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Abstract 23 

Effectively monitoring the spread of SARS-CoV-2 variants is essential to efforts to counter the ongoing 24 
pandemic. Wastewater monitoring of SARS-CoV-2 RNA has proven an effective and efficient technique 25 
to approximate COVID-19 case rates in the population. Predicting variant abundances from wastewater, 26 
however, is technically challenging. Here we show that by sequencing SARS-CoV-2 RNA in wastewater 27 
and applying computational techniques initially used for RNA-Seq quantification, we can estimate the 28 
abundance of variants in wastewater samples. We show by sequencing samples from wastewater and 29 
clinical isolates in Connecticut U.S.A. between January and April 2021 that the temporal dynamics of 30 
variant strains broadly correspond. We further show that this technique can be used with other 31 
wastewater sequencing techniques by expanding to samples taken across the United States in a similar 32 
timeframe. We find high variability in signal among individual samples, and limited ability to detect the 33 
presence of variants with clinical frequencies <10%; nevertheless, the overall trends match what we 34 
observed from sequencing clinical samples. Thus, while clinical sequencing remains a more sensitive 35 
technique for population surveillance, wastewater sequencing can be used to monitor trends in variant 36 
prevalence in situations where clinical sequencing is unavailable or impractical. 37 
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Introduction 39 

As the SARS-CoV-2 pandemic continues, the virus is evolving in real time, challenging existing control 40 
measures. Increased infectivity, and potentially increased morbidity and immune evasion, have been 41 
observed in emerging variant lineages1,2. These variants are characterized by combinations of mutations 42 
compared to the original strain, some of which are likely to be selective adaptations of the SARS-CoV-2 43 
virus1. To adapt our approach to the pandemic with the virus, we need first to be able to observe which 44 
variants are present where, and critically how the rates of variants are changing in the population. 45 

Genomic surveillance of SARS-CoV-2 enables early detection and clinical investigation of emerging 46 
variants. In late 2020, the Centers for Disease Control and Prevention (CDC) designated specific viral 47 
lineages as variants of interest or variants of concern based on potential changes in detectability, 48 
transmissibility, disease severity, therapeutic efficacy, and/or ability to evade control by natural or 49 
vaccine-induced immune responses3. Initially, this designation included lineage B.1.1.7 (corresponding to 50 
WHO designation Alpha), B.1.351 (Beta), and P.1 (Gamma). In early 2021, CDC added two new variants 51 
to this list: B.1.427 and B.1.429 (Epsilon), both of which were first identified in California4,5. B.1.617.2 and 52 
related sublineages (Delta) now pose a threat but were not observed at substantial rates in the United 53 
States until May 2021. Each variant is identified by a set of potentially overlapping amino acid mutations, 54 
which can be identified by genome sequencing. This is typically done by sequencing remnant clinical 55 
samples used for diagnostics (e.g., nasal swabs), but as infected patients excrete high levels of SARS-56 
CoV-2 RNA, variant prevalences are potentially detectable from domestic wastewater. 57 

Measuring the concentration of SARS-CoV-2 in domestic wastewater can be an efficient method for 58 
indicating infection dynamics in a population6. SARS-CoV-2 and fragments of its RNA genome are 59 
excreted by infected individuals through feces or urine7 and collected in domestic wastewater. Viral RNA 60 
in wastewater can then be extracted and quantified via quantitative RT-qPCR. This approach has been 61 
used to measure SARS-CoV-2 abundance over time, across different regions8 and wastewater RNA 62 
concentrations are correlated with COVID-19 case rates9,10. The genomes of SARS-CoV-2 in wastewater 63 
can also be sequenced, which can then be used to identify mutations present in an entire community with 64 
respect to the reference genome11,12. Genome analysis from wastewater sequencing is particularly 65 
challenging because of the low concentrations and poor, fragmented quality of RNA, and the presence of 66 
PCR inhibiting compounds which can interfere with library preparation in wastewater. This typically yields 67 
poor quality sequencing data where the sequencing depth is highly variable across the SARS-CoV-2 68 
genome and overall genome coverage is often incomplete. Despite these challenges, recent work has 69 
shown that it is feasible to observe mutations in wastewater sequencing data11,12, and suggests the 70 
possibility of monitoring the abundance of specific lineages. Throughout the world, SARS-CoV-2 71 
wastewater surveillance has been conducted for wastewater collection systems that serve populations 72 
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ranging from 10,000 to greater than 100,000 people13. A method for the quantitative measurement of 73 
variants in wastewater would provide a cost- and resource-efficient approach to population genome 74 
surveillance. 75 

Here we introduce a technique to monitor for SARS-CoV-2 variants in a population by sequencing directly 76 
from wastewater and predicting abundances via a computational approach previously used for RNA-seq 77 
transcript quantification. We demonstrate the efficacy of this approach on wastewater data collected from 78 
Connecticut between January and April 2021, during the third wave of the SARS-CoV-2 pandemic, and 79 
compare these predictions to clinically observed variant frequencies from the same geographic area and 80 
time period. We then show the generality of the approach by expanding our analysis to samples collected 81 
across the United States from late December 2020 to January 2021. 82 

