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Abstract

We present an ensemble forecast for Wave-3 of COVID-19 in the state of Karnataka,
India, using the IISc Population Balance Model for infectious disease spread. The
reported data of confirmed, recovered, and deceased cases in Karnataka from 1 July
2020 to 4 July 2021 is utilized to tune the model’s parameters, and an ensemble forecast
is done from 5 July 2021 to 30 June 2022. The ensemble is built with 972 members by
varying seven critical parameters that quantify the uncertainty in the spread dynamics
(antibody waning, viral mutation) and interventions (pharmaceutical,
non-pharmaceutical). The probability of Wave-3, the peak date distribution, and the
peak caseload distribution are estimated from the ensemble forecast. Our analysis shows
that the most significant causal factors are compliance to Covid-appropriate behavior,
daily vaccination rate, and the immune escape new variant emergence-time. These
causal factors determine when and how severe the Wave-3 of COVID-19 would be in
Karnataka. We observe that when compliance to Covid-Appropriate Behavior is good
(i.e., lockdown-like compliance), the emergence of new immune-escape variants beyond
Sep ’21 is unlikely to induce a new wave. A new wave is inevitable when compliance to
Covid-Appropriate Behavior is only partial. Increasing the daily vaccination rates
reduces the peak active caseload at Wave-3. Consequently, the hospitalization, ICU, and
Oxygen requirements also decrease. Compared to Wave-2, the ensemble forecast
indicates that the number of daily confirmed cases of children (0-17 years) at Wave-3’s
peak could be seven times more on average. Our results provide insights to plan
science-informed policy interventions and public health response.

1 Introduction

The COVID-19 pandemic necessitates forecasts to frame science-informed policies. An
accurate forecast of the size and timing of future waves could help public health officials
and governments to plan appropriate responses. An ensemble forecast by aggregating
different scenarios and models makes the prediction robust and reliable.

COVID cases were reported in India from February 2020, and the first nationwide
lockdown was imposed on 25 March 2020. A graded reopening started in June 2020.
After that, in the state of Karnataka, the Wave-1 began gradually building up and
reached a maximum daily confirmed caseload of 10K (7-day average) around 11 October
2020. Subsequently, the daily confirmed caseload reduced to less than 1K by December
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2020 and stayed below 1K until mid-March 2021. From the 3rd week of March 2021, the
caseload started increasing again, and a Wave-2 started raging, reaching a peak of 47.5K
daily confirmed cases on 9 May 2021 [1]. Additionally, since 16 January 2021,
vaccination against Covid-19 started in India with a rationing policy based on the
recipient’s age [2]. Genome sequencing studies have shown that Wave-1 was caused by
the B.1.1.7 (’Alpha’) variant and Wave-2 was caused by the B.1.617.2 (’Delta’)
variant [3–7]. Despite timely NPIs (decentralized state-wise, city-wise, and
community-wise lockdown), there was a widespread concern due to the high load on the
medical infrastructure with reports of ICU and oxygen shortages.

Unfortunately, almost no computational model for Covid-19 spread in India
predicted a Wave-2, drawing widespread flak and criticism from the Government and
general public [8] . The forecast failure could have been due to the uncertainties in the
spread dynamics, intervention effectiveness, virus mutation, anti-body waning, and
vaccination effectiveness. As such, a comprehensive model incorporating the above
uncertainties is essential to predict new waves.

Furthermore, the COVID guidelines and policies on non-pharmaceutical
interventions (NPIs) and pharmaceutical interventions, including vaccination and
planning, differed for Wave-1 and Wave-2 in India. Specifically, a uniform national
policy was implemented during the first wave. In contrast, each state government
imposed individual localized policies during the second wave. Hence, the ensemble
forecast must be done at a state level to take appropriate decentralized action for
containment. Here, we present an ensemble forecast of COVID-19 in Karnataka for
2021-22, focusing on predicting a new Wave-3 and quantifying its impact on vulnerable
populations.

