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 Abstract 34 

Coronavirus disease 2019 (COVID-19) is an emerging threat to the whole world, and every government is 35 

seeking an optimal solution. However, none of them have succeeded, and they have only provided series of 36 

natural experiments. Although simulation studies seem to be helpful, there is no model that addresses the 37 

how much testing to be conducted to minimise the emerging infectious disease outbreaks. In this study, we 38 

develop a testing susceptible, infectious, exposed, recovered, and dead (testing-SEIRD) model using two 39 

discrete populations inside and outside hospitals. The populations that tested positive were isolated. Through 40 

the simulations, we examined the infectious spread represented by the number of cumulative deaths, 41 

hospitalisations, and positive tests, depending on examination strategies, testing characteristics, and 42 

hospitalisation capacity. We found all-or-none responses of either expansion or extinction of the infectious 43 

spreads, depending on the rates of follow-up and mass testing, which represent testing the people identified 44 

as close contacts with infected patients using follow-up surveys and people with symptoms, respectively. We 45 

also demonstrated that there were optimal and worst examination strategies, which were determined by the 46 

total resources and testing costs. The testing-SEIRD model is useful in making decisions on examination 47 

strategies for the emerging infectious disease outbreaks. 48 

49 
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1. Introduction 50 

Coronavirus disease 2019 (COVID-19) emerged in Wuhan, China. It has already spread worldwide [1,2]. So 51 

far, 5.5 million people have been infected, and 350,000 people have died [3]. Owing to its high transmission 52 

ability via aerosol, COVID-19 is an emerging concern in global health care. This is similar to influenza, 53 

which annually leads to 300,000 to 600,000 deaths worldwide [4]. In addition, the fatality rate of COVID-19 54 

is 3% – 4%, which is relatively higher than 1% for influenza [5], owing to lack of a specific radical treatment 55 

or vaccine. Even worse, the infectious period of COVID-19 is 20 days longer than the three days for 56 

influenza [6], and COVID-19 causes multiple secondary infections. Therefore, testing for COVID-19 is 57 

important for the early detection of asymptomatic infected people and prevention of secondary infections. 58 

However, the effect of testing policy on the spread or reduction of COVID-19 infection dynamics remains 59 

elusive. 60 

Currently, there is a social problem because medical resources in hospitals are largely consumed by 61 

treatments for COVID-19 patients. Symptomatic treatments for patients with pneumonia require both beds 62 

and healthcare providers; however, there are limited equipment such as intensive care units, ventilators, 63 

haemodialysis, and extracorporeal membrane oxygenators. If symptoms develop, intensive care units are 64 

necessary. Consequently, hospital stay for COVID-19 has become exceedingly long, indicating a median of 65 

29 days [7–11]. The imbalance between the supply and demand of medical resources causes the increase in 66 

the number of deaths after infection [11,12]. Therefore, each country must control the balance between the 67 

medical supply and demand from people who visit hospitals and need testing for COVID-19. 68 

There is a controversy between two extreme policies to balance the medical supply and demand: 69 

“mass testing policy” and “no testing policy” [13]. The mass testing policy claims that all people must be 70 

tested for public health, regardless of the symptoms. As the director of WHO, Tedros said, “test, test, test” in 71 

an opening remark on 16 March 2020 [14]. The WHO and some researchers follow the mass testing policy 72 

[15,16]. This policy is based on the assumption that the testing accuracy is sufficiently high, and when more 73 

testing is conducted, the total number of deaths is reduced. Contrary to the mass testing policy, no testing 74 

policy claims that testing must be limited to people with symptoms. This indicates that it does not 75 

recommend testing for people with asymptomatic or mild symptoms or having no contact with infectious 76 

people. This policy underlies the idea that individuals are unable to expect a benefit from mass testing in the 77 

absence of the specific treatment. This was expressed by the committee for the emerging and re-emerging 78 

infectious disease in the Japanese society of paediatrics on 13th March 2020 [17]. Although there is 79 

discordance in these two policies with different beliefs, these two policies agree with testing on people with 80 