 83 

Results 84 

Prediction of variant abundance is computationally analogous to RNA transcript abundance 85 
estimation  86 
SARS-CoV-2 RNA fragments in wastewater originate from different infections, with potentially different 87 
viral lineages, pooled together into a single sample. After successfully extracting RNA from wastewater 88 
and sequencing SARS-CoV-2 genome fragments, the computational challenge is to assign reads to 89 
lineages and estimate relative abundance per lineage. This is analogous to RNA transcript quantification 90 
from RNA-Seq data, where the sequencing data consists of reads originating from different transcripts of 91 
a given gene, and the objective is to quantify the relative abundance per transcript (Fig 1a).  92 
 93 
While pipelines for viral variant detection in clinical samples rely on individual mutation frequencies14 94 
using popular tools like V-pipe15 or iVar16, RNA transcript quantification algorithms make use of the 95 
genome sequences without identifying specific mutations. This is a major advantage because identifying 96 
individual mutation frequencies from wastewater sequencing data is highly error-prone---any errors would 97 
be propagated into variant abundance estimates. Moreover, the fact that RNA transcript quantification 98 
tools have already been in use for several years in the RNA-Seq community has resulted in well-99 
developed, user-friendly software that can be applied almost immediately to the variant abundance 100 
quantification problem. 101 
 102 
Here, we predict variant abundance by applying kallisto17. This algorithm takes as input a set of reference 103 
sequences to be quantified: for RNA-Seq these would be the different transcripts, but for wastewater 104 
sequencing data we provide it with a collection of SARS-CoV-2 genomes representative of the 105 
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population. kallisto constructs an index from the reference sequences and subsequently matches 106 
sequencing reads to references, which allows it to estimate the abundance of each reference transcript 107 
provided (Fig 1b). SARS-CoV-2 lineages are characterized by a combination of mutations, but additional 108 
variation is observed within lineages (Fig S1). We provide kallisto with a reference set consisting of 109 
multiple genomic sequences per lineage, capturing the mutations specific to this lineage as well as within-110 
lineage variation (Fig 1c). Our constructed reference set includes 1-17 genome sequences per lineage, 111 
with a total number of nearly 1500 sequences for the 881 unique SARS-CoV-2 lineages present in the 112 
GISAID database at the time of download (9 March 2021). Including multiple sequences per lineage 113 
reduces biases related to within-lineage variation and potentially identifies any additional genomic 114 
signatures frequently seen in a given lineage. Finally, we filter out any predictions below a given percent 115 
abundance threshold to reduce noise and sum all predictions per lineage, which gives predicted 116 
abundances per lineage (Fig 1c). While in this study we used kallisto, we expect similar results with 117 
comparable tools such as salmon18. 118 
 119 

 120 
 121 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 2, 2021. ; https://doi.org/10.1101/2021.08.31.21262938doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.31.21262938
http://creativecommons.org/licenses/by/4.0/


Figure 1. Computational approach to variant of concern (variant) abundance estimation. a) Computational similarity 122 
between RNA transcript quantification and variant abundance estimation. b) Key aspects of the kallisto algorithm in 123 
the context of variant abundance estimation. c) Our workflow uses multiple reference sequence per lineage to 124 
capture within-lineage variation. Applying kallisto (as in part b) results in abundance estimates per reference 125 
sequence. These abundances are filtered using a minimal abundance cutoff and subsequently summed per lineage 126 
to obtain abundance estimates per lineage. Finally, variant abundances are reported. 127 

 128 
Kallisto predictions of variant abundance are accurate on simulated data 129 
To evaluate the accuracy of the predictions obtained through our pipeline, we created a collection of 130 
benchmarking datasets that resemble real wastewater samples. For each variant (B.1.1.7, B.1.351, 131 
B.1.427, B.1.429, P.1) we created a series of 33 benchmarks by simulating sequencing reads from a 132 
variant genome, as well as a collection of background (non-variant of concern/interest) sequences, such 133 
that the variant abundance ranges from 0.05% to 100%. Analogously, we created a second series of 134 
benchmarks, simulating reads only from the Spike gene of each SARS-CoV-2 genome. We refer to the 135 
first set of benchmarks as "whole genome" and to the second set of benchmarks as "Spike-only". Finally, 136 
we performed these benchmarking experiments at different sequencing depths: 100x and 1000x 137 
coverage for the whole genome benchmarks, and 100x, 1000x, and 10,000x coverage for the Spike-only 138 
benchmarks (Table 1 and Fig 2).  139 
 140 
Predicting variant abundance can be difficult when a variant is present at very low frequency, because of 141 
the high degree of similarity between lineages. On our simulated datasets, where we know the true 142 
frequency of each variant, we observe a background noise of 0.01--0.09% (Fig S2), meaning that some 143 
sequences are falsely predicted to be present at 0.01--0.09% abundance. These false positives are likely 144 
due to shared mutations or conserved sequences between lineages. The level of background noise tends 145 
to be higher for whole genome benchmarks than for Spike-only benchmarks, because the majority of 146 
defining variant mutations are in the Spike gene (Figs S1 and 2). In both cases, we apply a threshold of 147 
0.1% abundance to include a sequence in the lineage abundance computation and we only report the 148 
presence of a variant exceeding this threshold to avoid false positives. For this reason, we only report 149 
results for benchmarks with a true variant abundance of at least 0.1%. Note that this threshold applies to 150 
the overall sequence abundance and not to individual mutations, since the stochasticity of wastewater 151 
sequencing causes the abundance of mutations within a variant to vary significantly. 152 
 153 
Figure 2 (top) shows the predicted versus true frequencies per variant for two of the benchmarks; 154 
additional results are shown in Figure S3. In general, variant frequencies tend to be underestimated, in 155 
particular on whole genome data. This is another consequence of shared polymorphisms between 156 
relatively closely related lineages: a fraction of the reads is assigned to other, locally identical genomes, 157 
leading to an underestimated variant frequency. The more divergent a variant is in comparison with other 158 
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lineages and the more unique polymorphisms are associated with it, the lower the number of false 159 
positives and the smaller the underestimation of variant abundance. This explains why our predictions are 160 
most accurate for P.1, the most divergent lineage among the variants considered (Fig S1). Figure 2 161 
(bottom) shows the relative frequency estimation error, defined as the absolute difference between true 162 
and estimated frequency, relative to the true frequency. We observe that relative frequency estimation 163 
errors are highest at low frequencies, where a small deviation in the absolute sense makes a large 164 
relative difference but are relatively stable at true variant frequencies of at least 1%. 165 
 166 
Besides underestimation, we also notice overestimation, particularly at low variant frequencies. This is 167 
due to shared sequence between the variant and the background lineages: in datasets where the variant 168 
is present at a low frequency, the background lineages must be present at relatively high frequencies. 169 
Any shared sequence between a background lineage and the variant will then lead to more reads being 170 
assigned to the variant, hence overestimation. This effect only applies when background lineages with 171 
shared sequence are more abundant than the variant. In Figure 2, we can clearly see how P.1 and 172 
B.1.1.7 abundances are overestimated at low frequencies, while being near-perfect at higher frequencies 173 