An ensemble forecast is built by aggregating predictions from different scenarios and
models. Such an approach has been shown to consistently perform well in different fields,
see for e.g., [9–12]. Uncertainties in human behavior, mobility, local government policies,
mutation, immune response, and anti-body waning make COVID spread forecasting a
challenging problem [13,14]. An ensemble method incorporates these uncertainties as
scenarios and makes the forecast more robust. Appropriate trade-offs can be made by
policymakers by analyzing the probability of occurrence of each scenario being modeled.

Several authors have analysed the data of COVID Wave-2 in India and ascribed
causal factors [15]. The importance of mutation in the Wave-2 and [16] the effect of
immunity waning have been characterized [17]. The effect of non-pharmaceutical
interventions like lockdowns [18,19] and vaccine allocation strategies [2] has been
studied. Predictions for third wave based on immunity waning, emergence of an
immune-escape new variant and social distancing [20] have also been made. However,
no comprehensive ensemble forecast considering all known causal factors have been
reported in literature. In what follows, we first describe in Sect. 2 our IISc-COVID
Model, the causal control variables that we have considered and the kind of analysis
that we perform. Next, we discuss our results drawing insights from the analysis done
on our ensemble forecast (Sect. 3). Finally we summarize our findings and raise a call
for action for effective intervention (Sec. 4).

2 Materials and methods

2.1 IISc-COVID Model

The IISc COVID model proposed in [21] is employed to compute all estimates using our
in-house finite element package [22,23]. The model consists of an unknown scalar
function describing the dynamics of the infected population in a six-dimensional space.
In particular, the active infected population is distributed in space, infection severity,
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duration of the infection, and age of the infected people. Let T∞ be a given final time,
Ω := Ωx ⊗ Ω` be the spatial domain, and Ω` := Lv × Ld × La be the internal domain.
Here, Lv, Ld and La denote the infection severity, duration of infection, age of the
people, respectively. Then, the dynamics of the infected population
I(t,x, `) ∈ (0, T∞]× Ωx ⊗ Ω` is described by the population balance equation

∂I

∂t
+∇ · (uI) +∇` · (GI) + CI = F in (0, T∞]× Ωx × Ω` ,

I(t,x, `) = gn in (0, T∞]× ∂Ω−x × Ω` ,

I(t,x, (`v, 0, `a)) = Bnuc in (0, T∞]× Ωx × Lv × La ,
I(t,x, (0, `d > 0, `a)) = 0 in (0, T∞]× Ωx × Ld × La ,

I(0,x, `) = I0 in Ωx × Ω` .

The spatial movement of the population within the spatial neighbourhood can be
incorporated through u. The internal growth G = (G`v , G`d , G`a)T is described by

G`v =
d`v
dt

G`d =
d`d
dt

= 1, G`a =
d`a
dt

= 1.

The recovery, CR, and infectious death, CID, rates are included as C = CR + CID. The
transport/mobility in the continuous model is modelled through the source term F
defined by

F (t,x) =

∫
Ωx

D(t,x, s)

(∫
Ω`

I(t, s, `) d`

)
ds.

Here, the mobility function, D(t,x, s) : (0, T∞]× Ωx × Ωx 7→ R is skew-symmetric with
respect to x and s and satisfies −1 ≤ D(t,x, s) ≤ 1. In particular, there will be no
mobility when D(t,x, s) = 0 and the entire infected active population move from the
place s to the place x, when D(t,x, s) = 1. Further, Bnuc and I0 are the nucleation
function that quantifies the newly infected population and the initial active infected
population, respectively. More details on the parameter modeling and on the numerical
scheme can be found in [21]. COVID forecasting models should include antibody
waning, vaccination, breakthrough infections, new immune escape variants,
case-to-infection ratio (CIR) (unreported cases), social distancing, people interaction,
comorbidity, travel, lockdown/unlock, etc. Eventually, all these factors affect the new
infection, that is, the nucleation of COVID cases.