symptoms. They also disagree on the extent of the population tested. 81 

Essentially, society demands the minimisation of the number of deaths [18]. Thus, we need to 82 

explore the most practical policy by integrating these extreme policies. Consequently, we must notice the 83 

advantages and disadvantages of testing. The proof of testing is simply that it can detect infected 84 

asymptomatic people. Thus, testing is helpful to save lives before developing severe symptoms and can 85 

prevent further spread of the infection. The reason for testing is that testing itself is not perfect, and it is 86 
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inevitable from false positives and negatives. If uninfected people are evaluated as positive by testing (i.e., 87 

false positives are hospitalised), the people are subject to the risk of high infection from infected patients in 88 

the hospital. 89 

The examination has two strategies: follow-up testing-dominant strategies which follow the exposed 90 

population and mass testing-dominant strategy which considers the infected population by random testing. 91 

However, the extent to which the follow-up and mass testing should be conducted to minimise deaths, 92 

hospitalisations, and positive tests is yet to be considered. Therefore, we need to predict the infection 93 

dynamics affected by the examination strategies, or the rate of follow-up and mass testing. We also noticed 94 

that the effect of testing on the overall infection population dynamics has not been adequately considered. 95 

Therefore, we need to predict the infection dynamics affected by the amount of testing by considering the 96 

testing characteristics (i.e., sensitivity and specificity) to quantify their positive and negative impacts. 97 

In this study, we develop a testing-SEIRD model by introducing a hospitalised subpopulation, 98 

examination strategy, and testing characteristics. Through simulations, we examined the impact of the 99 

examination strategies and testing characteristics on the balance between medical supply and demand. We 100 

found that there are optimal and worst strategies and highlighted which examination strategy is preferred, 101 

based on the testing characteristics. 102 

103 
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2. Model 104 

To examine the effect of testing on the infection population dynamics, we developed a new model by 105 

introducing a hospitalised subpopulation, examination strategy, and testing characteristics into the classical 106 

SEIRD model. In general, the SEIRD model is described by the subpopulation dynamics of susceptible, 107 

exposed, infectious, recovered, and dead people (Fig. 1A) as: 108 
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where S, E, I, R, and D indicate the populations of susceptible, exposed, infectious, recovered, and dead 109 

people, respectively.  N indicates the total population, that is, N=S+E+I+R.  b indicates the exposure rate, 110 

which reflects the level of social activity; g, r, and d indicate the transition rates among the subpopulations. 111 

For this model, it is assumed that the recovered populations acquire permanent immunity, indicating that 112 

they will never be infected. 113 

Regarding the testing-SEIRD model, we incorporated the testing characteristics and examination 114 

strategy into the classical SEIRD model by dividing the population into outside and inside of the hospitals 115 

(Fig. 1B). The dynamics of the population outside the hospitals are described by:  116 

���

��
� �

�����

��
� ��� � ��� , #�2. 6�  

���

��
� �

�����

��
� �� � ���� � ��1 � �������� � ���, #�2.7�  

���

��
� ��� � ��� � ����� �!�"����� � ���, #�2.8�  

���

��
� ���� , #�2.9�  

���

��
� ���� , #�2.10�,  

and those inside hospitals were described by: 117 
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 Xo and Xh indicate each population outside and inside the hospitals (X∈{S, E, I, R, D, N}). No and Nh 118 

indicate the total populations outside and inside hospitals, respectively (i.e., No=So+Eo+Io+Ro+Rh and 119 

Nh=Sh+Eh+Ih); a indicates the rate of discharge of Sh from hospital to the outside; u and g indicate the non-120 

infection and infection rates, respectively; and C indicates the capacity of hospitals. We assumed that these 121 

parameters are determined by the nature of the disease; thus, they are independent of inside and outside 122 

hospitals. rj and dj (j∈{o, h}) indicate the recovery and death rates from infected, respectively, where ro < rh, 123 

and dh < do. f and m indicate the rates of follow-up and mass testing, corresponding to the extent to which 124 

health centres follow exposed populations and take-up infected populations having symptoms, respectively. 125 