(>1%); for other variants, we see that this effect compensates some of the underestimation, resulting in 174 
better estimates at low variant frequencies. 175 
 176 
Two variants which are particularly difficult to predict individually are B.1.427 and B.1.429; these lineages 177 
are highly similar and have the same characterizing mutations in the Spike gene19. However, because we 178 
include multiple sequences per lineage in our reference set, we capture within-lineage variation that 179 
allows us to distinguish between these two lineages using Spike-only data. This highlights the power of 180 
our approach using a complete reference set; it would not be possible to distinguish between B.1.427 and 181 
B.1.429 with an approach based on mutation frequencies alone. 182 
 183 
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 184 

Figure 2. Estimated variant abundances and relative prediction errors. Relative prediction errors are defined as the 185 
absolute difference between true and estimated frequency, relative to the true frequency. 186 

 187 
 188 

Benchmark FPR FNR Precision Recall Relative 
estimation error 
(%) 

Whole genome 100x 0.191 / 0.0 0.057 / 
0.032 

0.423 / 1.0 0.943 / 
0.968 

29.4 / 19.4 

Whole genome 
1,000x 

0.163 / 0 0.007 / 
0.042 

0.470 / 1.0 0.993 / 
0.958 

27.1 / 18.5 

Spike-only 100x 0.121 / 
0.003 

0.107 / 
0.074 

0.508 / 
0.978 

0.893 / 
0.926 

26.3 / 15.8 
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Spike-only 1,000x 0.041 / 
0.003 

0.043 / 
0.042 

0.753 / 
0.978 

0.957 / 
0.958 

17.3 / 14.0 

Spike-only 10,000x 0.010 / 0 0.014 / 
0.042 

0.926 / 1.0 0.986 / 
0.958 

15.3 / 13.0 

Table 1. Performance statistics per dataset. Results separated by a forward slash correspond to an abundance 189 
threshold of 0.1% and 1%, respectively. FPR = false positive rate; FNR = false negative rate; relative estimation error 190 
reflects the average relative frequency estimation error across all true positives. 191 

 192 
We observe that variant frequencies are consistently underestimated using our approach, except for 193 
slight overestimation of unusually divergent lineages (P.1, B.1.1.7) at low frequencies. Consistent variant 194 
bias as observed in our experiments is unlikely to be an issue in differential analysis, but in single-point 195 
evaluations it would be necessary to design a method to correct for these variant-specific biases. 196 
However, our benchmarks are generated using a single variant sequence, while real data consists of a 197 
mixture of different sequences for the same variant. This may have resulted in stronger underestimation 198 
on our benchmarks than would be seen on real data. To complement the benchmarking experiments 199 
presented here, it would be interesting to evaluate predictions on real data more thoroughly, e.g., by 200 
comparing to qPCR-based variant abundance estimates per variant. More extensive benchmarking 201 
experiments will make it possible to learn the variant-specific biases more accurately and adjust 202 
predictions accordingly. 203 
 204 
To evaluate false positive and false negative predictions, we computed for each experiment the overall 205 
false positive rate (FPR), false negative rate (FNR), precision, and recall (Table 1). We calculated these 206 
statistics for minimal variant abundance thresholds of 0.1% and 1%. Increasing the minimal abundance 207 
thresholds reduces the false positive rate but increases the false negative rate. We generally observe 208 
more false negatives for datasets of lower coverage, because low-frequency variants become harder to 209 
detect. In terms of precision and recall, we note that, unsurprisingly, increasing the number of reads 210 
(either by amplifying a larger region, or by increased sequencing depth) leads to better results. If a variant 211 
is uniquely defined by mutations on Spike, then sequencing depth is preferred over breadth, but if a 212 
variant is (nearly) identical to other lineages on Spike, e.g., B.1.427/B.1.429, then whole genome 213 
sequencing is preferable. 214 
 215 
While for this study we primarily used kallisto17, we also evaluated performance for the software package 216 
salmon18, which takes a slightly different algorithmic approach to the same problem (Fig S4) and found 217 
predictions were highly similar to those obtained with kallisto, the main difference being that salmon is 218 
slightly more conservative: it achieves higher precision (fewer false positives), at the expense of lower 219 
recall (more false negatives). Although salmon tends to miss variants at very low frequencies, one 220 
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potential advantage is that this method may also be applied to long reads (in alignment-based mode), 221 
while kallisto usage is limited to short reads.  222 
 223 
Observed PCR values of wastewater correspond to genome coverage 224 
We obtained primary sewage sludge samples from the wastewater treatment plant serving New Haven, 225 
CT, USA, every 2 days between January 1, 2021 and April 27, 2021 (59 samples). The observed SARS-226 
CoV-2 RNA levels in these samples follow the same trend as COVID-19 case rates in the same 227 
geographic region (Fig 3a, similarly found in 10). PCR cycle threshold (Ct) values of SARS-CoV-2 from 228 
undiluted sludge samples ranged from 30.2 to 35.3 (7.1x10^3 - 1.6x10^5 virus copies / mL), indicating 229 
that there was enough viral RNA to apply genomic sequencing. We generated 400nt tiled amplicons 230 
encompassing the SARS-CoV-2 genome using the Illumina COVIDSeq Test (RUO), modified to use 231 
NEBNext ARTIC V3 SARS-Cov-2 Primer Mixes 1 and 2 to improve genome coverage at low RNA 232 
concentrations20,21. The resulting sequencing data varied widely in terms of number of reads and genome 233 
coverage (Fig S5), with low Ct values (high SARS-CoV-2 RNA concentrations) generally leading to higher 234 
genome coverage (Fig 3b). For these datasets, Ct values < 31 yields at least 60% genome coverage; 235 
samples with a Ct value < 34 and at least 0.5M reads aligned reach a genome coverage of at least 40%. 236 
 237 
To evaluate the impact of genome coverage on variant abundance predictions, we subsampled a dataset 238 
with maximal coverage (99% of the SARS-CoV-2 genome with >20x coverage, 1.9M paired-end reads) to 239 
obtain datasets with reduced genome coverage by randomly selecting 20%, 40%, 60%, and 80% of 240 
amplicons, respectively, each of which we repeated 100 times. Figure 3c shows the resulting abundance 241 
predictions for B.1.1.7 per coverage value. We observe that the median predicted abundance is close to 242 
the predicted abundance at full coverage (dashed line in Fig 3c) for all coverage values; however, 243 
variance is much larger in datasets with low coverage compared to datasets with high coverage, 244 
consistent with statistical predictions and prior work16. This indicates that datasets with low genome 245 
coverage can still result in accurate abundances, but the predictions are less reliable. 246 
 247 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 2, 2021. ; https://doi.org/10.1101/2021.08.31.21262938doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.31.21262938
http://creativecommons.org/licenses/by/4.0/