Let us first consider the modeling of antibody waning. Let N be the total number of
people and Nab be the number of people with antibody. Suppose there is no antibody
waning, then the the susceptible ratio is defined as

SR =
N −Nab

N
.

To introduce antibody waning, we use the cumulative distribution function for the
Weibull distribution

W (t) = 1− exp (−t/λ)
k
, t > 0.

Now define the antibody waning susceptible ratio as

SwR(t) =
N −Nw

ab

N
, Nw

ab = (1−W (t)) ∗Nab.

Here, k = 5.67 defines the shape of the curve, λ is the duration of antibody retention,
and t is the time. Next, the vaccinated population must be removed from the
susceptible population. Moreover, the efficacy of the vaccine should also be considered.
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Suppose Nv is the total number of vaccinated people with 70% efficacy, then the
vaccinated population is added to Nw

ab, i.e.,

Nw
ab = (1−W (t)) ∗Nab + 0.7Nv.

Serological surveys indicate that CIR varies between 20 and 60 or even more [24] . For
instance, the first serological survey report of Karnataka shows CIR = 40 in
Karnataka [25] ; that is, there are 39 unreported cases for every reported case in
Karnataka during the first wave. CIR has to be incorporated into the model since CIR
will significantly influence the nucleation. In our model, we included the CIR as follows:

Nw
ab = CIR Nw

ab + 0.7Nv.

Vaccine-dependent fatality is another critical feature in our model. The straightforward
approach is to define the infectious rate as a function of the vaccinated population ratio.
Alternatively, vaccine-dependent fatality can also be incorporated in the nucleation
when the model accounts for the severity of the infection. In particular, the newly
infected but vaccinated population must be added into the model with less severity.
Since one of the internal variables in our model is infection severity `v and the infectious
death rate is zero for `v < 0.64, the newly infected but vaccinated population is
distributed within `v < 0.64.

Next, we discuss the modeling of new immune escape variants, which are the
primary source for new waves. Suppose Nab(t) be the total antibody population on the
day t of the introduction of a new immune escape variant. Let us assume a fraction of
the antibody population, Fnv ∗Nab, where 0 ≤ Fnv < 1, is still immune to the new
variant of Covid. Then, the antibody population with a new immune-escape variant is
redistributed as

Nnv
ab (t) = ((1− Fnv) + Fnv(1−W (t)))Nab(t)

with k = 2.67 and λ = 15. Incorporating all these models, the nucleation is given by

Bnuc(t,x, `) = R(t)

∫
Ω`

[1− γQ]I(t,x, `) d`,

where

R(t) = R0 S
w
R(t) f1(t, SD)f2(`v) ,

γQ =
1

1 + exp (−(`v − 0.4)/0.1)

1

1 + exp (−(`d − 5.1)/2)
.

Here, γQ ∈ [0, 1] is the fraction of the infected population in quarantine, and it depends
on testing, isolation, and comorbidity of the susceptible population. Further,

f1(t, SD) =

[
1− 1

1 + exp (−(SD(t)− 0.5)/0.1)

]
,

f2(`v) =

 3
√

2
π exp

(
−(`v−0.4)2

2(0.4/3)2

)
0 ≤ `v < 0.4 ,

3
√

2
π exp

(
−(`v−0.4)2

2VR((1−0.4)/3)2

)
0.4 ≤ `v ≤ 1.

The SD ∈ [0, 1] in the function f1(t, SD) is a social distancing parameter, where SD = 1
implies a perfect social distancing and R→ 0. Hence, SD is a key parameter to forecast
lockdown and unlock phases. Next, the function f5(`v) is used to distribute the newly
infected population as a function of vaccine-dependent severity. Here, the vaccinated
ratio is defined as

VR =
N −NV ac

N
,

where NV ac is the total number of vaccinated people.
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2.2 Control Variables

To fit the model parameters with the dynamics of new waves and to build scenarios
based on them, computations are performed from Jul 1, 2020, to Jun 30, 2022, where
the actual data of the emergence of the second wave, that is, the data until Jul 4, 2021,
is used. Moreover, there are many uncertainties in terms of the COVID spread [20], and
a few data is not accessible to accurately fit the parameters. To account for these
uncertainties, we introduce the following control variables in the model. Further, we
vary these influencing parameters to build a total of 972 scenarios. Finally, an ensemble
forecast is made by combining the results of these scenarios.

