions with correct fractions of patients undergoing each transition.

3. Model parameters that are not parts of fitted processes described previously have direct
mechanistic meaning (i.e. disease lethality, susceptibility, probability of different
symptoms severity) and can be drawn from the statistics.
Combination of these advantages makes the model more reliable with real properties of

the pandemic and eliminates most of the abstract parameters usually used in SEIR-like models. It
is worth to note there are other studies addressing these issues using Erlang distribution (Arino
and Portet, 2020) and delayed equations (Devipriya et al., 2021; Yang et al., 2021). However, to
our best knowledge, there are no publications demonstrating DDE-based approach with weighted
components of delayed arguments and instant transitions. Thus, we believe the proposed
COVID-19 model and simulation results may be of interest to both experts in epidemiological
modeling  and a more general audience.

The final version of the DDE-based model still has a number of abstract parameters
reflecting government NPIs, conducted testing procedure, imposing quarantine for those who
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were detected as infected with the virus and importing infected individuals into the modeling
region or country. Particularly, parameters describing fractions of different symptoms’ severity
should be correctly attributed to the patient's age that requires extension of the model.

One of the crucial issues in the case of COVID-19 epidemiological modeling is to
correctly transfer government NPIs (limit on mass gathering, lockdown, curfew, etc.) into the
model parameters. One can easily see that introduction of a social distance” multiplier to the
infection rate and fitting its value to experimental data enables it to reproduce almost any
observable epidemiological trajectory. In order to tackle this problem we tried to utilize
stringency index (Hale et al., 2020) instead of trying to fit the “social distance” factor over time
of the pandemic in a certain country. However, we still have quite abstract aggregated numerical
values of the indicator. Thus, further step for the model development in this direction is to use
individual components or NPIs of the stringency index and attempt to assess their individual
effect on the epidemic.

Additionally, we still do not entirely understand the reason behind the second and
consequent waves. It is evident that the stringency index alone can not explain those waves in
every country. In the model we tried to overcome these problems by means of changes in
adherence to government NPIs and/or increase of the virus contagiousness. The second is
explained by the emergence of new (more contagious) strains of the virus (Andersson et al.,
2021; Jones et al., 2021; Kirby, 2021; Sheikh et al., 2021). However, the latter should be
modeled more correctly using a modified version of the model with two or more similar modules
where each of them is containing a full disease progressing scheme taking into account separate
strains. This is also our plan in the development of the model. Moreover, the model fitting to
statistical data for both countries demonstrated the decrease of the infection fatality rate during
the COVID-19 epidemic which corresponds to early statements that the fatality rate of the Delta
or B.1.617.2 variant of COVID-19, for example, is lower than the original variant. However, it
might be caused by the age of unvaccinated people who were infected by the Delta virus strains
and hospitalized with severe symptoms. According to the report published by Public Health
England (Public Health England report, 2021), for instance, the majority of COVID-19 cases
caused by the Delta variant were detected in people under 50 years old in the UK which are less
likely to die from COVID-19 compared to those older than 50. So the current comparison of the
case fatality rate of the B.1.617.2 variant with that of the wild-type virus is biased due to
vaccination strategy in some European countries and age stratification of the population. This
statistical misleading indicates the necessity to specify the developed model for each age group
and integrate them in a more complex DDE model considering age distribution in a certain
country. So the roadmap for the extension and further model development includes the next
biological aspects of the virus and epidemiology of the COVID-19 pandemic:

● Age-specific modules (infection and death rates, hospitalization and severity of the
disease, B and T cell response) according to the statistical data (Monod et al., 2020; Yang
et al., 2021).
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● Explicit strain emergence with other viral indicators like infectivity, resistance to
neutralization, vaccine effectiveness in the population (Chen et al., 2021; Davies et al.,
2021; Faria et al., 2021; Jalkanen et al., 2021; Sheikh et al., 2021; Volz et al., 2021;
Washington et al., 2021; Zhou et al., 2021).

● Waning B and T cell immunity and neutralization activity of specific antibodies (Dan et
al., 2021; Harrington et al., 2021; Sherina et al., 2021; Zuo et al., 2021).

● Effect of reinfection on the epidemic dynamics (Krutikov et al., 2021, Team
C.C.-V.B.C.I., 2021).

● Superspreading events (Althouse et al., 2020; Lemieux et al., 2020; Yang et al., 2021a).

Model availability
The developed model is available through the web interface of BioUML software

(Kolpakov et al., 2020) at https://gitlab.sirius-web.org/covid-19/dde-epidemiology-model.
Models are available both through visual representation in the platform and in Jupyter notebooks
which allow users to reproduce simulation results and figures presented in this study.
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