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ABSTRACT 

Background: Global targets to reduce salt intake have been proposed but their monitoring is 

challenged by the lack of population-based data on salt consumption. We developed a machine 

learning (ML) model to predict salt consumption based on simple predictors, and applied this 

model to national surveys in low- and middle-income countries (LMICs).  

 

Methods: Pooled analysis of WHO STEPS surveys. We used 19 surveys with spot urine samples 

for the ML model derivation and validation; we developed a supervised ML regression model 

based on: sex, age, weight, height, systolic and diastolic blood pressure. We applied the ML 

model to 49 new STEPS surveys to quantify the mean salt consumption in the population. 

 

Results: The pooled dataset in which we developed the ML model included 45,152 people. 

Overall, there were no substantial differences between the observed (8.1 g/day (95% CI: 8.0-8.2 

g/day)) and ML-predicted (8.1 g/day (95% CI: 8.1-8.2 g/day)) mean salt intake (p= 0.065). The 

pooled dataset where we applied the ML model included 157,699 people; the overall predicted 

mean salt consumption was 8.1 g/day (95% CI: 8.1-8.2 g/day). The countries with the highest 

predicted mean salt intake were in Western Pacific. The lowest predicted intake was found in 

Africa. The country-specific predicted mean salt intake was within reasonable difference from the 

best available evidence.   

 

Conclusions: A ML model based on readily available predictors estimated daily salt consumption 

with good accuracy. This model could be used to predict mean salt consumption in the general 

population where urine samples are not available.  

 

Funding: Wellcome Trust (214185/Z/18/Z) 

 

Key words: artificial intelligence; deep learning; cardio-metabolic risk factors; cardiovascular 

health; global health; population health.   
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INTRODUCTION 

The association between high sodium/salt intake and high blood pressure, a major risk factor of 

cardiovascular diseases (CVD), is well-established.1–3 More than 1.7 million CVD deaths were 

attributed to a diet high in sodium in 2019, with ~90% of these deaths occurring in low- and middle-

income countries (LMICs).4,5 Consequently, salt reduction has been included in international 

goals: the World Health Organization (WHO) recommendation of limiting salt consumption to <5 

g/day,2 and the agreement by the WHO state members of a 30% relative reduction in mean 

population salt intake by 2025.6 Because available evidence suggests that sodium/salt 

consumption is higher than the global targets,7–9 we need timely and consistent data of 

sodium/salt consumption in the general population to track progress of salt reduction targets. 

 

Global efforts have been made to produce comparable estimates of sodium/salt intake for all 

countries.7 Similarly, researchers have summarized all the available evidence in specific world 

regions.8,9 Although the global endeavor was based on the gold standard method to assess 

sodium/salt intake (i.e., 24-hour urine sample), their estimates were up to 2010.7 Therefore, robust 

and comparable sodium/salt intake estimates for all countries lack for the last ten years. The 

regional endeavors summarized population-based evidence, yet they conducted study-level 

meta-analyses in which the original studies could have followed different laboratory methods, and 

they did not study all countries in the region. Therefore, comparability across studies could be 

limited and evidence lacks for many countries. Finding a method to estimate sodium/salt 

consumption in national samples leveraging on available data is needed to update and 

complement the existing evidence.7–10 However, quantifying sodium/salt intake based on 24-hour 

urine samples is costly and burdensome, limiting its use in population-based studies or national 

health surveys. As an alternative, equations have been developed to estimate sodium/salt intake 

based on spot urine (SU) samples.11–14 However, these equations have been used in few WHO 

STEPS and other national health surveys,15 leaving several countries without data to quantify the 

local sodium/salt consumption because they do not have access to SU samples.16  

 

If we could (accurately) estimate sodium/salt intake based on variables that are routinely available 

in national health surveys (e.g., weight or blood pressure), mean sodium/salt intake in countries 
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that currently lack urine data (i.e., 24-hour or spot) could be computed using these available 

predictors. Advanced analytic techniques like machine learning (ML) could make accurate 

predictions, and inform about the population sodium/salt intake in LMICs. We developed a ML 

predictive model to estimate salt intake using routinely available variables in WHO STEPS 

surveys, and we applied this ML model to WHO STEPS surveys without urine data to compute 

the mean salt intake in the general population.  

 

METHODS 

Study design 

This is a data pooling ML analysis of individual-level data of WHO STEPS surveys. First, we 

downloaded 19 WHO STEPS surveys with SU samples; these surveys were used for the training, 

validation and testing the ML model. These 19 WHO STEPS surveys represented 17 LMICs; two 

countries contributed with two surveys: Bhutan 2014 and 2019 as well as Mongolia 2013 and 

2019. Second, we downloaded 49 new WHO STEPS surveys which had the variables included 

in the ML prediction model (see Variables section), but did not have SU samples. The ML model 

herein developed was applied to these 49 surveys to estimate the mean salt consumption in the 

population. All WHO STEPS surveys herein analysed were national (i.e., sub-national surveys 

were excluded).  

 

Rationale 

We hypothesized that a ML model could accurately predict salt consumption at the individual 

level, to then inform the overall mean in the underlying population. In addition, we endeavoured 

to develop a ML model with simple predictors; that is, variables that are routinely available in 

national health surveys contrary to urine sample that are seldom collected in national health 

surveys in LMICs. If the model were indeed accurate, then it could be applied to national surveys 

without urine samples but with the relevant predictors to inform about the mean salt consumption 

in the target population. These model-driven estimates could be preliminary, until a national health 

survey is conducted to study mean salt consumption with urine samples (ideally 24-hour urine 

samples).  
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Variables 

The predictors we used in the ML model were: sex, age (years), weight (kg), height (m), systolic 

blood pressure (SBP, mmHg) and diastolic blood pressure (DBP, mmHg).  

 

The WHO STEPS surveys collect anthropometric and three blood pressure measurements. 

These are taken by trained fieldworkers following a standard protocol.15 We used measured 

weight and height to compute the body mass index (BMI, kg/m2). We used the mean SBP and 

mean DBP of the second and third blood pressure measurements (i.e., the first blood pressure 

measurement was discarded).  

 

The outcome was salt intake as per the INTERSALT equation.11 We chose this equation because 

it has been used by some WHO STEPS surveys. There is a specific INTERSALT equation for 

each sex, and they both include the following variables: age (years), BMI (kg/m2), SU sodium 

(mmol/L), and SU creatinine (mmol/L).11 We used the following sex-specific formulas. 

 

𝑀𝑒𝑛:	{23.51 + [0.45 x 𝑁𝑎!"]	- [3.09 x 𝐶𝑟!"] + [4.16 x BMI] + [0.22 x age]} 

𝑊𝑜𝑚𝑒𝑛:	13.74 + [0.33 x 𝑁𝑎!"]	- [2.44 x 𝐶𝑟!"] + [2.42 x BMI] + [2.34 x age]	- 20.03 x age234 

 

Where the subscript SU indicates spot urine, Na is sodium, Cr is creatinine and BMI is body mass 

index. Because some STEPS surveys had SU creatinine in mg/dl, these values were multiplied 

by 0.00884 to obtain SU creatinine in mmol/L. No conversion was needed for sodium in SU 

samples because all WHO STEPS surveys herein included already had urinary sodium in mmol/L. 

The INTERSALT equation computes 24-hour sodium intake, which is then divided by 17.1 to 

obtain the salt intake in grams per day (g/d).11 For descriptive purposes, we also computed salt 

intake based on the Kawasaki,12 Toft13 and Tanaka14 equations. 

 

Analysis 

Data preparation  

Our complete-case analysis was restricted to men and non-pregnant women aged between 15 

and 69 years. We dropped participants with implausible BMI levels (outside the range 10-80 
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kg/m2) or with implausible weight (outside the range 12-300 kg) or height records (outside the 

range 1.00-2.50 m). Participants with SBP outside the range 70-270 mmHg were discarded, and 

so were participants with DBP outside the range 30-150 mmHg. We excluded records with SU 

creatinine <1.8 or >32.7 mmol/L for males and <1.8 or >28.3 for females.17,18 In addition, we 

excluded participants with estimated salt intake (using the 4 equations) above or below three 

standard deviations from the equation-specific mean (Supplementary Figure 1).19 After 

completing data preparation, observations were randomly assigned from the pooled dataset 

(100%) into three datasets for the ML analysis: training data (50%), test data (30%) and validation 

data (20%). 

 

 
Machine learning modelling 

Our research aim was a regression problem where we had a known outcome attribute (salt 

consumption at the subject level). Therefore, we planned a supervised ML regression analysis. 

Details about the modelling process are available in the Extended Methods (Supplementary 

Material pp. 03-06). In brief, we designed a work pipeline with five steps. First, data analysis, 

where we dropped missing observations, we explored the available data to choose scaling and 

transformation methods to secure all variables were in the same scale or units, and we also 

planned transformations for categorical variables (e.g., one-hot encoding). Second, feature 

importance analysis, where we investigated the contribution of each predictor to the regression 

model through methods like Random Forest and Recursive Feature Elimination. The aim of this 

second step was to exclude any predictor that would not contribute to the regression model. 

Notably, all predictors (see Variables section) chosen following expert knowledge were kept in 

the analysis (i.e., the feature importance analysis did not suggest the exclusion of any predictor). 

Third, data processing, having explored the available data (first step in the work pipeline), we 

implemented different scaling and transformation methods (e.g., Box-Cox, Principal Component 

Analysis and polynomial features). Fourth, data modelling, where we implemented ten ML 

algorithms: i) Linear Regression (LiR); ii) Hubber Regressor (HuR); iii) Ridge Regressor (RiR); iv) 

Multilayer Perceptron (MLP); v) Support Vector Regressor (SVR); vi) k-Nearest Neighbors (KNN); 

vii) Random Forest (RF); viii) Gradient Boost Machine (GBM); ix) Extreme Gradient Boosting 

(XBG); and x) a customized neural network. All these ML algorithms performed similarly, so the 
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decision to choose one was postponed to the fifth (last) step in the work pipeline. Up to this point, 

we used the training and validations datasets. Five, forecasting of the predicted attribute in new 

data (i.e., data not used for model training); in this step we used the test dataset to choose the 

model that yielded predictions closest to the observed salt intake. Results comparing the 

observed and the predicted salt intake were computed in the test dataset alone. For each country 

we ran a paired t-test between the observed and predicted salt consumption, where a difference 

was deemed significant at a p <0.05. We also computed the absolute difference between the 

observed and predicted salt intake. We chose the RF algorithm because it showed the mean 

difference closest to zero in both sexes combined (observed – predicted = 0) (Supplementary 

table 1, Supplementary figure 2). All summary estimates (e.g., mean salt intake) were computed 

accounting for the complex survey design of the WHO STEPS surveys.  

 

Application of the developed ML model 

 
Having developed the ML model following the steps above described, we applied the model to 49 

WHO STEPS national surveys which did not have urine samples but included the predictors in 

the ML model (see Variables section). In each of these 49 surveys we computed the mean daily 

salt intake accounting for the complex survey design. These surveys were pre-processed 

following the same procedures described in the Data preparation section.   

 

Ethics 

We did not seek approval by an Institutional Review Board. We used individual-level survey data 

which do not include any personal identifiers. 