2.2.1 Case-to-Infection Ratio (CIR)

The reported district-wise CIR values in the first serological survey for
Karnataka [7, 26,27] are used in our model. It has been reported that the average CIR
in Karnataka was 40, and we denote this test case as CIR40. Further, to account for the
uncertainty in the district-wise CIR estimate, we consider CIR50 as well, where the
district-wise CIR is multiplied with a factor of 1.25.

2.2.2 Emergence of Immune-Escape New viral Variant (IENV)

The emergence of immune-escape new viral variants is critical for the emergence of the
new waves [28]. The emergence of new variants and their transmission capability
depends on the circulation of the existing variants and the antibody of the infected
people. Further, we can observe that the duration between the peaks across the world is
between nine and thirty-five weeks. In this study, we introduce the immune-escape new
viral variant after (i) eight weeks (IENV-Jul21), (ii) sixteen weeks (IENV-Sep21), and
(iii) twenty-four weeks (IENV-Nov21) of the second wave (May 2021) in Karnataka.
Furthermore, we consider the transmission of immune-escape new viral variants in 33%
(IENV-33P), 66% (IENV-66P), and 100% (IENV-100P) of the recovered population.

2.2.3 Antibody Waning (ABW)

The antibody waning could be a factor for reinfections and consequently induce new
waves. A few studies show that the COVID antibody wains between five to twelve
months. However, the COVID virus is new, and we do not have unambiguous evidence.
Therefore, six scenarios by varying the duration of the antibody waning and the number
of waning antibody populations are considered. More specifically, the antibody waning
in 33% (ABW-33P), 66% (ABW-66P), and 100% (ABW-100P) of the recovered
population in 150 (ABW-150) and 180 (ABW-180) days are considered.

2.2.4 Vaccination Rate

Vaccination is the key to contain the spread of the virus. In the absence of treatment,
preventing the spread by vaccinating the entire population is the only solution to
eradicate the virus. Nevertheless, with the present vaccination rate (as of Jul 4, 2021),
people in the age group of 60 and above, 45-59 Yrs., 18-44 Yrs., would be fully
vaccinated by Jul 9, 21, Jul 21, 2021, and Dec 13, 2021, respectively. In addition to the
availability of the vaccines, the vaccine-hesitancy is also delaying the vaccination drive.
Hence to study the effect of the vaccination rate on the emergence of new waves, three
scenarios, (i) present rate, which is 280K vaccinations per day (VR-280K), (ii) 50%
increase in the present rate (VR-420K), and (iii) double the present rate (VR-560K),
are being considered.
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2.2.5 COVID-appropriate behavior (CAB)

COVID-appropriate behavior (social distancing) plays a significant role in COVID
spread, and it varies from region to region. Though the behavior of individuals
determines the social distancing, NPIs such as lockdowns, restrictions on mass
gatherings, curfew, etc., will also affect the social distancing. To study the effect of
different compliance of CAB on new waves, three scenarios (i) Good compliance (Good
CAB): similar to the behavior between Mar-May’21, (ii) Bad compliance (Partial CAB),
and (iii) Worse compliance (No CAB), are considered.

2.3 Ensemble Forecast and Analysis Methods

We build an ensemble with 972 equi-probable scenarios by varying the above seven
parameters. For each scenario we estimate the date of peak (if any) and the caseload at
peak. A scenario without a peak is declared as a No-Wave scenario. The conditional
probability of Wave-3 given a particular value for a parameter is then estimated, from
only those scenarios with that chosen parameter value, as the ratio of scenarios leading
to a wave 3 to the total number of scenarios. Conditional probability given two
parameter values are estimated by considering only those scenarios in which those
chosen parameter values are used. All statistical quantities (mean, median, confidence
interval, inter-quartile range, probability distribution function and scatter) are
estimated from this ensemble forecast.