 248 
Figure 3. a) RNA levels in wastewater (copies/ml sludge, displayed on left vertical axis) follow the same trend as 249 
COVID-19 case rates (cases per 100K people, displayed on right vertical axis). b) Percent genome with >20x 250 
coverage versus sludge Ct values. c) Impact of genome coverage on predicted B.1.1.7 abundance for random 251 
subsamples of a sludge sample with full genome coverage. The horizontal dotted line indicated the predicted B.1.1.7 252 
abundance for the full sample (99% genome coverage). 253 

 254 
 255 
Wastewater abundances of B.1.1.7 and B.1.526 in Connecticut broadly correspond to clinically 256 
observed frequencies 257 
We applied our abundance prediction pipeline to the series of wastewater sequencing datasets described 258 
above. Figure 4 shows the resulting predictions for lineages B.1.1.7 and B.1.526. There is a clear trend in 259 
B.1.1.7 abundance emerging in early February 2021, increasing in abundance through mid April 2021, 260 
while the abundance of other variants is relatively stable over time (see also Fig S6).  261 
 262 
We then compared our wastewater abundance predictions to variant frequency estimates from data 263 
generated by sequencing remnant clinical diagnostic samples (mostly nasal swabs) in New Haven 264 
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County, CT (Fig 4). We observe that B.1.1.7 abundances predicted from wastewater are underestimated 265 
compared to the clinical abundance data. Based on our benchmarking experiments on whole genome 266 
data (Fig 2, left) we expect frequencies to be underestimated by 5-40% (relative to the actual frequency), 267 
with stronger underestimation for lower frequencies. This is consistent with what we see in Figure 4: the 268 
increase (and subsequent decrease) of B.1.1.7 abundance in wastewater is stronger than in clinical data 269 
because of this bias, while wastewater abundance predictions are very close to clinical predictions at 270 
frequencies of 60-70%. For B.1.526, both clinical and wastewater abundance is relatively stable over 271 
time. In theory, predictions will be closer to clinical abundances when sequencing only the Spike gene 272 
instead of the whole SARS-CoV-2 genome (Fig 2). In practice, however, using only reads aligning to the 273 
Spike gene captures too little information due to incomplete genome coverage and amplification bias. 274 
 275 
Kallisto offers a bootstrapping feature, through which the sequencing data is resampled at least 100 times 276 
and variant abundances are predicted for each of these resampled datasets. The resulting predictions 277 
can subsequently be analyzed to obtain confidence intervals for the predicted abundance on the original 278 
dataset. For the New Haven sludge samples discussed here we obtained narrow confidence intervals 279 
(upper and lower errors <1% abundance), suggesting that predictions are very consistent (Fig S6). 280 
However, this type of analysis captures only computational noise, and not technical noise (e.g. sampling 281 
bias). The fact that our predictions are more variable than the clinical data while confidence intervals from 282 
bootstrapping are narrow suggests that wastewater sequencing data is highly stochastic and not always 283 
representative of the infections in the population. 284 
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 285 
Figure 4. Wastewater versus clinical abundance estimates for B.1.1.7 and B.1.526 in New Haven from early January 286 
2021 to late April 2021. Dates of clinical sampling correspond to the date of specimen collection. 287 

 288 
Wastewater abundances for different variants across the US match expected patterns 289 
The quality of datasets obtained through wastewater sequencing varies widely. RNA levels and Ct values 290 
fluctuate with the number of infections in a sewershed, which impact overall genome coverage and 291 
prediction accuracy. Other factors such as sampling approach, PCR inhibition, and amplification bias add 292 
to this variability. To validate our approach for general use, we applied our pipeline to predict variant 293 
abundance on a diverse collection of composite influent wastewater samples obtained from 25 treatment 294 
plants across the United States between late December 2020 and late January 2021 (Fig 5). These 295 
samples had slightly higher average Ct values than the sludge samples analyzed above (33.1 vs 32.3), 296 
but reduced genome coverage compared to sludge samples. Nevertheless, the same quality filtering 297 
parameters apply: Ct < 31 or Ct < 34 with at least 0.5M reads aligned to select for samples with high 298 
coverage (Fig S7). 299 
 300 
After this filtering step, we predicted variant abundance for the 30 remaining datasets (corresponding to 301 
16 different locations across 8 states). Figure 5 shows the predictions for lineages B.1.1.7, B.1.427, 302 
B.1.429, and B.1.526, along with the clinical lineage frequencies in the corresponding state (calculated 303 
from GISAID in the 7-day window centered at the wastewater sampling date). Although data uploaded to 304 
GISAID has its own biases and individual towns do not necessarily reflect state-wide variant abundances, 305 
this is the only statistic we can compare against across all states. We observe that, while individual 306 
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samples are unreliable, the predicted variant abundances match expected patterns across the US from 307 
the times of sampling: B.1.1.7 was predicted most abundantly in Florida; B.1.427 and B.1.429 were 308 
primarily found in California; and B.1.526 was predicted most abundantly in New York and Connecticut. 309 
Other variants (B.1.351, P.1) were not observed in GISAID for these states at the time of sampling and 310 
our predictions for these variants agree: B.1.351 was predicted to be present at very low frequency in 4 311 
samples and absent in all other samples; P.1 was predicted present in a single dataset at 1% abundance 312 
and absent in all others (Fig S8). Although these predictions may be false positives, at the time P1 was 313 
thought to be likely at such low prevalence that these cases were not picked up by the sequencing efforts 314 
in place. 315 
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 316 
Figure 5. Wastewater versus GISAID abundance estimates for B.1.1.7, B.1.427, B.1.429 and B.1.526 at 16 locations 317 
across 8 states of the US. Samples were collected between late December 2020 and late January 2021; sampling 318 
date and location are indicated on the horizontal axis. Samples are sorted by location, with different locations 319 
separated by a dotted line and different states separated by a solid line.  320 
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Discussion 321 