 

Role of the funding source 

The funder had no role in the study design, analysis, interpretation or decision to publish. The 

authors are collectively responsible for the accuracy of the data. The arguments and opinions in 

this work are those of the authors alone, and do not represent the position of the institutions to 

which they belong. 
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RESULTS 

Study population for model derivation and validation 

The pooled dataset included 45,152 people from 17 LMICs in 19 WHO STEPS surveys (i.e., two 

countries, Bhutan and Mongolia, had 2 surveys) conducted between 2013-2019 (Supplementary 

table 2). Overall, the mean age was 38.6 (95% confidence interval (95% CI): 38.1-39.0) years 

and the proportion of women was 52.1%. The mean SBP was 122.0 mmHg (95% CI: 121.4-122.6 

mmHg) and mean DBP was 79.2 mmHg (95% CI: 78.8-79.6 mmHg). The mean weight was 59.2 

kg (95% CI: 58.8-59.7 kg) and the mean height was 1.59 m (95% CI: 1.58-1.59 m). 

 

Observed and predicted mean salt intake during the ML model derivation and validation 

In the test dataset including 19 WHO STEPS surveys, the observed mean salt intake computed 

as per the INTERSALT equation was 8.1 g/day (95% CI: 8.0-8.2 g/day) across countries. The 

observed salt intake was higher in men (8.9 g/day; 95% CI: 8.7-9.0 g/day) than in women (7.4 

g/day; 95% CI: 7.3-7.4 g/day). Across countries, the predicted mean salt intake was 8.1 g/day 

(95% CI: 8.1-8.2 g/day). Men had a higher predicted mean salt intake (8.9 g/day; 95% CI: 8.8-8.9 

g/day) than women (7.4 g/day; 95% CI: 7.4-7.5 g/day). Overall, there were no substantial 

differences between the observed and predicted estimates (p=0.065). Results for each survey 

are presented in Figure 1 and Supplementary table 3. 

 

In men across all countries in the test dataset including 19 WHO STEPS surveys representing 17 

LMICs, the mean difference between observed and predicted mean salt intake was 0.02 g/day 

(p=0.277). Across all surveys, the positive mean difference farthest from zero was 1.39 g/day 

(Malawi, p<0.001), and the negative mean difference farthest from zero was -0.74 g/day 

(Lebanon, p=0.227). The mean difference closest to zero was 0.03 g/day (Armenia, p=0.787) 

(Supplementary table 4). 

 

In women across all countries in the test dataset including 19 WHO STEPS surveys representing 

17 LMICs, the mean difference between the observed and predicted mean salt intake was -0.02 

g/day (p=0.124). The positive mean difference farthest from zero was 1.02 g/day (Malawi, 

p<0.001) and the negative mean difference farthest from zero was in -0.71 g/day (Brunei 
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Darussalam, p<0.001). The mean difference closest to zero was -0.07 g/day (Armenia, p=0.343) 

(Supplementary table 4). 

 

None of the LMICs herein analysed, regardless of the method of sodium intake assessment (i.e., 

observed or predicted), showed a mean salt intake below the WHO recommended level of <5 

g/day (Figure 1, Supplementary table 3). The same occurred for the mean salt intake estimates 

using the Kawasaki, Toft and Tanaka formulas (Supplementary table 5).   

 

Implementation of the developed ML model to predict salt consumption in 49 LMICs 

The pooled dataset where we applied the ML model included 157,699 people from 49 LMICs in 

49 WHO STEPS surveys conducted between 2004-2018 (Supplementary table 6). Overall, the 

mean age was 37.7 (95% CI: 37.2-38.1) years and the proportion of women was 48.8%. The 

mean SBP was 123.8 mmHg (95% CI: 123.1-124.4 mmHg) and mean DBP was 79.1 mmHg (95% 

CI: 78.7-79.6 mmHg). The mean weight was 60.6 kg (95% CI: 60.2-61.0 kg) and the mean height 

was 1.61 m (95% CI: 1.61-1.61 m). 

 

Across the 49 LMICs, the predicted mean salt intake was 8.1 g/day (95% CI: 8.1-8.2 g/day), and 

it was higher in men (8.9 g/day; 95% CI: 8.8-8.9 g/day) than in women (7.4 g/day; 95% CI: 7.3-

7.4 g/day). None of the LMICs herein analysed, regardless of sex, showed a predicted mean salt 

intake below the WHO recommended level of <5 g/day (Figure 2, Supplementary table 7). 

 

In men, the countries with the highest predicted mean salt intakes were Nauru and American 

Samoa (both with 11.1 g/day), Cook Islands (11.0 g/day) and Niue (10.7 g/day); remarkably, three 

of these countries (Nauru, Cook Islands and Niue) are in Western Pacific. In contrast, the lowest 

predicted mean salt intake in men were in Ethiopia (8.3 g/day), Eritrea and Timor-Leste (both with 

8.4 g/day), and United Republic of Tanzania, Botswana and Uganda (all with 8.6 g/day); 

remarkably, all of these countries except Timor-Leste are in Africa. 

 

In women, the countries with the highest predicted mean salt intakes were American Samoa (9.0 

g/day), Nauru (8.8 g/day), and Cook Islands, Samoa and Tuvalu (all with 8.6 g/day); the latter four 
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countries are in Western Pacific. Conversely, the lowest predicted mean salt intake in women 

were in Ethiopia and Eritrea (both with 6.9 g/day), Timor-Leste (7.0 g/day), and Vietnam (7.1 

g/day); the first two countries (out of four) are in Africa. 

 

DISCUSSION 

Main findings 

This work leveraged on 19 national health surveys and readily available predictors to develop a 

ML model to predict salt consumption; this model was then applied to national surveys in 49 

LMICs. The RF ML algorithm yielded the predictions closest to the observed salt intake: the mean 

difference between predicted and observed salt consumption across surveys was 0.02 g/day in 

men and -0.02 g/day in women. We used this novel ML model to predict salt consumption in 49 

LMICs, where the mean salt consumption ranged from 8.3 g/day (Ethiopia) to 11.1 g/day (Nauru) 

in men; these numbers in women ranged from 6.9 g/day (Ethiopia and Eritrea) to 9.0 g/day 

(American Samoa). This work aimed to elaborate on novel analytical tools to predict salt 

consumption where national surveys have not collected this information limiting their ability to 

keep track of mean sodium consumption in the general population. Pending external independent 

validation, our model could be used in monitoring frameworks of salt consumption because most 

countries do not collect sodium samples in their national health surveys. Our model could 

contribute to the global surveillance of salt consumption, a relevant cardio-metabolic risk factor.1–

3 

 

Public health implications 

ML models have been used extensively to predict relevant clinical outcomes (e.g., mortality) and 

epidemiological indicators (e.g., forecasting COVID-19 cases).20–24 Furthermore, ML algorithms 

have proven to be useful for understanding complex outcomes (e.g., identifying clusters of people 

with diabetes) based on simple predictors (e.g., BMI) in nationally-representative survey data.25–

27 Our work complements the current evidence on ML algorithms by demonstrating its use in a 

relevant field: population salt consumption. In so doing, we delivered a pragmatic tool which could 

be used to inform the surveillance of salt consumption in countries where national surveys do not 

objectively collect this information (e.g., SU samples). Moreover, this work provided preliminary 
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evidence to update the global estimates of population-based sodium consumption,7 by informing 

about the mean sodium consumption in 49 LMICs. Our results suggest that mean salt 

consumption is above the WHO recommended level in all the 49 LMICs herein analysed, and it 

was the highest among LMICs in Western Pacific, and the lowest among LMICs in Africa. This 

finding, which is consistent with a global work,7 calls for urgent actions to reduce salt consumption 

in these 49 LMICs, especially those in Western Pacific. 

  

We do not believe that our -or any other- ML model should replace a comprehensive population-

based nationally representative health survey with 24-hour or spot urine samples. However, until 

such surveys are available in many LMICs and periodically conducted, we could suggest using 

an estimation approach to shed lights about the mean salt consumption in the population. Our ML 

model seems to be a reasonably good alternative, and could become a pragmatic tool for 

surveillance systems that keep track of sodium consumption in accordance with global goals.2,6  

 

Research in context 

A global effort provided mean sodium/salt consumption estimates for 187 countries in 1990 and 

2010;7 they used 24-hour urine samples and dietary reports from surveys conducted in 66 

countries, including LMICs. Unfortunately, their results were until 2010 and many LMICs were not 

included. Our results advanced this evidence by providing more recent salt consumption 

estimates, because most of the surveys in which we applied our ML model were conducted after 

2010 (Supplementary table 6). 

 

Compared to the global estimates for the same LMICs in 2010,7 our mean salt consumption 

estimates were very similar. For example, our 2010 mean salt consumption estimates for 

Cambodia, Eritrea and the Gambia were 8.0 g/day, 7.2 g/day and 8.3 g/day, whereas the 

estimates by Powles et al.  were 11.0 g/day, 5.9 g/day and 7.7 g/day (Supplementary table 8).7 

We further compared our estimates for surveys conducted between 2007 and 2013 (+/- 3 years 

around 2010) with the 2010 estimates provided by Powles et al.,7 and our results were also within 

reasonable difference. The largest differences were in Kyrgyzstan (8.7 by our ML model versus 

13.4 by Powles et al.7), as well as in Comoros (8.4 versus 4.27) and Rwanda (8.0 versus 4.07). It 
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appears that our predictions were higher than those provided by Powles et al.7 in countries with 

presumably low salt consumption (e.g., Comoros, Rwanda); conversely, in countries with 

presumably high salt consumption (e.g., Kyrgyzstan), our predictions revealed smaller estimates 

than those by Powles et al.7 (Supplementary table 8). These differences could be explained by 

the fact that our ML model was developed based on SU samples rather than 24-hour urine 

samples as Powles et al. did. Strong evidence indicates that estimates based on SU may 

overestimate salt intake at lower levels of consumption and underestimate salt intake at higher 

levels of consumption.28 

 

In addition to the global work by Powles et al.,7 there are other reports from some specific LMICs. 

For example, a survey conducted between 2012 and 2016 with 24-hour urine samples in Fiji and 

Samoa showed that the mean salt consumption was 10.6 g/day and 7.1 g/day, respectively.17 

The estimates from our ML model for Fiji (2011) and Samoa (2013) suggested that the mean salt 

consumption was 8.9 g/day and 9.6 g/day, respectively. A survey in Vanuatu in 2016 based on 

24-hour urine sample informed that the mean salt intake was 5.9 g/day;18 our estimate for the 

year 2011was 8.6 g/day. In 2009 in Vietnam a survey with SU samples revealed that the mean 

salt consumption was 9.9 g/day;19 our prediction for the year 2015 was 7.9. These comparisons 

suggest that our ML-predicted estimates are plausible and close to the best available evidence.  

 

Although these comparisons do not validate our predictions in the 49 national surveys, they 

suggest that our salt consumption estimates are within reasonable distance from the best 

available evidence. Until better data are available (e.g., national survey with spot or 24-hour urine 

sample), our model could provide preliminary evidence to inform the national mean salt 

consumption. Careful interpretation is warranted to understand the strengths and limitations of 

our ML-based predictions.  

 

Strengths and limitations 

We followed sound and transparent methods to develop a ML model to predict salt consumption 

at the individual level. We leveraged on open-access national data collected following standard 

and consistent protocols (WHO STEPS surveys). Most of the surveys we analysed were 
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conducted after 2010, providing more recent evidence than the latest global effort to quantify salt 

consumption in all countries.7 Notwithstanding, we must acknowledge some limitations. First, 

urine data was based on a spot sample, which is not the gold standard (24-hour urine sample) to 

measure daily salt consumption. Future work should verify and advance our results using on 24-

hour urine samples available in nationally representative samples; in the meantime, our work has 

led the foundations and hopefully sparked interest to use available data and novel analytical 

techniques to deliver estimates of salt consumption in the general population. Second, even 

though we analysed 19 national surveys (representing 17 LMICs) to develop our ML model, the 

sample size could still be limited for a data-driven ML algorithm (i.e., 22,577 observations were 

included in model development). A larger and global work in which all relevant data sources are 

pooled is needed; while this endeavour takes place, our work has provided recent estimates of 

salt consumption at the population level in 49 LMICs. In this line, there are still countries which 

were not herein included. Researchers in these countries, along with local (e.g., ministries of 

health) and international health authorities (e.g., WHO), should conduct studies/surveys to collect 

data on salt consumption. This would inform global targets but also local needs and interventions.  