3 Results

Our primary interest is to quantify the probability of a new COVID wave (Wave-3) in
Karnataka, India, and to determine the distribution of the date and age-wise caseload of
Wave-3’s peak. Most importantly, we want to determine the causal factors for a new
wave and recommend suitable interventions to reduce its likelihood and impacts.

3.1 Causal factors for a new COVID wave in Karnataka, India

We first present the influence of the control variables (Sect. 2.2) on the emergence of a
new wave and identify the significant causal factors. Among the considered 972
scenarios, Wave-3 is observed in 648 scenarios. In the event of Wave-3, the conditional
probability (likelihood) of Wave-3 given a control variable is presented in Fig. 1 (a).
Even though the Case-to-Infection ratio and the antibody waning could impact the
emergence of new COVID waves, these factors are not very sensitive, that is, variations
in these control variables are not influencing the probability of Wave-3. Nevertheless, we
can observe that the variations in the new immune-escape variant, vaccination rate, and
Covid-appropriate behavior significantly influence the emergence of a new COVID wave.
Note that the length of the arrow indicates the sensitivity of the control variables.
Moreover, we can see that the timing of the new immune-escape variant influence the
probability of Wave-3 more than its reinfection percentage. Therefore, we characterize
the timing of the new immune-escape variant, vaccination rate, and Covid-appropriate
behavior as the primary causal factors and further analyze its influence on the Wave-3.

To investigate the pair-wise combined effect of these identified causal parameters on
Wave-3, the conditional probability of Wave-3 given any two of these causal parameters
is presented in Fig. 1 (b). The values in the cells represent the conditional probability of
Wave-3 given two causal parameters, and the colors indicate the median of active cases
at peak.

This analysis reveals that the CAB is the most responsible factor for the third wave.
Further, no compliance of CAB guarantees the third wave even with a doubled
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Fig 1. The conditional probability of Wave-3 given a control variable (a) and two control variables (b) are depicted. The
values in the cells represent the conditional probability of Wave-3 given two control variables, whereas the color indicates the
median of active cases at peak.

vaccination rate and more active cases at the peak of Wave-3. On the contrary, good
compliance of CAB and doubling the present vaccination rate effectively reduce the
probability of Wave-3 and the number of active cases in the event of Wave-3.

3.2 Wave-3 peak date and active caseload

The quantities of interest for policy-making are the peak date and active caseload at
peak. Now, we proceed to analyze these two quantities in different scenarios
corresponding to the primary causal factors identified above. Fig. 2 shows a scatter plot
between the date of Wave-3’s peak and active caseload at peak for different scenarios. A
special axis entry NW is used to depict the scenarios that do not show a new wave. The
arrangement and color of scatter markers in the figure help us visualize the joint-effect
of adherence to Covid-appropriate behavior by the public, IENV emergence and
re-infection fraction, vaccination rate, and CIR in the population on caseload and date
of peak. Each panel (a-i) in Fig. 2 shows only those scenarios in which the variable
mentioned in the column (CAB) and the row (IENV emergence time) are active. For
example, panel (a) shows all the scenarios where the CAB is set to ”Good” level and
IENV emergence time is set to July 2021. Within the panel, each point represents a
particular scenario. Each scenario is colored by the vaccination rate, marked by a
marker that represents the IENV re-infection fraction, and the border is colored by the
CIR.