Our results show that methods for RNA transcript quantification can be applied to wastewater sequencing 322 
data to obtain consistent and relevant variant abundance estimates. This technique can be readily applied 323 
to a wide range of data types, from Spike-only amplicon sequencing to whole genome sequencing; it is 324 
not appreciably more difficult than setting up a “reference set” of potential variants and running existing 325 
tools on whatever the sequencing data happens to be. While this reference set approach allows easy 326 
updating as new variants appear, it also means that this approach cannot be used to detect new variants, 327 
but only to near-optimally impute the mixture of known variants most likely responsible for the observed 328 
data. Further, the approach may be readily extended to the detection and quantification of other pathogen 329 
lineages present in wastewater. 330 

Detecting variants in this fashion appears to be near-optimal on simulated data, with a detection limit 331 
under 1%, though when handling real data which is subject to multiple factors that can alter the quality of 332 
the RNA and the resulting signal, this may be closer to 10%. Wastewater abundances generally follow the 333 
abundance trends seen in clinical data, though with sufficient noise that individual timepoints should not 334 
be considered reliable abundance estimates. Predicting variant abundance from wastewater sequencing 335 
is challenging when viral titers are low, as a result of low prevalence of SARS-CoV-2, but in high-336 
prevalence regions this approach can be extremely effective. 337 

When comparing wastewater abundances to population-level clinical frequencies of variants, there are 338 
three distinct potential sources of errors, all of which are conflated in the accuracy of the final estimate: 339 
(1) how well clinical frequencies match the rates in the population as a whole, (2) how representative the 340 
RNA in a given wastewater is of the infections in the population as a whole, and (3) how well the 341 
predicted variant abundances from sequencing accurately represent what is in the wastewater sample 342 
itself. Clinical frequencies and the GISAID data used for the national data above have strong biases and 343 
so are not themselves ground truth. Individual wastewater samples can be unreliable: the catchment and 344 
composition of an individual wastewater sample can include hospital or industrial inputs and is not 345 
necessarily representative of the population, and low infection levels, inhibitory compounds, and 346 
degradation of RNA can result in higher Ct values and associated genome coverage. Further, the 347 
potential that different variants have different viral shedding in waste is not taken into account nor are 348 
differences in shedding rates for vaccine breakthrough cases. The data here is consistent with high-349 
coverage sequencing being well representative of the sample and the computation faithfully 350 
reconstructing it, therefore we believe the primary source of observed noise is the underlying noisiness 351 
correspondence between a given wastewater sample, the population as a whole, and the clinical cases. 352 

These results do offer lessons for future development of wastewater sequencing methods. With perfect 353 
coverage (simulated data), Spike-only sequencing gives better predictions than whole genome 354 
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sequencing. More broadly, as the variant-discriminating mutations are restricted to a subset of the 355 
amplicons in tiled sequencing, a strategy focusing sequencing depth proportionally to the potentially 356 
informativity of the tiles would likely yield the more accurate predictions per sequence read. In practice, 357 
whole genome sequencing is often necessary to obtain enough information versus restricting to Spike. 358 
These differences in sequencing protocols, as well as differences in population size and sampling 359 
techniques, make it challenging to compare data between locations. Another important lesson is the 360 
improved coverage with higher virus RNA concentrations (lower PCR Ct values). While Ct is largely 361 
controlled by the infection rate in a community and excretion into wastewater, sample concentration and 362 
PCR inhibition removal approaches can be deployed to lower the Ct value and improve coverage in most 363 
samples. 364 

In applying RNA-seq tools to variant prediction, reference set composition is central. We were able to 365 
reduce variant-specific biases substantially by including multiple reference sequences per lineage, thus 366 
capturing within-lineage variation to identify variants with highly similar genomes. Additional experiments 367 
(data not shown) comparing a US-specific reference set to a global reference set showed that, 368 
unsurprisingly, the US-specific reference set gives more accurate predictions for benchmarks with 369 
sequences from US origin. This suggests that using a state- or county-specific reference set construction 370 
could further improve results and that identification of variants is likely being aided by the presence of 371 
hitchhiker mutations which are locally over-represented or non-defining.  372 

In conclusion, we present a computational approach for estimating the percent abundances of SARS-373 
CoV-2 variants in wastewater. Temporal patterns in wastewater of variant abundances in a mid-size 374 
municipality in Connecticut matched those defined by compiled clinical sequence data, and sequencing 375 
metrics were interrogated to define the Ct value and other confidence thresholds that ensure optimal 376 
performance. In settings across the world where strong clinical variant sequencing programs do not exist, 377 
wastewater sequencing can be an effective tool for low cost, efficient monitoring of variant abundance. As 378 
this is unlikely to be the last viral pandemic, nor the last with variants of concern, extending these 379 
approaches to other viruses and other sample types may allow broader monitoring of real-time pandemic 380 
evolution. 381 
 382 