 

Conclusions  

A ML model based on readily available variables was accurate to predict daily salt consumption. 

This ML model applied to 49 national surveys with no urine samples to compute daily salt 

consumption, revealed high levels of salt intake particularly in the Western Pacific region. Pending 

further validation, this ML model could be used to keep track of the overall sodium consumption 

where resources are not available to conduct national surveys with urine samples.   
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DATA SHARING STATEMENT 

This study used nationally-representative survey data that are in the public domain, which was 

requested through the online repository (https://extranet.who.int/ncdsmicrodata/index.php/home). 

We provide the analysis code of data preparation and data analysis as supplementary materials 

to this paper.  
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FIGURES 

Figure 1. Observed and predicted mean salt intake (g/day) by sex in each survey included 

in the ML model development 

 

Exact estimates (along with their 95% CI) are presented in Supplementary table 3. These results 

were computed with the test dataset only. Results are for the Random Forest algorithm, which 

was the model with the best performance.  
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Figure 2. Predicted mean salt intake (g/day) by sex in each of the 49 national surveys 

included in the application of the model herein developed. 

 

Exact estimates (along with their 95% CI) are presented in Supplementary table 7. Countries are 

presented in ascending order based on their overall mean salt intake (i.e., countries with the 

highest mean salt intake are at the bottom). 
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Expanded methods 

Overview 

We worked with a structured dataset which mostly had numeric attributes (variables). Given our study 

problem, we opted for a supervised learning model because there was a target attribute (i.e., salt 

consumption at the subject level); specifically, we conducted a supervised regression because the 

target attribute was a numeric variable. For the machine learning analyses we used Python and the 

Scikit-Learn library. 

First, we developed a pipeline for data management and model development. This way, we followed a 

consistent and transparent methodology to secure an optimal model for the training set and that would 

adequately generalize to other (unseen) datasets. The following figure depicts the pipeline we 

developed: i) we studied the available data and where needed, we did a one-hot encoding; ii) we did 

feature importance analysis; iii) we chose and tried different scaling and transformation methods, so 

that all variables would be in the same scale or units; iv) we tried a set of machine learning models, 

including a customized neural network; v) we forecasted (predicted) the attribute of interest (salt 

consumption at the subject level) in an unseen dataset (i.e., not used for model training). Notably, we 

went backwards and forwards (see arrows in the figure) between the four first stages until we reached 

the best combinations and results for each model. In the following sections, we will describe each of 

these five stages.  
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Data analysis 

This was an exploratory analysis to understand the dataset and its characteristics. We worked with a 

complete-case dataset; in other words, we excluded missing observations in the variables considered 

in the analysis. Consequently, we did not do any data imputation analysis.  

We explored the distribution of all numerical variables, which were in different units and scales; this 

exploratory analysis informed the choices of data processing methods (e.g., Box-Cox) implemented in 

the third stage.  

Feature importance analysis 

Even though we followed expert knowledge to select a reduced, though relevant number of predictors 

to be included in the regression model, we conducted feature importance analyses to understand the 

role each predictor would play in the model. This process aimed to eliminate variables that would not 

carry substantial information for the model. We used Random Forest, Recursive Feature Elimination 

and Extra Trees. Consistently, these three methods suggested that all the chosen predictors would 

contribute to a better model.  

Data processing  

As described in the data analysis section (first stage), numeric variables were in different units and 

scales; therefore, these variables needed to be scaled or transformed. This scaling would also help to 

find a better prediction model. It is common knowledge that machine learning models would perform 

differently (and better) depending on data transformation methods. We did: i) Min-Max whereby numeric 

variables were scaled to a range between 0 and 1; ii) Standardization; iii) Normalization: iv) Polynomial 

features of degree 2 (quadratic polynomial); v) Principal Component Analysis with 3 components and 

explained variance of ≥0.95; and vi) Box-Cox.  

Data modelling 

There are several machine learning algorithms for a supervised regression model. Those that we used, 

and that are depicted in the figure, yielded much better results and were studied in detail. That is, at the 

beginning of our work we explored other algorithms, though these did not perform well and were not 

considered thereafter. The algorithms we considered were: i) Linear Regression (LiR); ii) Hubber 

Regressor (HuR); iii) Ridge Regressor (RiR); iv) Multilayer Perceptron (MLP); v) Support Vector 

Regressor (SVR); vi) k-Nearest Neighbors (KNN); vii) Random Forest (RF); viii) Gradient Boost 

Machine (GBM); and ix) Extreme Gradient Boosting (XBG).  
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In addition to these nine machine learning algorithms, we also implemented a neural network (see figure 

below). This neural network was optimized empirically. We used a batch size = 256; epochs = 300; and 

optimizer = ‘adam’. The neural network was implemented in Python using the Keras library.  

 

For each model and processing method (see Data Processing section) we studied the R2, Mean 

Absolute Error (MAE) and Root Mean Square Error (RMSE). As shown in the table, all algorithms 

showed a similar performance. Because all the algorithms had an equivalent performance, the chosen 

one needed to be defined at the forecasting stage; that is, the one that would generalize better to new 

(unseen) data.  

Algorithm Processing R2 MAE RMSE 
LiR Polynomial(g=2) 0.442 1.1156 1.4456 
HuB Polynomial(g=2) 0.442 1.1156 1.4455 
RiR Polynomial(g=2) 0.441 1.1163 1.4135 
MLP BoxCox 0.445 1.1096 1.4418 
SVR MinMax 0.440 1.1000 1.4480 
KNN Standarized 0.416 1.1437 1.4478 
RF Polynomial(g=2) 0.422 1.1373 1.4717 
GBM MinMax 0.443 1.1146 1.4432 
XGB BoxCox 0.424 1.1134 1.4687 
Customized NN BoxCox 0.456 1.1045 1.4445 
 
Forecasting modelling 

This stage implies studying the predicted results in new (unseen) data (i.e., data not used for model 

training). For this stage we used the validation and test datasets. We chose the model that yielded 

predictions closest to the observed results. In this line, we compared the mean difference between the 

observed and predicted mean salt intake results (i.e., observed – predicted) across all prediction 

algorithms.  

We observed there was no unique algorithm that had the mean difference closest to zero in men and 

women at the same time (Supplementary table 1). The RF algorithm had the mean difference closest 

to zero in both sexes combined (mean difference = 0.0004), the MLP algorithm performed the best in 
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men (mean difference = 0.0052), and in women the GBR algorithm showed the best results (mean 

difference = -0.0005).  

To support our decision process, we plotted the mean differences in men and women for each survey 

(Supplementary figure 2); this figure only included the predictions based on the top five algorithms (RF, 

MLP, GBR, LiR and RiR). We counted how many times (i.e., number of surveys) each algorithm had 

the mean difference closest to zero. 

Because the RF algorithm had the mean difference closest to zero in both sexes combined and it was 

among the top 5 algorithms in men and women (Supplementary table 1), we decided to choose the RF 

algorithm. Additionally, predictions based on the RF algorithm were the closest to zero across surveys 

(Supplementary figure 2). These analyses were performed in R (version 4.0.3). 

Algorithm application 

To make the predictions in the new 49 datasets without information about urine samples, we used the 

RF model (i.e., ML algorithm and predictors) developed following the methods above described (see 

Forecasting Modelling section). We re-trained the model with the full dataset used for model 

development and validation (i.e., train, validated and test dataset pooled), and then predicted the 

outcome (i.e., mean salt intake) in the 49 new datasets.  
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Supplementary figure 1. Flowchart of data cleaning and inclusion criteria 

 
 
 
 
 
  

Sample = 97,229 observations 
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[age between 15-69 years] 

Sample = 53,821 observations 
[complete-case in height, weight, 
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[plausible urine creatinine values] 
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Sample = 45,152 observations 
[estimated salt intake values within 3 
standard deviations from their mean] 

Sample = 53,795 observations 
[plausible values in height, weight, 

blood pressure and BMI] 

Sample = 53,790 observations 
[non- pregnant women] 

Total sample = 45,152 observations 
[46.4% of initial sample size] 

Sample = 51,553 observations 
[excluded Georgia, Afghanistan and 
Tonga because inconsistent urine 

creatinine or missing data] 
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Supplementary Table 1. Mean difference between observed and predicted salt intake by sex 

across all ML algorithms 

 

ML algorithm Mean difference between observed  
and predicted mean salt intake 

Sex 

prediction_CNN_boxcox 0.0308 both sexes 

prediction_CNN_standardized 0.023 both sexes 

prediction_GBR_boxcox 0.1781 both sexes 

prediction_GBR_minmax 0.1739 both sexes 

prediction_GBR_orig 0.0221 both sexes 

prediction_GBR_standarized 0.1809 both sexes 

prediction_HBR_poly 0.1372 both sexes 

prediction_HGB_boxcox 0.0935 both sexes 

prediction_HGB_orig 0.0676 both sexes 

prediction_HGB_standardized 0.0681 both sexes 

prediction_KNN_boxcox 0.0443 both sexes 

prediction_KNN_standarized 0.0289 both sexes 

prediction_LiR_poly 0.0187 both sexes 

prediction_MLP_boxcox -0.0238 both sexes 

prediction_MLP_minmax -0.1559 both sexes 

prediction_MLP_standarized -0.0659 both sexes 

prediction_RF_poly 0.0004 both sexes 

prediction_RiR_poly 0.0172 both sexes 

prediction_SVR_minmax 0.1675 both sexes 

prediction_XGB_boxcox 0.0935 both sexes 

prediction_XGB_minmax -1.161 both sexes 

prediction_XGB_orig 0.0295 both sexes 

prediction_XGB_standardized 0.0249 both sexes 

prediction_CNN_boxcox 0.0546 men 

prediction_CNN_standardized 0.0514 men 

prediction_GBR_boxcox 0.1788 men 

prediction_GBR_minmax 0.1728 men 

prediction_GBR_orig 0.0447 men 

prediction_GBR_standarized 0.1859 men 

prediction_HBR_poly 0.1621 men 

prediction_HGB_boxcox 0.0605 men 

prediction_HGB_orig 0.0237 men 
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prediction_HGB_standardized 0.0285 men 

prediction_KNN_boxcox 0.0724 men 

prediction_KNN_standarized 0.053 men 

prediction_LiR_poly 0.0384 men 

prediction_MLP_boxcox 0.0052 men 

prediction_MLP_minmax -0.1718 men 

prediction_MLP_standarized -0.0859 men 

prediction_RF_poly 0.0199 men 

prediction_RiR_poly 0.0369 men 

prediction_SVR_minmax 0.1541 men 

prediction_XGB_boxcox 0.0605 men 

prediction_XGB_minmax -0.2716 men 

prediction_XGB_orig 0.0488 men 

prediction_XGB_standardized 0.0481 men 

prediction_CNN_boxcox 0.0071 women 

prediction_CNN_standardized -0.0053 women 

prediction_GBR_boxcox 0.1774 women 

prediction_GBR_minmax 0.175 women 

prediction_GBR_orig -0.0005 women 

prediction_GBR_standarized 0.1759 women 

prediction_HBR_poly 0.1122 women 

prediction_HGB_boxcox 0.1266 women 

prediction_HGB_orig 0.1114 women 

prediction_HGB_standardized 0.1077 women 

prediction_KNN_boxcox 0.0161 women 

prediction_KNN_standarized 0.0047 women 

prediction_LiR_poly -0.0009 women 

prediction_MLP_boxcox -0.0529 women 

prediction_MLP_minmax -0.1401 women 

prediction_MLP_standarized -0.0458 women 

prediction_RF_poly -0.0192 women 

prediction_RiR_poly -0.0025 women 

prediction_SVR_minmax 0.181 women 

prediction_XGB_boxcox 0.1266 women 

prediction_XGB_minmax -2.0504 women 

prediction_XGB_orig 0.0102 women 

prediction_XGB_standardized 0.0018 women 
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Supplementary Table 2. Weighted distribution of predictors in each survey included in the ML model development. 