First, we see that when Good CAB is active (panels a,d,g) as opposed to the other
two values for CAB, the active case at the peak is lower. Significantly, scenarios with
Good CAB and IENV emergence time beyond September 2021 (panels d,g) do not see a
new wave. In panel (a), we see a peak only when 100% IENV re-infection occurs, and
the other two re-infection fractions do not lead to a new wave. This result shows that
Good CAB is the primary intervention strategy for preventing COVID waves, a
well-known fact. However, in reality, the financial and livelihood requirements to
re-open economies will result in a relaxation of CAB, and only a Partial CAB is likely
to be followed. In those scenarios with partial CAB (panels b,e,h), if an immune escape
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Fig 2. Scatter plot of active cases at the peak of Wave-3 v/s the date of peak for
different scenarios of CAB and timing of the immune-escape variant with different
vaccine rates.

new variant emerges in July 2021 or September 2021, Wave-3 is inevitable in Karnataka.
Moreover, we see that vaccination rate is the key governing factor that reduces the
active caseload at peak. Crucially, reaching a vaccination level of 580k per day in
Karnataka will ensure no Wave-3 if no immune escape new variant starts spreading in
the population before November 2021. A higher CIR (meaning lower reported cases
during Wave-2) will result in a delayed peak but at the same active caseload as seen by
the clustering among the same color and marker shapes.

To complete the analysis, we look at the scenarios with no CAB. Under these
scenarios, we expect the highest levels of the caseload at peak and an assured emergence
of new COVID waves in Karnataka. Fortunately, we see that vaccination reduces the
caseload but doesn’t prevent the inevitable Wave-3. The re-infection fraction
significantly affects the caseload in the No CAB, IENV-Jul’21 scenarios (panel c). We
see wide distribution in the caseload at the peak but a narrow distribution in the peak
date.

To further understand Wave-3 properties from the perspective of vaccination, Fig. 3
shows the probability distribution function of peak date and active cases at peak for
different vaccination rates. Here, we only look at the scenarios resulting in a Wave-3
and ignore those that do not lead to a Wave-3. We see that almost all the distribution
curves are multi-modal, indicating the cross effects of CAB and IENV re-infection rates.
It is evident from Fig. 3 that the emergence of a new immune-escape variant is likely to
be followed by a third wave within 45 to 60 days. In most cases, a higher vaccination
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Fig 3. The probability of the predicted date of peak, the number of active cases and
the number of confirmed cases on the day of peak for different vaccination rates and

timing of emergence of immune-escape new variants, i.e., in Jul’21, Sep’21 and Nov’21.

rate helps to bring down the active caseload at peak. Doubling the daily vaccination
rate (VR-560K, Fig. 3(c),(f)) results in fewer scenarios with Wave-3 despite the
emergence of an immune-escape new variant in November.

Table 2 shows a summary of the median peak date, inter-quartile range of peak date
and the minimum and maximum active caseload during this period of inter-quartile
range for scenarios with specific combinations of IENV emergence time and vaccination
rates. This table can be used as a ready reference for policy making.

3.3 Effect of Wave-3 on different age-groups

The data until 10 June 2021 shows that 4.2%, 5%, 53.2%, 23% and 14.645 % of the
people in the age groups 0–11, 12–17, 18–44, 45–59, and above 60 years were infected
with COVID-19. However, India started an age-dependent vaccination drive for 18+
population only. As such, for Wave-3, we expect a higher contribution to the daily
confirmed caseload from children (0–17 years). To estimate this impact on different age
groups, we analyze the age-wise daily confirmed caseload at Wave-3 peak and compare
it with the corresponding numbers at Wave-2. Table. 2 shows the statistics of the ratio
between the 7-day average of daily confirmed cases of Wave-3 and Wave-2 peaks. The
first line in each cell shows the ensemble mean with the 95% confidence interval and the
second line shows the ensemble median. We see that the children (0-17 years) are the
worst affected due to unavailability of vaccine. In the worst case,with VR-280K and
IENV-Nov21, the daily confirmed cases of children (0–11 years) at the Wave-3 peak will
be on an average twenty times more than that of the daily confirmed cases at Wave-3
peak. On an average, the impact of Wave-3 on children (0–17 years) would be seven
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Table 1. Statistics for total active cases and the date of peak at various vaccine rates, and COVID-appropriate behavior.
The first value in the cell is the the median date of peak and the mean value of active cases on the median date of peak,
followed by the first and third quartile values for the date of peak, and the minimum and maximum number of active cases in
the inter-quartile range.