  383 
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Methods 384 

Constructing a reference set 385 
We selected representative genomes per lineage from the GISAID database4, downloaded on 9 March 386 
2021. As our samples are from wastewater collection systems across the US, we considered only 387 
reference sequences of US origin. After removing low-quality sequences (defined as having less than 388 
29,500 non-ambiguous nucleotides) we randomly selected 1000 sequences per lineage for further 389 
analysis. We used minimap2 and paftools to align each of these sequences to the reference genome 390 
(MN908947.3) and subsequently identify variation with respect to this reference22. We then used 391 
VCFtools to compute allele frequencies within each lineage. Based on these allele frequencies, we 392 
selected sequences per lineage such that all mutations with an allele frequency of at least 50% were 393 
captured at least once. This resulted in a final reference set of 1,488 complete SARS-CoV-2 genome 394 
sequences. 395 
 396 
Designing benchmarking experiments 397 
To evaluate the accuracy of our variant abundance predictions, we created benchmarks consisting of a 398 
selection of non-variant genomes (background) and one variant. In order to build benchmarks that reflect 399 
our real data as closely as possible, we selected the background genomes by taking all 11 sequences in 400 
GISAID collected in Connecticut at 2021-02-11 (the most recent collection date). For Spike-only 401 
benchmarks, we trimmed these sequences to keep only the Spike gene and simulated paired-end (2x150 402 
bp) Illumina sequencing reads at equal abundance using ART23. In addition, we randomly selected variant 403 
sequences from GISAID and simulated sequencing reads for the Spike gene of each variant (B.1.1.7, 404 
B.1.351, P.1, B.1.427, B.1.429) at varying frequencies (0.05, 0.06 ..., 0.1, 0.2, ..., 1, 2, ..., 10, 20, ..., 405 
100%) to create 33 data sets per variant, hence 165 data sets in total. We performed these simulations at 406 
a total coverage of 100x and 1000x for whole genome benchmarks, and at 100x, 1000x, and 10,000x for 407 
Spike-only benchmarks. 408 
 409 
Wastewater collection and sequencing from New Haven, CT 410 
Primary sewage sludge samples were collected from the New Haven, CT, USA Wastewater Treatment 411 
Plant. The plan serves 200,000 residents in the towns of New Haven, Hamden, East Haven and 412 
Woodbridge, CT. Primary sludge samples were collected from the effluent pump of the plant’s gravity 413 
thickener. Samples were collected every other day starting January 3, 2021 and ending April 27, 2021. 414 
RNA was extracted from 500 µL sample using a Zymo Quick-RNA Fecal/Soil Microbe Microprep Kit 415 
modified by the addition of 100 µL of phenol-chloroform to the bead beating step, and eluted in 50 µL of 416 
nuclease-free water. The SARS-CoV-2 whole-genome sequencing library was prepared from extracted 417 
RNA using the Illumina COVIDSeq Test (RUO), modified to use NEBNext ARTIC V3 SARS-Cov-2 Primer 418 
Mixes 1 and 2 instead of the included primer mixes, for cDNA synthesis, amplicon generation, 419 
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tagmentation, and cleaning. The pooled and cleaned library was sequenced on an Illumina NovaSeq at 420 
the Yale Center for Genomic Analysis; each sample was given at least 1 million reads. Negative controls 421 
were included at the cDNA synthesis and amplicon generation steps.  422 
 423 
Wastewater collection and sequencing from across the US 424 
Composite influent samples were collected by participating wastewater treatment facilities using 425 
equipment that these facilities already had in-house. Composite samples were aliquoted into three 50-mL 426 
conical tubes and shipped within 24 hours of collection overnight with ice packs to the Biobot Analytics 427 
laboratory (Cambridge, MA). Received samples were immediately pasteurized at 60°C for 1h. 428 
 429 
One of the three tubes was then filtered to remove large particulate matter using a 0.2uM vacuum-driven 430 
filter (EMD-Millipore SCGP00525 or Corning 430320, depending on sample turbidity). We then used 431 
Amicon Ultra-15 centrifugal ultrafiltration units (Millipore UFC903096) to concentrate 15mL of wastewater 432 
approximately 100x. We lysed viral particles in the concentrate by adding AVL Buffer containing carrier 433 
RNA (Qiagen 19073) to the Amicon unit before transfer and >10 minute incubation in a 96-well 2mL 434 
block. To adjust binding conditions, 100% ethanol was added to the lysate, and samples were applied to 435 
RNeasy Mini columns or RNeasy 96 cassettes (Qiagen 74106 or 74181). For a subset of samples (all 436 
from locations within Massachusetts) we processed 45mL of wastewater by loading the same Amicon 437 
Ultra-15 unit three times. 438 
 439 
The RNA samples resulting from the extraction process described above were used as the template for 440 
reverse-transcription (RT) reactions performed with LunaScript RT SuperMix enzyme mix (NEB) to 441 
generate cDNA. Reaction conditions were as follows: primer annealing at 25°C for 2 min, cDNA synthesis 442 
at 55°C for 10 min and heat inactivation at 95°C for 1 min. Multiplexed polymerase chain reaction (PCR) 443 
amplification of cDNA was performed with Q5 Hot Start High-Fidelity 2X Master Mix (NEB) and ARTIC v3 444 
primers (0.015 µM each, final) in two non-overlapping pools with the following cycling conditions: heat 445 
activation at 98°C for 30 sec, followed by 35 cycles of 15 sec denaturation at 98°C, 5 min 446 
annealing/elongation at 65°C.  447 
 448 
The non-overlapping amplicon pools were combined and sequencing libraries for Illumina platform were 449 
prepared using tagmentation with bead-linked transposomes (Illumina) and a modified amplification 450 
protocol with KAPA HiFi HotStart ReadyMix (Roche) and combinatorial dual-indexed adapter sequences. 451 
Libraries were sequenced with NextSeq550 (Illumina). 452 
 453 
 454 
 455 
 456 
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Wastewater data preprocessing 457 
Before processing with kallisto, we first removed adapter sequences from the reads using Trimmomatic24, 458 
aligned the trimmed reads to a reference genome (GenBank MN908947.3) with BWA-MEM v0.7.1725, 459 
and subsequently identified primer sequences using iVar v.1.3.116 and removed these with jvarkit 460 
(http://lindenb.github.io/jvarkit/Biostar84452).  461 
 462 
Clinical sequencing and data processing from New Haven, CT 463 
Ethics statement 464 
The Institutional Review Board from the Yale University Human Research Protection Program determined 465 
that the RT-qPCR testing and sequencing of de-identified remnant COVID-19 clinical samples obtained 466 
from clinical partners conducted in this study is not research involving human subjects (IRB Protocol ID: 467 
2000028599). 468 
 469 
Sequencing and consensus generation 470 
Residual routine testing samples from confirmed SARS-CoV-2 positive individuals were provided by Yale 471 
New Haven Hospital, Yale Pathology Laboratory, “Yale Campus Study”, Connecticut Department of 472 
Public Health, and Murphy Medical Associates. Sample types included nasal swabs in viral transport 473 
media, raw saliva, and extracted RNA. Samples not arriving as RNA were processed using the MagMAX 474 
viral/pathogen nucleic acid isolation kit; RNA was extracted from 300 µL of sample and eluted in 75 µL 475 
elution buffer. All products were tested using a locally developed assay for variants to determine viral 476 
RNA concentration26. Samples with sufficient RNA for sequencing (defined as a viral target cycle 477 
threshold value <35) were prepared using the Illumina COVIDSeq Test RUO for cDNA synthesis, 478 
amplicon generation, tagmentation, and cleaning. Pooled and cleaned libraries were sequenced using a 479 
2x100 or 2x150 approach on an Illumina NovaSeq at the Yale Center for Genomic Analysis; each sample 480 
was given at least 1 million reads. Negative controls were included at RNA extraction, cDNA synthesis, 481 
and amplicon generation steps. 482 
 483 
Reads were aligned to a reference genome (GenBank MN908937.3) using BWA-MEM v.0.7.1525. 484 
Adaptor trimming, primer sequence masking, and simple majority base calling were conducted using iVar 485 
v1.2.116 and SAMtools27. Lineages were assigned using pangolin v.2.4.228. 486 
 487 
 488 
Software availability 489 
All code used for the analysis presented in this manuscript is publicly available at 490 
https://github.com/baymlab/wastewater_analysis.  491 
 492 
 493 
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Data availability 494 
The raw SARS-CoV-2 sequencing data from New Haven wastewater (.fastq files) are available on NCBI 495 
SRA under Bioproject PRJNA741211. The clinical sequencing data can be accessed via 496 
covidtrackerct.com. The raw SARS-CoV-2 sequencing data from across the U.S. (.fastq files) are 497 
available on NCBI SRA under Bioproject PRJNA759260. The simulated wastewater sequencing data 498 
(.fastq files) for benchmarking are available on Zenodo (DOI: 10.5281/zenodo.5307070). 499 
 500 
Yale SARS-CoV-2 Genomic Surveillance Initiative authors 501 
Ahmad Altajar, Anderson F. Brito, Anne E. Watkins, Anthony Muyombwe, Caleb Neal, Chen Liu, 502 
Christopher Castaldi, Claire Pearson, David R. Peaper, Eva Laszlo, Irina R. Tikhonova, Jafar Razeq, 503 
Jessica E. Rothman, Jianhui Wang, Kaya Bilguvar, Linda Niccolai, Madeline S. Wilson, Margaret L. 504 
Anderson, Marie L. Landry, Mark D. Adams, Pei Hui, Randy Downing, Rebecca Earnest, Shrikant Mane, 505 
Steven Murphy 506 
 507 
Acknowledgements 508 
This work was supported in part by the Pew Charitable Trusts, the David and Lucile Packard Foundation, 509 
NIH NIGMS award R35GM133700, and the Alfred P. Sloan Foundation (J.A.B. and M.B); CTSA Grant 510 
Number TL1 TR001864 (M.E.P. and T.A.); Fast Grant from Emergent Ventures at the Mercatus Center at 511 
George Mason University (N.D.G.); CDC Contract #75D30120C09570 (N.D.G.); Yale CoReCT pilot 512 
award (J.P. and N.D.G.); and NIH NIGMS award U54GM088558 (W.P.H.). James McGann and Jim 513 
Griffin were involved in developing the sequencing methodology at Gingko Bioworks. 514 
 515 
Competing interests 516 
N.D.G. is an infectious diseases consultant for Tempus Labs. W.P.H. is a scientific advisory board 517 
member to Biobot Analytics and has received compensation for expert witness testimony on the expected 518 
course of the pandemic. N.G. is co-founder of Biobot Analytics; C.D., K.A.M., and M.I. are employees of 519 
Biobot Analytics.  520 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 2, 2021. ; https://doi.org/10.1101/2021.08.31.21262938doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.31.21262938
http://creativecommons.org/licenses/by/4.0/