Country Year Region Sample 
size (n) 

Mean 
age 
(years) 

Age 
range 
(years) 

Proportion 
of men (%) 

Mean, 
minimum 
and 
maximum  
values of 
SBP 
(mmHg) 

Mean, 
minimum 
and 
maximum  
values of 
DBP 
(mmHg) 

Mean, 
minimum 
and 
maximum  
values of 
weight 
(kg) 

Mean, 
minimum 
and 
maximum  
values of 
height (m) 

Mean, 
minimum 
and 
maximum  
values of 
urinary 
sodium 
(mmol/L) 

Mean, 
minimum 
and 
maximum  
values of 
urinary 
creatinine 
(mmol/L) 

Armenia 2016 Europe 1074 40 18-69 49.7 129.5 (86-
237.5) 

84.5 (49-
147.5) 

70.9 (35-
139) 

1.66 (1.27-
1.89) 

128.6 
(10.6-
237.6) 

10.1 (1.9-
27.3) 

Azerbaijan 2017 Europe 2359 39 18-69 49.5 125.9 
(81.5-230) 

81.4 (47.5-
142.5) 

73.1 (36-
174) 

1.67 (1.15-
1.98) 

167.7 (2-
389) 

11.9 (1.8-
31.8) 

Bangladesh 2018 Southeast 
Asia 

5815 39 18-69 47.4 120.2 (72-
251) 

78.6 (32-
147) 

55.6 (28-
111) 

1.56 (1-
2.11) 

119.9 (4-
403) 

8.4 (2.2-
32.3) 

Belarus 2017 Europe 4506 43 18-69 47.1 134.6 
(87.5-257) 

84.9 (53.5-
147) 

77.7 (41-
144) 

1.7 (1.05-
1.99) 

149.6 
(10.5-
371.4) 

12.2 (1.8-
32.7) 
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Bhutan 2014 Southeast 
Asia 

5734 38 18-69 59.1 125.6 (75-
228.5) 

84.5 (46-
141.5) 

61.4 (23-
115) 

1.6 (1.11-
1.96) 

142.2 (6-
388) 

8.1 (1.9-
29.7) 

Bhutan 2019 Southeast 
Asia 

5734 34 15-69 56.5 122.9 (85-
224.5) 

80.7 (43.5-
137) 

61.4 (28.5-
140) 

1.58 (1.07-
1.92) 

130.5 (4.7-
444.9) 

10.4 (1.8-
32.7) 

Brunei 
Darussalam 

2016 Western 
Pacific 

1636 35 18-69 51.5 122.6 
(75.5-218) 

78.4 (45.5-
138) 

69 (31.2-
138.3) 

1.59 (1.32-
1.84) 

122.6 
(19.9-329) 

12.6 (1.8-
32.6) 

Jordan 2019 Eastern 
Mediterranean 

1040 37 18-69 50.2 117.7 (75-
200) 

78.4 (50-
119.5) 

76.3 (35.5-
159.5) 

1.66 (1.36-
1.95) 

165.4 (13-
365) 

13.6 (1.8-
32.5) 

Lebanon 2017 Eastern 
Mediterranean 

999 42 17-69 48.7 128.5 (80-
214.5) 

76.9 (35-
123) 

78.3 (40-
141) 

1.68 (1.2-
1.96) 

124.4 (4-
385) 

11.5 (1.9-
32) 

Malawi 2017 Africa 1603 35 18-69 56.3 121.8 
(74.5-
221.5) 

75.6 (39.5-
142.5) 

58.4 (33.6-
119) 

1.61 (1.36-
1.96) 

186.5 (11-
399.9) 

10.7 (1.9-
32.4) 

Mongolia 2013 Western 
Pacific 

7508 42 15-64 50.3 129.3 
(88.5-
219.5) 

82.1 (49.5-
133.5) 

71 (30.6-
138) 

1.62 (1.27-
1.92) 

134.1 
(13.1-515) 

10.9 (1.8-
31.9) 
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Mongolia 2019 Western 
Pacific 

7508 36 15-69 50.9 120.4 
(76.5-
253.5) 

77.2 (48-
143) 

68.5 (29-
159) 

1.64 (1.34-
1.98) 

117.1 (2.1-
348.9) 

7.5 (1.8-
28.3) 

Morocco 2017 Eastern 
Mediterranean 

3438 40 18-69 50.6 128.1 (83-
228.5) 

78.1 (40-
139) 

70.9 (35-
168) 

1.66 (1.34-
1.95) 

122.3 
(26.3-
575.2) 

10.3 (1.8-
31.4) 

Nepal 2019 Southeast 
Asia 

2442 36 15-69 40.7 122.8 (81-
212.5) 

80.5 (55-
146.5) 

54.4 (26-
160) 

1.55 (1.21-
2.03) 

142.3 (3-
437) 

5.6 (1.8-
25.5) 

Solomon 
Islands 

2015 Western 
Pacific 

172 38 18-69 61.4 121 (88.5-
188.5) 

76.5 (52-
104.5) 

67.9 (38.5-
122) 

1.61 (1.41-
1.8) 

99.3 (7-
250) 

9.7 (1.9-
28.4) 

Sudan 2016 Eastern 
Mediterranean 

571 36 18-69 55.9 128.2 (89-
231) 

84.9 (58-
131.5) 

72.2 (35.6-
174) 

1.67 (1.42-
1.92) 

128.5 (5-
459) 

14 (1.9-
32.4) 

Tokelau 2014 Western 
Pacific 

182 35 18-63 56.2 124.8 (76-
184.5) 

79 (53-
128.5) 

94.7 (58-
158.3) 

1.71 (1.16-
1.88) 

62.9 (20-
265) 

5 (2-7.7) 

Turkmenistan 2018 Europe 3584 37 18-69 52.7 127.5 
(87.5-268) 

82.9 (54.5-
149) 

72.4 (39-
142) 

1.68 (1.16-
1.98) 

109.2 (10-
163) 

11.1 (4.5-
18.3) 
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Zambia 2017 Africa 2489 33 18-69 50.3 124.8 (73-
248) 

77 (35.5-
147.5) 

60.9 (33.8-
150) 

1.62 (1.01-
2.07) 

137.1 (10-
375) 

12.2 (1.8-
32.4) 
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Supplementary Table 3. Observed and predicted mean salt intake (g/day) by sex in each 

survey included in the ML model development. 

Country Year Sex Mean salt 
intake (g/day) 

Mean salt intake 
(g/day) lower 

Mean salt intake 
(g/day) upper 

Category 

Armenia 2016 Men 9.41 9.13 9.7 ML 
predicted 

Armenia 2016 Men 9.44 9.05 9.83 Observed 

Armenia 2016 Women 7.54 7.38 7.71 ML 
predicted 

Armenia 2016 Women 7.47 7.28 7.66 Observed 

Azerbaijan 2017 Men 9.51 9.37 9.65 ML 
predicted 

Azerbaijan 2017 Men 10.28 9.99 10.58 Observed 

Azerbaijan 2017 Women 7.57 7.45 7.69 ML 
predicted 

Azerbaijan 2017 Women 8.01 7.77 8.25 Observed 

Bangladesh 2018 Men 8.68 8.59 8.77 ML 
predicted 

Bangladesh 2018 Men 8.56 8.4 8.72 Observed 

Bangladesh 2018 Women 7.41 7.34 7.48 ML 
predicted 

Bangladesh 2018 Women 7.24 7.12 7.35 Observed 

Belarus 2017 Men 9.73 9.62 9.85 ML 
predicted 

Belarus 2017 Men 9.92 9.69 10.14 Observed 

Belarus 2017 Women 7.45 7.36 7.53 ML 
predicted 

Belarus 2017 Women 7.56 7.41 7.71 Observed 

Bhutan 2014 Men 9.04 8.88 9.19 ML 
predicted 

Bhutan 2014 Men 9.49 9.12 9.86 Observed 

Bhutan 2014 Women 7.55 7.46 7.65 ML 
predicted 

Bhutan 2014 Women 8.11 7.88 8.34 Observed 

Bhutan 2019 Men 9.14 8.99 9.29 ML 
predicted 

Bhutan 2019 Men 8.83 8.6 9.06 Observed 

Bhutan 2019 Women 7.51 7.42 7.59 ML 
predicted 

Bhutan 2019 Women 7.42 7.24 7.59 Observed 

Brunei 
Darussalam 

2016 Men 9.92 9.72 10.11 ML 
predicted 
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Brunei 
Darussalam 

2016 Men 9.37 9.07 9.67 Observed 

Brunei 
Darussalam 

2016 Women 7.8 7.66 7.95 ML 
predicted 

Brunei 
Darussalam 

2016 Women 7.1 6.87 7.32 Observed 

Jordan 2019 Men 9.6 9.17 10.02 ML 
predicted 

Jordan 2019 Men 10.26 9.65 10.87 Observed 

Jordan 2019 Women 8 7.71 8.29 ML 
predicted 

Jordan 2019 Women 8.4 8.03 8.77 Observed 

Lebanon 2017 Men 10.08 9.67 10.48 ML 
predicted 

Lebanon 2017 Men 9.33 8.88 9.78 Observed 

Lebanon 2017 Women 7.63 7.46 7.81 ML 
predicted 

Lebanon 2017 Women 7.53 6.93 8.13 Observed 

Malawi 2017 Men 8.7 8.57 8.82 ML 
predicted 

Malawi 2017 Men 10.09 9.61 10.57 Observed 

Malawi 2017 Women 7.38 7.24 7.52 ML 
predicted 

Malawi 2017 Women 8.4 8.07 8.74 Observed 

Mongolia 2013 Men 9.64 9.46 9.82 ML 
predicted 

Mongolia 2013 Men 9.71 9.31 10.1 Observed 

Mongolia 2013 Women 7.84 7.74 7.94 ML 
predicted 

Mongolia 2013 Women 7.72 7.52 7.92 Observed 

Mongolia 2019 Men 9.41 9.31 9.51 ML 
predicted 

Mongolia 2019 Men 9.71 9.55 9.86 Observed 

Mongolia 2019 Women 7.55 7.48 7.62 ML 
predicted 

Mongolia 2019 Women 7.43 7.31 7.56 Observed 

Morocco 2017 Men 9.25 9.12 9.39 ML 
predicted 

Morocco 2017 Men 9.04 8.82 9.26 Observed 

Morocco 2017 Women 7.65 7.58 7.72 ML 
predicted 

Morocco 2017 Women 7.5 7.39 7.62 Observed 

Nepal 2019 Men 8.81 8.5 9.13 ML 
predicted 
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Nepal 2019 Men 9.63 9.25 10 Observed 

Nepal 2019 Women 7.27 7.17 7.37 ML 
predicted 

Nepal 2019 Women 7.98 7.78 8.18 Observed 

Solomon 
Islands 

2015 Men 9.48 9.07 9.89 ML 
predicted 

Solomon 
Islands 

2015 Men 8.92 8.04 9.8 Observed 

Solomon 
Islands 

2015 Women 7.78 7.47 8.1 ML 
predicted 

Solomon 
Islands 

2015 Women 7.4 6.67 8.13 Observed 

Sudan 2016 Men 9.02 8.52 9.52 ML 
predicted 

Sudan 2016 Men 8.29 7.56 9.02 Observed 

Sudan 2016 Women 7.72 7.47 7.97 ML 
predicted 

Sudan 2016 Women 7.31 6.94 7.68 Observed 

Tokelau 2014 Men 10.13 9.42 10.83 ML 
predicted 

Tokelau 2014 Men 10 9.28 10.72 Observed 

Tokelau 2014 Women 8.41 8.11 8.72 ML 
predicted 

Tokelau 2014 Women 7.89 7.45 8.33 Observed 

Turkmenistan 2018 Men 9.45 9.32 9.58 ML 
predicted 

Turkmenistan 2018 Men 8.87 8.72 9.01 Observed 

Turkmenistan 2018 Women 7.35 7.27 7.43 ML 
predicted 

Turkmenistan 2018 Women 6.79 6.7 6.89 Observed 

Zambia 2017 Men 8.82 8.68 8.96 ML 
predicted 

Zambia 2017 Men 8.47 8.15 8.8 Observed 

Zambia 2017 Women 7.33 7.22 7.44 ML 
predicted 

Zambia 2017 Women 7.14 6.96 7.32 Observed 
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Supplementary Table 4. Mean difference between observed and predicted salt intake by sex in 

each survey included in the ML model development. 