Vaccination rate

per day

Emergence of

IENV
Good CAB Partial CAB No CAB

Jul’21

15-Oct’21 (36K)

14-Oct’21, 21-Oct’21

36K – 48K

21-Sep’21 (173K)

05-Sep’21, 10-Jan’22

144K – 207K

27-Aug’21 (451K)

22-Aug’21, 10-Sep’21

451K – 2M

280K Sep’21 No Wave-3

05-Jan’22 (220K)

10-Dec’21, 02-Feb’22

207K – 229K

08-Nov’21 (674K)

02-Nov’21, 24-Nov’21

527K – 766K

Nov’21 No Wave-3

21-Feb’22 (189K)

19-Feb’22, 24-Feb’22

179K – 197K

22-Dec’21 (7M)

20-Dec’21, 24-Dec’21

616K – 11M

Jul’21

27-Sep’21 (23K)

26-Sep’21, 08-Oct’21

23K – 26K

23-Sep’21 (119K)

06-Sep’21, 28-Jan’22

89K – 134K

29-Aug’21 (1M)

23-Aug’21, 08-Sep’21

370K – 1M

420K Sep’21 No Wave-3

23-Jan’22 (114K)

23-Dec’21, 26-Feb’22

112K – 117K

13-Nov’21 (479K)

05-Nov’21, 02-Dec’21

377K – 529K

Nov’21 No Wave-3

27-Mar’22 (38K)

24-Mar’22, 31-Mar’22

37K – 43K

27-Dec’21 (1M)

26-Dec’21, 29-Dec’21

460K – 3M

Jul’21

12-Sep’21 (16K)

11-Sep’21, 24-Sep’21

15K – 16K

25-Sep’21 (79K)

08-Sep’21, 04-Feb’22

57K – 88K

28-Aug’21 (225K)

23-Aug’21, 31-Aug’21

17K – 656K

560K Sep’21 No Wave-3

03-Feb’22 (23K)

02-Jan’22, 03-Mar’22

23K – 25K

17-Nov’21 (340K)

06-Nov’21, 11-Dec’21

288K – 406K

Nov’21 No Wave-3 No Wave-3

05-Jan’22 (529K)

04-Jan’22, 08-Jan’22

296K – 792K

times more than that of Wave-2.

3.4 Active Cases During May’21 - Jun’22

Fig. 4 shows the ensemble forecast of active cases in Karnataka from May 2021 to June
2022. Each panel shows the scenarios given a pair of CAB and IENV emergence-time
control variables. The colored solid line is the mean value of the ensemble of active
cases, and the shaded zone is the region of uncertainty (each color corresponds to a
particular vaccination rate). The rows in Fig. 4 represent the good, partial, and no
CAB, whereas the columns represent the emergence of IENV in Jul’21, Sep’21, and
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Table 2. Predicted impact of Wave-3 on different age groups with different vaccination
rate. The first value in the cell is the mean with the confidence interval of ratios of the
7-day average of confirmed cases at Wave-3 peak and Wave-2 peak, followed by the
median.

Vaccine Rate
Emergence of

IENV
0-11 Years 12-18 Years 18+ Years

Jul’21
10.17 ± 5.1

1.92

7.88 ± 3.96

1.29

2.36 ± 1.27

0.24

280K Sep’21
6.18 ± 1.64

3.22

4.66 ± 1.26

2.33

0.96 ± 0.29

0.44

Nov’21
21.12 ± 8.72

4.68

15.78 ± 6.57

3.34

2.76 ± 1.18

0.54

Jul’21
8.69 ± 4.42

1.06

6.75 ± 3.42

0.85

1.77 ± 0.96

0.13

420K Sep’21
5.01 ± 1.3

2.88

3.66 ± 0.97

2

0.51 ± 0.16

0.23

Nov’21
11 ± 3.73

3.65

8.06 ± 2.79

2.55

0.88 ± 0.31

0.27

Jul’21
7.4 ± 3.76

0.79

5.79 ± 2.96

0.61

1.34 ± 0.75

0.07

560K Sep’21
4.05 ± 1.21

3.11

2.91 ± 0.88

1.98

0.3 ± 0.1

0.15

Nov’21
8.85 ± 1.32

7.61

6.42 ± 1.05

5.41

0.38 ± 0.06

0.32

Nov’21, respectively.
These plots confirm the observations from Sect. 3.2, but now showing a time series