References 521 

1. Davies, N. G. et al. Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. 522 
Science 372, (2021). 523 

2. Lucas, C. et al. Impact of circulating SARS-CoV-2 variants on mRNA vaccine-induced immunity in 524 
uninfected and previously infected individuals. bioRxiv (2021) doi:10.1101/2021.07.14.21260307. 525 

3. CDC. SARS-CoV-2 Variant Classifications and Definitions. https://www.cdc.gov/coronavirus/2019-526 
ncov/variants/variant-info.html (2021). 527 

4. GISAID - Initiative. https://www.gisaid.org/. 528 
5. Zhang, W. et al. Emergence of a Novel SARS-CoV-2 Variant in Southern California. JAMA 325, 529 

1324–1326 (2021). 530 
6. Nemudryi, A. et al. Temporal Detection and Phylogenetic Assessment of SARS-CoV-2 in Municipal 531 

Wastewater. Cell Rep Med 1, 100098 (2020). 532 
7. Peng, L. et al. SARS-CoV-2 can be detected in urine, blood, anal swabs, and oropharyngeal swabs 533 

specimens. J. Med. Virol. 92, 1676–1680 (2020). 534 
8. Medema, G., Heijnen, L., Elsinga, G., Italiaander, R. & Brouwer, A. Presence of SARS-Coronavirus-2 535 

RNA in Sewage and Correlation with Reported COVID-19 Prevalence in the Early Stage of the 536 
Epidemic in The Netherlands. Environ. Sci. Technol. Lett. 7, 511–516 (2020). 537 