Country Year Sex Mean 
difference 
(g/day) 

Mean 
difference 
(g/day) lower 

Mean 
difference 
(g/day) upper 

Category P value 

Armenia 2016 Men 0.03 -0.21 0.26 Observed 
vs 
predicted 

0.7873 

Armenia 2016 Women -0.07 -0.18 0.03 Observed 
vs 
predicted 

0.3432 

Azerbaijan 2017 Men 0.77 0.49 1.06 Observed 
vs 
predicted 

<0.0001 

Azerbaijan 2017 Women 0.44 0.25 0.62 Observed 
vs 
predicted 

<0.0001 

Bangladesh 2018 Men -0.12 -0.26 0.02 Observed 
vs 
predicted 

0.0033 

Bangladesh 2018 Women -0.17 -0.28 -0.06 Observed 
vs 
predicted 

0.0002 

Belarus 2017 Men 0.18 0 0.37 Observed 
vs 
predicted 

0.0032 

Belarus 2017 Women 0.11 -0.02 0.24 Observed 
vs 
predicted 

0.004 

Bhutan 2014 Men 0.45 0.14 0.76 Observed 
vs 
predicted 

<0.0001 

Bhutan 2014 Women 0.55 0.36 0.75 Observed 
vs 
predicted 

<0.0001 

Bhutan 2019 Men -0.31 -0.53 -0.09 Observed 
vs 
predicted 

<0.0001 

Bhutan 2019 Women -0.09 -0.25 0.07 Observed 
vs 
predicted 

0.108 

Brunei 
Darussalam 

2016 Men -0.55 -0.8 -0.29 Observed 
vs 
predicted 

<0.0001 

Brunei 
Darussalam 

2016 Women -0.71 -0.87 -0.54 Observed 
vs 
predicted 

<0.0001 
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Jordan 2019 Men 0.66 0.01 1.32 Observed 
vs 
predicted 

0.75 

Jordan 2019 Women 0.4 0.05 0.75 Observed 
vs 
predicted 

0.0513 

Lebanon 2017 Men -0.74 -1.27 -0.22 Observed 
vs 
predicted 

0.2274 

Lebanon 2017 Women -0.11 -0.68 0.47 Observed 
vs 
predicted 

0.4273 

Malawi 2017 Men 1.39 0.9 1.88 Observed 
vs 
predicted 

<0.0001 

Malawi 2017 Women 1.02 0.7 1.35 Observed 
vs 
predicted 

<0.0001 

Mongolia 2013 Men 0.06 -0.3 0.43 Observed 
vs 
predicted 

0.4277 

Mongolia 2013 Women -0.12 -0.3 0.06 Observed 
vs 
predicted 

0.3048 

Mongolia 2019 Men 0.3 0.16 0.43 Observed 
vs 
predicted 

<0.0001 

Mongolia 2019 Women -0.12 -0.21 -0.03 Observed 
vs 
predicted 

0.0009 

Morocco 2017 Men -0.22 -0.4 -0.03 Observed 
vs 
predicted 

0.0171 

Morocco 2017 Women -0.15 -0.25 -0.04 Observed 
vs 
predicted 

0.0095 

Nepal 2019 Men 0.81 0.5 1.13 Observed 
vs 
predicted 

<0.0001 

Nepal 2019 Women 0.71 0.54 0.88 Observed 
vs 
predicted 

<0.0001 

Solomon 
Islands 

2015 Men -0.56 -1.3 0.19 Observed 
vs 
predicted 

0.0358 

Solomon 
Islands 

2015 Women -0.39 -1.05 0.28 Observed 
vs 
predicted 

0.1386 
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Sudan 2016 Men -0.73 -1.2 -0.27 Observed 
vs 
predicted 

0.0018 

Sudan 2016 Women -0.41 -0.66 -0.16 Observed 
vs 
predicted 

<0.0001 

Tokelau 2014 Men -0.13 -0.69 0.44 Observed 
vs 
predicted 

0.9361 

Tokelau 2014 Women -0.52 -1.07 0.02 Observed 
vs 
predicted 

0.279 

Turkmenistan 2018 Men -0.59 -0.68 -0.5 Observed 
vs 
predicted 

<0.0001 

Turkmenistan 2018 Women -0.56 -0.62 -0.49 Observed 
vs 
predicted 

<0.0001 

Zambia 2017 Men -0.35 -0.65 -0.05 Observed 
vs 
predicted 

0.0004 

Zambia 2017 Women -0.19 -0.34 -0.04 Observed 
vs 
predicted 

0.0001 
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Supplementary Table 5. Observed mean salt intake (g/day) by equation and sex in each survey 

included in the ML model development. 

Country Year Sex Mean salt 
intake 
(g/day) 

Mean salt 
intake (g/day) 
lower 

Mean salt 
intake (g/day) 
upper 

Category 

Armenia 2016 Men 9.44 9.05 9.83 Observed_intersalt 

Armenia 2016 Men 13.79 13.03 14.55 Observed_kawasaki 

Armenia 2016 Men 9.87 9.43 10.3 Observed_tanaka 

Armenia 2016 Men 12.31 11.84 12.78 Observed_toft 

Armenia 2016 Women 7.47 7.28 7.66 Observed_intersalt 

Armenia 2016 Women 12.18 11.67 12.69 Observed_kawasaki 

Armenia 2016 Women 9.81 9.47 10.15 Observed_tanaka 

Armenia 2016 Women 8.34 8.2 8.47 Observed_toft 

Azerbaijan 2017 Men 10.28 9.99 10.58 Observed_intersalt 

Azerbaijan 2017 Men 14.92 14.28 15.55 Observed_kawasaki 

Azerbaijan 2017 Men 10.37 10.02 10.72 Observed_tanaka 

Azerbaijan 2017 Men 12.88 12.5 13.25 Observed_toft 

Azerbaijan 2017 Women 8.01 7.77 8.25 Observed_intersalt 

Azerbaijan 2017 Women 12.48 11.92 13.03 Observed_kawasaki 

Azerbaijan 2017 Women 10.05 9.7 10.4 Observed_tanaka 

Azerbaijan 2017 Women 8.4 8.25 8.55 Observed_toft 

Bangladesh 2018 Men 8.56 8.4 8.72 Observed_intersalt 

Bangladesh 2018 Men 12.9 12.61 13.19 Observed_kawasaki 

Bangladesh 2018 Men 8.94 8.77 9.1 Observed_tanaka 

Bangladesh 2018 Men 11.81 11.63 11.99 Observed_toft 

Bangladesh 2018 Women 7.24 7.12 7.35 Observed_intersalt 

Bangladesh 2018 Women 11.91 11.62 12.19 Observed_kawasaki 

Bangladesh 2018 Women 8.91 8.73 9.08 Observed_tanaka 

Bangladesh 2018 Women 8.28 8.2 8.36 Observed_toft 

Belarus 2017 Men 9.92 9.69 10.14 Observed_intersalt 

Belarus 2017 Men 13.88 13.51 14.25 Observed_kawasaki 

Belarus 2017 Men 9.97 9.76 10.19 Observed_tanaka 

Belarus 2017 Men 12.24 12.01 12.47 Observed_toft 

Belarus 2017 Women 7.56 7.41 7.71 Observed_intersalt 

Belarus 2017 Women 11.61 11.31 11.92 Observed_kawasaki 

Belarus 2017 Women 9.67 9.47 9.87 Observed_tanaka 

Belarus 2017 Women 8.14 8.06 8.23 Observed_toft 

Bhutan 2014 Men 9.49 9.12 9.86 Observed_intersalt 
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Bhutan 2014 Men 14.44 13.65 15.23 Observed_kawasaki 

Bhutan 2014 Men 9.77 9.33 10.2 Observed_tanaka 

Bhutan 2014 Men 12.68 12.2 13.16 Observed_toft 

Bhutan 2014 Women 8.11 7.88 8.34 Observed_intersalt 

Bhutan 2014 Women 14.11 13.57 14.66 Observed_kawasaki 

Bhutan 2014 Women 10.53 10.19 10.87 Observed_tanaka 

Bhutan 2014 Women 8.81 8.67 8.95 Observed_toft 

Bhutan 2019 Men 8.83 8.6 9.06 Observed_intersalt 

Bhutan 2019 Men 12.34 11.86 12.82 Observed_kawasaki 

Bhutan 2019 Men 8.51 8.27 8.75 Observed_tanaka 

Bhutan 2019 Men 11.36 11.06 11.65 Observed_toft 

Bhutan 2019 Women 7.42 7.24 7.59 Observed_intersalt 

Bhutan 2019 Women 11.63 11.23 12.02 Observed_kawasaki 

Bhutan 2019 Women 8.91 8.66 9.15 Observed_tanaka 

Bhutan 2019 Women 8.2 8.09 8.3 Observed_toft 

Brunei 
Darussalam 

2016 Men 9.37 9.07 9.67 Observed_intersalt 

Brunei 
Darussalam 

2016 Men 11.95 11.52 12.38 Observed_kawasaki 

Brunei 
Darussalam 

2016 Men 8.44 8.2 8.68 Observed_tanaka 

Brunei 
Darussalam 

2016 Men 11.09 10.82 11.36 Observed_toft 

Brunei 
Darussalam 

2016 Women 7.1 6.87 7.32 Observed_intersalt 

Brunei 
Darussalam 

2016 Women 10 9.62 10.38 Observed_kawasaki 

Brunei 
Darussalam 

2016 Women 8.1 7.85 8.36 Observed_tanaka 

Brunei 
Darussalam 

2016 Women 7.75 7.63 7.86 Observed_toft 

Jordan 2019 Men 10.26 9.65 10.87 Observed_intersalt 

Jordan 2019 Men 13.76 12.59 14.93 Observed_kawasaki 

Jordan 2019 Men 9.71 9.12 10.3 Observed_tanaka 

Jordan 2019 Men 12.18 11.51 12.84 Observed_toft 

Jordan 2019 Women 8.4 8.03 8.77 Observed_intersalt 

Jordan 2019 Women 12.28 11.58 12.98 Observed_kawasaki 

Jordan 2019 Women 9.81 9.36 10.26 Observed_tanaka 

Jordan 2019 Women 8.37 8.18 8.57 Observed_toft 

Lebanon 2017 Men 9.33 8.88 9.78 Observed_intersalt 

Lebanon 2017 Men 12.79 11.35 14.23 Observed_kawasaki 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 2, 2021. ; https://doi.org/10.1101/2021.08.31.21262944doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.31.21262944
http://creativecommons.org/licenses/by/4.0/