of the active caseload distribution. As mentioned earlier, the scenarios with Partial
CAB (middle row in Fig. 4) are likely to be followed due to the re-opening of economy
including offices and educational institutions. The impact of the new wave will be more
when it emerges early (Fig. 4 (d)). At the peak of the new wave, the active caseload will
be very high with the present vaccination rate, around 350K, when a new variant
emerges before September 2021. If we assume that there is no antibody waning at least
for 180 days, then, a new wave is predicted only at the beginning of next year, even if a
new variant emerges before September 2021. In this case, the impact will be minimal.
The benefits of increasing the vaccination rate can clearly be seen in Fig. 4 (e). Though
a new wave is predicted in a few scenarios, the active caseload is very minimal with the
doubled vaccination rate. If a new variant does not emerge until the end of October
2021, then a new wave can be suppressed by doubling the vaccination rate (Fig. 4 (f)).
In this case, the study shows that the active caseload will be as high as 200K with the
present vaccination rate even if the new variant emerges after October 2021. This
finding emphasizes the necessity of vaccinating the entire population by December 2021.
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Fig 4. Time series of Mean of active cases with 95% Confidence Interval

4 Discussion and Summary

We have undertaken a comprehensive study by quantifying several uncertain causal
factors to provide modeling evidence on the emergence of a new COVID wave in
Karnataka, India. A total of 972 ensemble members were formed by varying seven key
causal factors in our Population Balance PDE model for infectious disease spread [21].
This first-principles based model incorporates the nonlinear dynamics between all the
causal factors and the confirmed, active, recovered, and deceased caseload of Covid-19
in Karnataka, India. The major findings of this study are:

1. A new wave is most sensitive to mutation (emergence of immune-escape new
variant) timing, compliance of COVID Appropriate Behavior, and vaccination
rate.

2. Practically, the critical causal factor is compliance to CAB, which can be
regulated with appropriate NPI such as mobility restriction, masking and physical
distancing mandates, and crowd control measures.

3. Emergence of new variants beyond Sep’21 is not likely to induce new waves when
the social distancing is good (lockdown-like restrictions).
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4. Among scenarios with Wave-3, increasing the vaccination rate reduces the peak
active caseload and consequently decreases hospitalization, ICU and Oxygen
requirements.

5. Scenarios with a vaccination rate of 480k per day (2x the average vaccination rate
as on July 4, 2021) should have a lower probability of Wave-3 than other scenarios

6. The daily confirmed cases of children (Age 0-11 and 12-17 years) at peak could be
on an average seven times more than the corresponding daily confirmed cases at
Wave-2 peak.

The above findings raise an important call for action to the state’s public health
response. First, policies to promote CAB so as to ensure at least partial compliance
from the population is required. Next, increasing the vaccination rate so as to fully
vaccinate the entire population by mid-Dec is necessary to counter new variants and
antibody waning, if any. Based on the predicted increase in daily confirmed case load of
children in a potential wave 3 compared to data of wave 2, the policymakers can plan
pediatric COVID care centers.

Though the estimated Wave-3 numbers are for the state of Karnataka, the dynamics
of the ensemble forecast will be applicable to all other states of India. Therefore, the
above recommended policy interventions can be imposed nation-wide.

One limitation of the ensemble forecast is that we have not considered the possibility
of new variants infecting the vaccinated population, but we have considered a fixed
efficacy of 70% for the vaccinated population that can partially offset the limitation.
Further, the recovery rate is fitted to the data from July 2020 to May 2021; however, it
could be more due to vaccination effect or less due to new variants.
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