9. Wolfe, M. K. et al. Scaling of SARS-CoV-2 RNA in Settled Solids from Multiple Wastewater 538 
Treatment Plants to Compare Incidence Rates of Laboratory-Confirmed COVID-19 in Their 539 
Sewersheds. Environmental Science & Technology Letters vol. 8 398–404 (2021). 540 

10. Zulli, A. et al. Predicting daily COVID-19 case rates from SARS-CoV-2 RNA concentrations across a 541 
diversity of wastewater catchments. medRxiv (2021). 542 

11. Crits-Christoph, A. et al. Genome sequencing of sewage detects regionally prevalent SARS-CoV-2 543 
variants. doi:10.1101/2020.09.13.20193805. 544 

12. Jahn, K. et al. Detection of SARS-CoV-2 variants in Switzerland by genomic analysis of wastewater 545 
samples. medRxiv (2021). 546 

13. COVID-19 Wastewater Epidemiology SARS-CoV-2. https://www.covid19wbec.org/. 547 
14. Ellmen, I. et al. Alcov: Estimating Variant of Concern Abundance from SARS-CoV-2 Wastewater 548 

Sequencing Data. medRxiv (2021). 549 
15. Posada-Céspedes, S., Seifert, D., Topolsky, I., Metzner, K. J. & Beerenwinkel, N. V-pipe: a 550 

computational pipeline for assessing viral genetic diversity from high-throughput sequencing data. 551 
doi:10.1101/2020.06.09.142919. 552 

16. Grubaugh, N. D. et al. An amplicon-based sequencing framework for accurately measuring intrahost 553 
virus diversity using PrimalSeq and iVar. Genome Biol. 20, 8 (2019). 554 

17. Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. 555 
Nat. Biotechnol. 34, 525–527 (2016). 556 

18. Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware 557 
quantification of transcript expression. Nat. Methods 14, 417–419 (2017). 558 

19. Julia L. Mullen, Ginger Tsueng, Alaa Abdel Latif, Manar Alkuzweny, Marco Cano, Emily Haag, Jerry 559 
Zhou, Mark Zeller, Emory Hufbauer, Nate Matteson, Kristian G. Andersen, Chunlei Wu, Andrew I. Su, 560 
Karthik Gangavarapu, Laura D. Hughes, and the Center for Viral Systems Biology. outbreak.info. 561 
outbreak.info. 562 

20. Quick, J. et al. Multiplex PCR method for MinION and Illumina sequencing of Zika and other virus 563 
genomes directly from clinical samples. Nat. Protoc. 12, 1261–1276 (2017). 564 

21. Tyson, J. R. et al. Improvements to the ARTIC multiplex PCR method for SARS-CoV-2 genome 565 
sequencing using nanopore. bioRxiv (2020) doi:10.1101/2020.09.04.283077. 566 

22. Li, H. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences. 567 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 2, 2021. ; https://doi.org/10.1101/2021.08.31.21262938doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.31.21262938
http://creativecommons.org/licenses/by/4.0/


Bioinformatics 32, 2103–2110 (2016). 568 
23. Huang, W., Li, L., Myers, J. R. & Marth, G. T. ART: a next-generation sequencing read simulator. 569 

Bioinformatics 28, 593–594 (2012). 570 
24. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. 571 

Bioinformatics 30, 2114–2120 (2014). 572 
25. Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv [q-573 

bio.GN] (2013). 574 
26. Vogels, C. B. F. et al. Multiplex qPCR discriminates variants of concern to enhance global 575 

surveillance of SARS-CoV-2. PLoS Biol. 19, e3001236 (2021). 576 
27. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 577 

(2009). 578 
28. O’Toole, A. et al. Pangolin: lineage assignment in an emerging pandemic as an epidemiological tool. 579 

(2020). 580 

 581 
 582 

  583 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 2, 2021. ; https://doi.org/10.1101/2021.08.31.21262938doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.31.21262938
http://creativecommons.org/licenses/by/4.0/


Supplementary figures 584 

 585 

 586 
Figure S1: Within-lineage diversity observed in SARS-CoV-2 genomes on GISAID (downloaded 9 March 2021). The 587 
horizontal axis shows the position (in base pairs) on the reference genome (accession MN908947.3). The y-axis 588 
shows the alternative allele frequency (AAF), i.e. the fraction of genomes with a different nucleotide at a given 589 
position than the reference genome. This plot was computed by randomly selecting 1000 genomes of US origin per 590 
lineage. 591 
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 594 

Figure S2. Histogram of raw abundances predicted by kallisto on a simulated dataset consisting of 100% B.1.1.7. The 595 
majority of false positives (background noise) can be filtered out by applying a minimal abundance threshold of 0.1%. 596 
True predictions occur at higher abundances (beyond the x-axis limit of 1.0%).  597 

 598 
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 602 
 603 
Figure S3: Additional benchmarking results 604 
  605 
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 608 

 609 
Figure S4: salmon versus kallisto abundance estimates per variant. 610 
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 612 

 613 

Figure S5: Sequencing depth from wastewater samples is highly uneven between amplicons. This figure shows 614 
sequencing depth along the genome for three samples collected in New Haven, CT. The first sample (FH1) has low 615 
genome coverage (20%), with very few amplicons reaching high sequencing depth. The second sample (EX1) has 616 
moderate genome coverage (63%), with roughly half of the amplicons reaching high sequencing depth. The third 617 
sample (ER2) has high genome coverage (99%), with nearly all amplicons reaching high sequencing depth.  618 

 619 
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 621 
 622 
Figure S6: Raw predictions per variant with confidence intervals based on bootstrap analysis for New Haven 623 
samples. Note that in all subplots the y-axis is capped at 1% for improved readability. 624 
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 627 
Figure S7: Percent genome coverage versus Ct values for samples across the US 628 
 629 
 630 
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 632 
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 641 
Figure S8: Raw predictions per variant with confidence intervals based on bootstrap analysis for samples across the 642 
US. Note that in all subplots the y-axis is capped at 1% for improved readability. 643 
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