22 
 

Lebanon 2017 Men 9.21 8.41 10 Observed_tanaka 

Lebanon 2017 Men 11.5 10.6 12.4 Observed_toft 

Lebanon 2017 Women 7.53 6.93 8.13 Observed_intersalt 

Lebanon 2017 Women 11.48 10.08 12.88 Observed_kawasaki 

Lebanon 2017 Women 9.44 8.44 10.44 Observed_tanaka 

Lebanon 2017 Women 8.06 7.58 8.54 Observed_toft 

Malawi 2017 Men 10.09 9.61 10.57 Observed_intersalt 

Malawi 2017 Men 14.37 13.72 15.02 Observed_kawasaki 

Malawi 2017 Men 9.62 9.26 9.98 Observed_tanaka 

Malawi 2017 Men 12.68 12.3 13.07 Observed_toft 

Malawi 2017 Women 8.4 8.07 8.74 Observed_intersalt 

Malawi 2017 Women 13.74 12.87 14.6 Observed_kawasaki 

Malawi 2017 Women 10.32 9.8 10.84 Observed_tanaka 

Malawi 2017 Women 8.69 8.48 8.91 Observed_toft 

Mongolia 2013 Men 9.71 9.31 10.1 Observed_intersalt 

Mongolia 2013 Men 13.25 12.63 13.87 Observed_kawasaki 

Mongolia 2013 Men 9.37 9.04 9.7 Observed_tanaka 

Mongolia 2013 Men 11.96 11.57 12.35 Observed_toft 

Mongolia 2013 Women 7.72 7.52 7.92 Observed_intersalt 

Mongolia 2013 Women 11.65 11.11 12.2 Observed_kawasaki 

Mongolia 2013 Women 9.37 9.01 9.73 Observed_tanaka 

Mongolia 2013 Women 8.18 8.03 8.34 Observed_toft 

Mongolia 2019 Men 9.71 9.55 9.86 Observed_intersalt 

Mongolia 2019 Men 14.77 14.43 15.1 Observed_kawasaki 

Mongolia 2019 Men 10.09 9.91 10.27 Observed_tanaka 

Mongolia 2019 Men 12.81 12.61 13 Observed_toft 

Mongolia 2019 Women 7.43 7.31 7.56 Observed_intersalt 

Mongolia 2019 Women 11.97 11.68 12.25 Observed_kawasaki 

Mongolia 2019 Women 9.54 9.35 9.73 Observed_tanaka 

Mongolia 2019 Women 8.27 8.19 8.35 Observed_toft 

Morocco 2017 Men 9.04 8.82 9.26 Observed_intersalt 

Morocco 2017 Men 13.14 12.7 13.58 Observed_kawasaki 

Morocco 2017 Men 9.41 9.16 9.66 Observed_tanaka 

Morocco 2017 Men 11.82 11.55 12.09 Observed_toft 

Morocco 2017 Women 7.5 7.39 7.62 Observed_intersalt 

Morocco 2017 Women 11.74 11.43 12.04 Observed_kawasaki 

Morocco 2017 Women 9.5 9.3 9.69 Observed_tanaka 

Morocco 2017 Women 8.19 8.11 8.27 Observed_toft 
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Nepal 2019 Men 9.63 9.25 10 Observed_intersalt 

Nepal 2019 Men 16.78 15.86 17.69 Observed_kawasaki 

Nepal 2019 Men 10.82 10.34 11.29 Observed_tanaka 

Nepal 2019 Men 14.15 13.63 14.68 Observed_toft 

Nepal 2019 Women 7.98 7.78 8.18 Observed_intersalt 

Nepal 2019 Women 15.76 15.21 16.32 Observed_kawasaki 

Nepal 2019 Women 11.15 10.83 11.46 Observed_tanaka 

Nepal 2019 Women 9.21 9.09 9.34 Observed_toft 

Solomon 
Islands 

2015 Men 8.92 8.04 9.8 Observed_intersalt 

Solomon 
Islands 

2015 Men 12.07 10.21 13.92 Observed_kawasaki 

Solomon 
Islands 

2015 Men 8.63 7.55 9.7 Observed_tanaka 

Solomon 
Islands 

2015 Men 11.14 9.94 12.33 Observed_toft 

Solomon 
Islands 

2015 Women 7.4 6.67 8.13 Observed_intersalt 

Solomon 
Islands 

2015 Women 13.18 10.5 15.86 Observed_kawasaki 

Solomon 
Islands 

2015 Women 9.96 8.3 11.63 Observed_tanaka 

Solomon 
Islands 

2015 Women 8.44 7.74 9.15 Observed_toft 

Sudan 2016 Men 8.29 7.56 9.02 Observed_intersalt 

Sudan 2016 Men 11.27 10.41 12.13 Observed_kawasaki 

Sudan 2016 Men 8.19 7.66 8.73 Observed_tanaka 

Sudan 2016 Men 10.6 10.04 11.15 Observed_toft 

Sudan 2016 Women 7.31 6.94 7.68 Observed_intersalt 

Sudan 2016 Women 10.36 9.8 10.93 Observed_kawasaki 

Sudan 2016 Women 8.72 8.31 9.12 Observed_tanaka 

Sudan 2016 Women 7.81 7.65 7.98 Observed_toft 

Tokelau 2014 Men 10 9.28 10.72 Observed_intersalt 

Tokelau 2014 Men 15.6 14.19 17 Observed_kawasaki 

Tokelau 2014 Men 10.89 10.05 11.73 Observed_tanaka 

Tokelau 2014 Men 13.19 12.36 14.03 Observed_toft 

Tokelau 2014 Women 7.89 7.45 8.33 Observed_intersalt 

Tokelau 2014 Women 12.38 11.16 13.59 Observed_kawasaki 

Tokelau 2014 Women 10.22 9.46 10.98 Observed_tanaka 

Tokelau 2014 Women 8.38 8.07 8.68 Observed_toft 

Turkmenistan 2018 Men 8.87 8.72 9.01 Observed_intersalt 
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Turkmenistan 2018 Men 12.05 11.85 12.25 Observed_kawasaki 

Turkmenistan 2018 Men 8.8 8.69 8.92 Observed_tanaka 

Turkmenistan 2018 Men 11.16 11.03 11.28 Observed_toft 

Turkmenistan 2018 Women 6.79 6.7 6.89 Observed_intersalt 

Turkmenistan 2018 Women 10.07 9.9 10.24 Observed_kawasaki 

Turkmenistan 2018 Women 8.54 8.41 8.67 Observed_tanaka 

Turkmenistan 2018 Women 7.77 7.72 7.82 Observed_toft 

Zambia 2017 Men 8.47 8.15 8.8 Observed_intersalt 

Zambia 2017 Men 12.52 11.85 13.19 Observed_kawasaki 

Zambia 2017 Men 8.66 8.31 9.02 Observed_tanaka 

Zambia 2017 Men 11.37 10.95 11.78 Observed_toft 

Zambia 2017 Women 7.14 6.96 7.32 Observed_intersalt 

Zambia 2017 Women 11.47 10.98 11.97 Observed_kawasaki 

Zambia 2017 Women 9.02 8.71 9.33 Observed_tanaka 

Zambia 2017 Women 8.09 7.95 8.23 Observed_toft 
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Supplementary Table 6. Weighted distribution of predictors in each of the 49 national surveys included in the application of the model herein 

developed. 

 
Country Year Region Sample 

size 
Mean 
age 
(years) 

Age 
range 
(years) 

Proportion 
of men (%) 

Mean, 
minimum and 
maximum  
values of SBP 
(mmHg) 

Mean, 
minimum and 
maximum  
values of DBP 
(mmHg) 

Mean, 
minimum and 
maximum  
values of 
weight (kg) 

Mean, 
minimum and 
maximum  
values of 
height (m) 

Algeria 2017 Africa 6536 38 18-69 51.7 126.6 (77-227) 75.2 (32-137) 73.3 (25-174) 1.67 (1.02-
2.05) 

American 
Samoa 

2004 Americas 2042 40 25-64 50.3 130.7 (84.5-
230.5) 

82.4 (46.5-
134.5) 

100.4 (38.6-
219.1) 

1.69 (1.36-
2.19) 

Bahamas 2012 Americas 1400 42 24-64 49.9 127.4 (73-
248.5) 

81.6 (32.5-
139.5) 

84.8 (27.9-
184.9) 

1.67 (1.15-
2.03) 

Barbados 2007 Americas 282 43 25-69 51.9 121.9 (86-191) 80.1 (55-115) 77.5 (40.6-
232.1) 

1.67 (1.17-
1.93) 

Benin 2015 Africa 4841 34 18-69 49.6 125.8 (74.5-
254.5) 

81.6 (45-142.5) 62.3 (30-167) 1.64 (1.21-
1.98) 

Botswana 2014 Africa 3894 33 15-69 52.1 127.5 (84.5-
262.5) 

80 (47-148.5) 63.9 (31.7-
171.1) 

1.66 (1.02-2) 

British Virgin 
Islands 

2009 Americas 1067 43 25-64 54.1 130.5 (81-
225.5) 

80.3 (47.5-126) 83.2 (39.6-
176.9) 

1.7 (1.14-2.26) 

Cabo Verde 2007 Africa 1723 38 25-64 50.3 133.3 (86-
233.5) 

79.7 (47.5-140) 68.3 (35-150) 1.68 (1.23-
1.96) 

Cambodia 2010 Western 
Pacific 

5223 40 25-64 49.4 116.2 (70.5-
225.5) 

72.4 (41.5-138) 53.7 (21.1-111) 1.57 (1.24-
1.85) 

Cayman Islands 2012 Americas 1229 42 24-64 50.7 124.7 (84-
207.5) 

76 (46.5-127) 82.3 (31-196) 1.69 (1-2.1) 
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Comoros 2011 Africa 5029 39 25-64 52.6 127.6 (82.5-
236.5) 

78.5 (48.5-144) 64.2 (23.5-166) 1.61 (1-2.15) 

Cook Islands 2015 Western 
Pacific 

879 39 18-64 46.5 128 (91.5-194) 78.8 (45-118.5) 98.6 (49.1-
205.1) 

1.69 (1.07-
1.96) 

Ecuador 2018 Americas 4466 40 18-69 49.4 119.9 (78-
220.5) 

76 (42-130) 69.2 (33.4-
198.4) 

1.59 (1.24-
1.93) 

Eritrea 2010 Africa 5651 42 25-69 17.2 117 (71.5-
230.5) 

74.3 (45.5-
130.5) 

51.8 (28.1-99.1) 1.6 (1.16-1.89) 

Eswatini 2014 Africa 3042 31 15-69 47.4 124.3 (72-
251.5) 

79.7 (42-149.5) 67.8 (22.2-
227.6) 

1.63 (1.01-
2.02) 

Ethiopia 2015 Africa 9270 31 15-69 56.1 119.7 (71-
250.5) 

77.7 (30-142) 54.4 (20-99.5) 1.63 (1.05-2) 

Fiji 2011 Western 
Pacific 

2492 42 25-64 51 130.3 (84.5-
228) 

80.2 (39-143) 78.6 (30.3-
198.1) 

1.68 (1.03-
1.94) 

French 
Polynesia 

2010 Western 
Pacific 

2239 36 18-64 50.7 125 (85.5-
230.5) 

79.4 (48-149.5) 86.2 (41-193) 1.7 (1.41-2) 

Gambia 2010 Africa 3496 38 25-64 50.4 130.4 (85-252) 80.3 (44-143.5) 64.8 (26.5-
168.9) 

1.64 (1-2) 

Grenada 2011 Americas 1055 41 25-64 50.7 130.5 (71-
212.5) 

80.5 (49.5-128) 77.6 (40.8-
158.8) 

1.7 (1.32-2.49) 

Guyana 2016 Americas 2625 37 18-69 52 125.7 (73.5-
245) 

77.6 (37-149) 69.9 (26.4-198) 1.63 (1.01-
2.07) 

Iraq 2015 Eastern 
Mediterranean 

3655 35 18-69 53.6 128.1 (78.5-
225) 

82.7 (45-150) 76.5 (36.6-
187.2) 

1.65 (1.01-
1.97) 

Kenya 2015 Africa 4270 34 16-69 50.6 124.7 (76.5-
262) 

80.8 (46.5-146) 63.2 (30-171.3) 1.65 (1.01-
1.95) 

Kiribati 2016 Western 
Pacific 

1240 40 18-69 42.8 128 (85-219.5) 84.6 (49-147.5) 81.1 (30-219) 1.64 (1.22-
1.89) 

Kuwait 2014 Eastern 
Mediterranean 

2871 36 18-69 49.5 120.4 (70-240) 77.4 (50-130) 80.5 (37.3-195) 1.65 (1.04-
1.96) 
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Kyrgyzstan 2013 Eastern 
Mediterranean 

2539 41 25-64 51.9 133.2 (81.5-
244.5) 

86.8 (56.5-
149.5) 

71.7 (36.6-
162.4) 

1.64 (1.38-
1.95) 

Lao People's 
Democratic 
Republic 

2013 Western 
Pacific 

2464 39 16-65 42.3 118.7 (72-
239.5) 

76.4 (30-130) 54.2 (27-103.1) 1.54 (1.16-
1.97) 

Lesotho 2012 Africa 2162 38 25-64 49.8 126.3 (77.5-
250) 

82.6 (46.5-146) 66.2 (21.5-
164.6) 

1.61 (1.02-
1.97) 

Liberia 2011 Africa 2242 40 25-64 50.7 129 (87.5-232) 79.8 (32-137.5) 65.4 (32-163) 1.58 (1-2.5) 

Libya 2009 Eastern 
Mediterranean 

3223 37 25-64 51.5 133.4 (74-
237.5) 

79.5 (44-148.5) 77 (31.7-186.2) 1.67 (1-1.97) 

Myanmar 2014 Southeast 
Asia 

7892 42 25-64 50.4 126.1 (70-252) 81.8 (35-144) 57.1 (26.3-173) 1.59 (1-2.18) 

Nauru 2016 Western 
Pacific 

1037 36 18-69 50 122.6 (76-223) 80.5 (46.5-125) 92.4 (43.4-
197.9) 

1.63 (1.41-
1.86) 

Niue 2012 Western 
Pacific 

779 40 15-69 50.1 127.5 (89-223) 75.7 (44.5-117) 91.5 (44.7-
165.9) 

1.69 (1.17-
1.96) 

Palau 2013 Western 
Pacific 

2148 43 25-64 53 138.3 (87-236) 84.7 (40-135) 79.4 (32-180.6) 1.62 (1.02-
2.03) 

Qatar 2012 Eastern 
Mediterranean 

2287 35 18-64 50.9 118.5 (78.5-
203) 

78.8 (46.5-
129.5) 

79.1 (34.4-
190.5) 

1.64 (1.35-2) 

Republic of 
Moldova 

2013 Europe 4077 39 18-69 52.5 132.9 (83-257) 85.1 (49-148) 75 (32.5-166) 1.68 (1.2-1.98) 

Rwanda 2013 Africa 6882 32 15-64 48.8 120.7 (75-250) 77.9 (45-140) 57 (23.1-165.8) 1.6 (1-1.91) 

Samoa 2013 Western 
Pacific 

1490 37 18-64 54.1 124.9 (80.5-
221.5) 

75.3 (44.5-
131.5) 

90.3 (32.1-160) 1.68 (1.22-
1.97) 

Sao Tome and 
Principe 

2008 Africa 2272 40 25-64 48.4 135 (77.5-
240.5) 

82.5 (34.5-143) 66.1 (30-186.2) 1.64 (1.01-
1.98) 

Sierra Leone 2009 Africa 4473 40 25-64 50.3 131.3 (72-220) 80.5 (42.5-148) 60 (28-185) 1.62 (1-2.34) 
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Sri Lanka 2015 Southeast 
Asia 

4566 39 18-69 51.5 125.3 (74-
258.5) 

80.6 (36-150) 58 (26.2-156.9) 1.59 (1.02-1.9) 

Tajikistan 2017 Europe 2643 32 18-69 53.8 128.6 (81-267) 84.4 (54.5-
149.5) 

66.7 (27.8-148) 1.63 (1.09-2) 

Timor-Leste 2014 Southeast 
Asia 

2480 36 18-69 63.8 130.4 (72.5-
235) 

84 (42.5-136) 52 (27-165) 1.57 (1.24-
1.83) 

Togo 2011 Africa 3995 32 15-64 49.3 123 (70-251) 76.8 (31-141.5) 61.6 (26-165) 1.64 (1.02-
1.99) 

Tuvalu 2015 Western 
Pacific 

1024 39 18-69 54.9 134.4 (92.5-
246) 

84.4 (48.5-145) 91.9 (35.8-
181.8) 

1.68 (1.17-
2.06) 

Uganda 2014 Africa 3673 35 18-69 50.5 125 (83-249) 80.8 (50-148) 59.4 (30.2-165) 1.62 (1.15-
2.03) 

United Republic 
of Tanzania 

2012 Africa 5381 39 25-64 50.6 129.1 (80-240) 80.5 (40-145.5) 60.6 (29-171.1) 1.63 (1.13-
1.97) 

Vanuatu 2011 Western 
Pacific 

4420 40 25-64 47.7 129.6 (77-269) 79.6 (37.5-139) 69.4 (28.3-
199.8) 

1.63 (1.02-2.1) 

Vietnam 2015 Western 
Pacific 

3033 39 18-69 50.4 120 (71-223.5) 77.2 (40-127.5) 54.7 (27.8-
106.4) 

1.58 (1.01-
1.98) 
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Supplementary Table 7. Predicted mean salt intake (g/day) by sex in each of the 49 national 

surveys included in the application of the model herein developed. 

Country Year Sex Mean salt 
intake 
(g/day) 

Mean salt 
intake (g/day) 
lower 

Mean salt 
intake (g/day) 
upper 

Category 

Algeria 2017 Men 9.43 9.37 9.48 predicted 

Algeria 2017 Women 7.72 7.68 7.76 predicted 

Algeria 2017 Total 8.6 8.56 8.64 predicted 

American Samoa 2004 Men 11.06 10.99 11.13 predicted 

American Samoa 2004 Women 9.01 8.95 9.06 predicted 

American Samoa 2004 Total 10.04 10 10.08 predicted 

Bahamas 2012 Men 10.39 10.21 10.58 predicted 

Bahamas 2012 Women 8.26 8.01 8.51 predicted 

Bahamas 2012 Total 9.33 9.19 9.46 predicted 

Barbados 2007 Men 9.61 9.31 9.92 predicted 

Barbados 2007 Women 7.86 7.54 8.18 predicted 

Barbados 2007 Total 8.77 8.56 8.98 predicted 

Benin 2015 Men 8.81 8.72 8.91 predicted 

Benin 2015 Women 7.29 7.2 7.37 predicted 

Benin 2015 Total 8.04 7.92 8.16 predicted 

Botswana 2014 Men 8.61 8.54 8.69 predicted 

Botswana 2014 Women 7.39 7.34 7.45 predicted 

Botswana 2014 Total 8.03 7.97 8.09 predicted 

British Virgin 
Islands 

2009 Men 10.09 10.03 10.16 predicted 

British Virgin 
Islands 

2009 Women 8.02 8.01 8.02 predicted 

British Virgin 
Islands 

2009 Total 9.14 9.08 9.2 predicted 

Cabo Verde 2007 Men 9.13 9 9.25 predicted 

Cabo Verde 2007 Women 7.46 7.36 7.55 predicted 

Cabo Verde 2007 Total 8.3 8.19 8.41 predicted 

Cambodia 2010 Men 8.7 8.66 8.75 predicted 

Cambodia 2010 Women 7.23 7.2 7.25 predicted 

Cambodia 2010 Total 7.96 7.92 7.99 predicted 

Cayman Islands 2012 Men 9.95 9.89 10 predicted 

Cayman Islands 2012 Women 8.08 7.86 8.29 predicted 

Cayman Islands 2012 Total 9.03 8.96 9.09 predicted 

Comoros 2011 Men 9.09 9.04 9.15 predicted 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 2, 2021. ; https://doi.org/10.1101/2021.08.31.21262944doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.31.21262944
http://creativecommons.org/licenses/by/4.0/


30 
 

Comoros 2011 Women 7.74 7.7 7.78 predicted 

Comoros 2011 Total 8.45 8.4 8.5 predicted 

Cook Islands 2015 Men 11.02 10.95 11.1 predicted 

Cook Islands 2015 Women 8.63 8.56 8.69 predicted 

Cook Islands 2015 Total 9.74 9.64 9.84 predicted 

Ecuador 2018 Men 9.74 9.67 9.81 predicted 

Ecuador 2018 Women 7.8 7.75 7.84 predicted 

Ecuador 2018 Total 8.76 8.68 8.83 predicted 

Eritrea 2010 Men 8.4 8.34 8.47 predicted 

Eritrea 2010 Women 6.93 6.89 6.97 predicted 

Eritrea 2010 Total 7.18 7.14 7.22 predicted 

Eswatini 2014 Men 9.01 8.9 9.12 predicted 

Eswatini 2014 Women 7.71 7.65 7.77 predicted 

Eswatini 2014 Total 8.33 8.26 8.39 predicted 

Ethiopia 2015 Men 8.28 8.24 8.32 predicted 

Ethiopia 2015 Women 6.92 6.89 6.95 predicted 

Ethiopia 2015 Total 7.69 7.65 7.72 predicted 

Fiji 2011 Men 9.75 9.63 9.86 predicted 

Fiji 2011 Women 8.02 7.95 8.08 predicted 

Fiji 2011 Total 8.9 8.79 9.01 predicted 

French Polynesia 2010 Men 10.24 10.13 10.35 predicted 

French Polynesia 2010 Women 8.04 7.95 8.13 predicted 

French Polynesia 2010 Total 9.16 9.06 9.25 predicted 

Gambia 2010 Men 9.1 8.96 9.24 predicted 

Gambia 2010 Women 7.54 7.46 7.62 predicted 

Gambia 2010 Total 8.33 8.22 8.43 predicted 

Grenada 2011 Men 9.49 9.39 9.59 predicted 

Grenada 2011 Women 7.89 7.8 7.98 predicted 

Grenada 2011 Total 8.7 8.61 8.79 predicted 

Guyana 2016 Men 9.28 9.17 9.39 predicted 

Guyana 2016 Women 7.85 7.78 7.92 predicted 

Guyana 2016 Total 8.59 8.53 8.66 predicted 

Iraq 2015 Men 9.73 9.63 9.84 predicted 

Iraq 2015 Women 8.01 7.95 8.07 predicted 

Iraq 2015 Total 8.94 8.86 9.01 predicted 

Kenya 2015 Men 8.69 8.59 8.78 predicted 

Kenya 2015 Women 7.35 7.27 7.42 predicted 

Kenya 2015 Total 8.02 7.94 8.11 predicted 
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Kiribati 2016 Men 10.19 9.99 10.39 predicted 

Kiribati 2016 Women 8.25 8.14 8.36 predicted 

Kiribati 2016 Total 9.08 8.94 9.23 predicted 

Kuwait 2014 Men 10.19 10.11 10.26 predicted 

Kuwait 2014 Women 8.08 8.03 8.13 predicted 

Kuwait 2014 Total 9.13 9.07 9.18 predicted 

Kyrgyzstan 2013 Men 9.58 9.43 9.73 predicted 

Kyrgyzstan 2013 Women 7.8 7.75 7.85 predicted 

Kyrgyzstan 2013 Total 8.72 8.65 8.8 predicted 

Lao People's 
Democratic 
Republic 

2013 Men 8.97 8.88 9.05 predicted 

Lao People's 
Democratic 
Republic 

2013 Women 7.38 7.32 7.43 predicted 

Lao People's 
Democratic 
Republic 

2013 Total 8.05 7.98 8.12 predicted 

Lesotho 2012 Men 9.01 8.9 9.11 predicted 

Lesotho 2012 Women 7.92 7.83 8 predicted 

Lesotho 2012 Total 8.46 8.38 8.54 predicted 

Liberia 2011 Men 9.52 9.38 9.65 predicted 

Liberia 2011 Women 7.93 7.82 8.05 predicted 

Liberia 2011 Total 8.74 8.61 8.87 predicted 

Libya 2009 Men 9.67 9.59 9.75 predicted 

Libya 2009 Women 8.07 8 8.14 predicted 

Libya 2009 Total 8.89 8.83 8.95 predicted 

Myanmar 2014 Men 8.71 8.59 8.82 predicted 

Myanmar 2014 Women 7.41 7.32 7.49 predicted 

Myanmar 2014 Total 8.06 7.98 8.14 predicted 

Nauru 2016 Men 11.11 11.01 11.2 predicted 

Nauru 2016 Women 8.76 8.6 8.92 predicted 

Nauru 2016 Total 9.93 9.8 10.06 predicted 

Niue 2012 Men 10.73 10.61 10.85 predicted 

Niue 2012 Women 8.33 8.21 8.44 predicted 

Niue 2012 Total 9.53 9.41 9.65 predicted 

Palau 2013 Men 10.52 10.4 10.65 predicted 

Palau 2013 Women 8.19 8.12 8.26 predicted 

Palau 2013 Total 9.43 9.33 9.53 predicted 

Qatar 2012 Men 10.17 10.06 10.29 predicted 
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Qatar 2012 Women 8.11 8.01 8.21 predicted 

Qatar 2012 Total 9.16 9.06 9.26 predicted 

Republic of 
Moldova 

2013 Men 9.64 9.56 9.72 predicted 

Republic of 
Moldova 

2013 Women 7.56 7.5 7.62 predicted 

Republic of 
Moldova 

2013 Total 8.65 8.59 8.72 predicted 

Rwanda 2013 Men 8.67 8.63 8.7 predicted 

Rwanda 2013 Women 7.29 7.26 7.32 predicted 

Rwanda 2013 Total 7.96 7.93 7.99 predicted 

Samoa 2013 Men 10.44 10.3 10.58 predicted 

Samoa 2013 Women 8.63 8.56 8.7 predicted 

Samoa 2013 Total 9.61 9.51 9.7 predicted 

Sao Tome and 
Principe 

2008 Men 9.11 9.07 9.15 predicted 

Sao Tome and 
Principe 

2008 Women 7.54 7.44 7.64 predicted 

Sao Tome and 
Principe 

2008 Total 8.3 8.22 8.38 predicted 

Sierra Leone 2009 Men 8.83 8.73 8.93 predicted 

Sierra Leone 2009 Women 7.41 7.32 7.51 predicted 

Sierra Leone 2009 Total 8.13 8.03 8.23 predicted 

Sri Lanka 2015 Men 8.82 8.75 8.89 predicted 

Sri Lanka 2015 Women 7.29 7.25 7.33 predicted 

Sri Lanka 2015 Total 8.08 8.03 8.13 predicted 

Tajikistan 2017 Men 9.4 9.3 9.5 predicted 

Tajikistan 2017 Women 7.55 7.48 7.62 predicted 

Tajikistan 2017 Total 8.55 8.46 8.64 predicted 

Timor-Leste 2014 Men 8.42 8.37 8.46 predicted 

Timor-Leste 2014 Women 7 6.88 7.11 predicted 

Timor-Leste 2014 Total 7.9 7.8 8 predicted 

Togo 2011 Men 8.71 8.66 8.77 predicted 

Togo 2011 Women 7.21 7.16 7.26 predicted 

Togo 2011 Total 7.95 7.9 8 predicted 

Tuvalu 2015 Men 10.57 10.44 10.71 predicted 

Tuvalu 2015 Women 8.59 8.5 8.68 predicted 

Tuvalu 2015 Total 9.68 9.57 9.79 predicted 

Uganda 2014 Men 8.63 8.57 8.69 predicted 

Uganda 2014 Women 7.22 7.16 7.28 predicted 
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Uganda 2014 Total 7.93 7.87 7.99 predicted 

United Republic of 
Tanzania 

2012 Men 8.6 8.47 8.72 predicted 

United Republic of 
Tanzania 

2012 Women 7.48 7.41 7.55 predicted 

United Republic of 
Tanzania 

2012 Total 8.04 7.98 8.11 predicted 

Vanuatu 2011 Men 9.52 9.44 9.59 predicted 

Vanuatu 2011 Women 7.75 7.69 7.81 predicted 

Vanuatu 2011 Total 8.59 8.53 8.66 predicted 

Vietnam 2015 Men 8.75 8.68 8.82 predicted 

Vietnam 2015 Women 7.11 7.07 7.16 predicted 

Vietnam 2015 Total 7.94 7.88 8 predicted 
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Supplementary Table 8. Comparison between mean salt intake predictions and global estimates 

across national surveys included in the ML application. 

Country Year (for  
ML 
predictions) 

ML-
predicted 
mean salt  
intake and 
95% CI 
(g/day) 

Year (for  
global 
estimatates) 

Estimated 
mean salt  
intake and 
95% CI 
(g/day) 

Ratio 
between 
predicted 
and  
estimated 
mean salt 
intake 

Absolute 
difference 
between  
predicted 
mean salt 
intake and  
global 
estimated 
mean salt 
intake 

Algeria 2017 8.6 (8.6-
8.6) 

2010 10.7 (9-
12.5) 

0.8 2.1 

Bahamas 2012 9.3 (9.2-
9.5) 

2010 7.5 (6.2-8.8) 1.2 1.8 

Barbados 2007 8.8 (8.6-9) 2010 8.6 (7.8-9.4) 1 0.2 

Benin 2015 8 (7.9-8.2) 2010 7.1 (6.2-8.1) 1.1 0.9 

Botswana 2014 8 (8-8.1) 2010 6.3 (5.4-7.4) 1.3 1.7 

Cabo Verde 2007 8.3 (8.2-
8.4) 

2010 8.1 (6.8-9.7) 1 0.2 

Cambodia 2010 8 (7.9-8) 2010 11 (9.3-
12.9) 

0.7 3 

Comoros 2011 8.4 (8.4-
8.5) 

2010 4.2 (3.5-5) 2 4.2 

Ecuador 2018 8.8 (8.7-
8.8) 

2010 7.6 (6.4-8.9) 1.2 1.2 

Eritrea 2010 7.2 (7.1-
7.2) 

2010 5.9 (5-7) 1.2 1.3 

Ethiopia 2015 7.7 (7.7-
7.7) 

2010 5.7 (4.9-6.7) 1.4 2 

Fiji 2011 8.9 (8.8-9) 2010 7.2 (6-8.5) 1.2 1.7 

Gambia 2010 8.3 (8.2-
8.4) 

2010 7.7 (6.5-8.9) 1.1 0.6 

Grenada 2011 8.7 (8.6-
8.8) 

2010 6.5 (5.5-7.7) 1.3 2.2 

Guyana 2016 8.6 (8.5-
8.7) 

2010 6.1 (5.1-7.3) 1.4 2.5 

Iraq 2015 8.9 (8.9-9) 2010 9.4 (8-11.2) 0.9 0.5 

Kenya 2015 8 (7.9-8.1) 2010 3.7 (3.4-4) 2.2 4.3 

Kiribati 2016 9.1 (8.9-
9.2) 

2010 5.6 (4.6-6.7) 1.6 3.5 

Kuwait 2014 9.1 (9.1-
9.2) 

2010 9.7 (8.7-
10.8) 

0.9 0.6 

Kyrgyzstan 2013 8.7 (8.7-
8.8) 

2010 13.4 (11.4-
15.8) 

0.6 4.7 
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Lao People's 
Democratic 
Republic 

2013 8.1 (8-8.1) 2010 11.1 (9.4-
13.2) 

0.7 3 

Lesotho 2012 8.5 (8.4-
8.5) 

2010 6.6 (5.5-7.8) 1.3 1.9 

Liberia 2011 8.7 (8.6-
8.9) 

2010 6.7 (5.6-7.9) 1.3 2 

Libya 2009 8.9 (8.8-
8.9) 

2010 10.6 (8.9-
12.5) 

0.8 1.7 

Myanmar 2014 8.1 (8-8.1) 2010 11.2 (9.4-
13.2) 

0.7 3.1 

Qatar 2012 9.2 (9.1-
9.3) 

2010 10.5 (8.3-
12.9) 

0.9 1.3 

Republic of 
Moldova 

2013 8.7 (8.6-
8.7) 

2010 9.9 (8.3-
11.6) 

0.9 1.2 

Rwanda 2013 8 (7.9-8) 2010 4 (3.3-4.9) 2 4 

Samoa 2013 9.6 (9.5-
9.7) 

2010 5.2 (4.6-5.8) 1.8 4.4 

Sao Tome 
and Principe 

2008 8.3 (8.2-
8.4) 

2010 5.9 (4.9-6.9) 1.4 2.4 

Sierra Leone 2009 8.1 (8-8.2) 2010 6.3 (5.3-7.3) 1.3 1.8 

Sri Lanka 2015 8.1 (8-8.1) 2010 9.7 (8.2-
11.3) 

0.8 1.6 

Tajikistan 2017 8.6 (8.5-
8.6) 

2010 13.5 (11.6-
15.7) 

0.6 4.9 

Timor-Leste 2014 7.9 (7.8-8) 2010 11.2 (9.3-
13.3) 

0.7 3.3 

Uganda 2014 7.9 (7.9-8) 2010 5.3 (4.4-6.3) 1.5 2.6 

United 
Republic of 
Tanzania 

2012 8 (8-8.1) 2010 6.9 (6.1-7.7) 1.2 1.1 

Vanuatu 2011 8.6 (8.5-
8.7) 

2010 5.6 (4.8-6.6) 1.5 3 

Vietnam 2015 7.9 (7.9-8) 2010 11.5 (9.5-
13.7) 

0.7 3.6 

 
*There are 38 countries in this table; that is, countries included in our analysis that were not available 

in the previous global work, were not included in this table. 

 

Reference: Powles J, Fahimi S, Micha R, Khatibzadeh S, Shi P, Ezzati M, et al. Global, regional and 

national sodium intakes in 1990 and 2010: a systematic analysis of 24 h urinary sodium excretion and 

dietary surveys worldwide. BMJ Open. 2013 Dec 23;3(12):e003733. 
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Supplementary Figure 2. Comparison between mean difference between observed and 

predicted salt intake across the best algorithms 
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