Sp and Se indicate specificity and sensitivity, respectively, as testing characteristics.  Mass testing in this 126 

model is a mass test for individuals who claim symptoms. This model is a generalised version of the classic 127 

SEIRD model. If u=0, our model is equivalent to the classical SEIRD model. The hospitalisation capacity 128 

was introduced by the sigmoid function H(x) = 1/(1+exp(x)). The parameter values and initial conditions are 129 

listed in Table 1 and discussed in the Materials and Methods section. 130 

  131 
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3. Results 132 

We first examine the basic behaviour of the testing-SEIRD model by simulation as shown in Fig. 2. Similar 133 

to the classical SEIRD model, infection largely expanded, and the infectious population (Ih and Io) transiently 134 

increased in response to the occurrence of infectious people. Susceptible populations (Sh and So) gradually 135 

decreased and shifted into recovered populations (Rh and Ro) through the exposed (Eh and Eo) and infectious 136 

(Ih and Io) states. During this process, the number of dead cells increases gradually as shown in Fig. 2A. The 137 

hospitalised population increase, plateau at the capacity of hospitalisations within the period of infection 138 

overshoot, and decrease by the hospital discharge (Fig. 2B). The outside population decrease by 139 

hospitalisations through testing and switch to a constant decrease, whereas the hospitalised population 140 

reaches its capacity and increases by the hospital discharge (Fig. 2B). Moreover, the outside and hospitalised 141 

populations are divided into five types of populations (susceptible, exposed, infectious, recovered, and dead) 142 

(Fig. 2C and D). Daily reports of positive tests and deaths transiently increase with different peak timings, 143 

and the peak of positive tests precedes that of deaths (Fig. 2E). Reproduction numbers (see Materials and 144 

Methods) outside hospitals RNo switch from greater than one to less than one around the peak timing of 145 

infectious populations outside (Fig. 2F).  On the contrary, reproduction numbers inside hospitals RNh are less 146 

than one. This indicates that the infectious population in hospitals increases owing to supply from the 147 

outside; however, it is not because of the infectious spread in hospitals. The testing-SEIRD model 148 

recapitulates basic infection dynamics of the total population as observed in the classical SEIRD model (Fig. 149 

2A), and enables us to examine the effect of the examination strategy and testing characteristics with 150 

different populations inside and outside hospitals.  151 

To investigate the impact of hospitalisation capacity on infection dynamics, such as daily reports of 152 

positive tests, hospitalisations, and deaths, we simulate the testing-SEIRD model with various capacities (Fig. 153 

3A to C). We observe that as the capacity increases, the maximum positive tests, maximum hospitalisations, 154 

and cumulative deaths linearly decrease, increase, and decrease, respectively, and they all plateau at 155 

approximately 30% capacity (Fig. 3D to F). We have also examined their peak timings and have observe that 156 

they change nonlinearly, with certain time window ranges (Fig. 3G–I). These results suggest that the change 157 

in capacity has a large effect on the level of spread of the disease; nonetheless, it has a small effect on timing. 158 

To illustrate the impact of the examination strategy on infectious outcomes, we examined the 159 

cumulative deaths, maximum number of positive tests and hospitalisations, varying follow-up and mass 160 

testing rates. The infectious spread shows an all-or-none response depending on the testing strategy (red and 161 

blue regions in Fig. 4). Sensitivity analyses confirmed that such a profile was robustly maintained 162 

independent of the model parameters (Fig. S1 and S2). 163 

The number of cumulative deaths is almost constant with a small amount of both the follow-up and 164 

mass testing (red region in upper panel of Fig. 4A); nonetheless, the combination of follow-up and mass 165 

testing cooperatively suppresses the infectious spread (blue region in the upper panel of Fig. 4A). We also 166 

realize that the maximum number of hospitalisations is immediately saturated by either the follow-up or 167 

mass testing because of the limited hospitalisation capacity (upper panel in Fig. 4B). The maximum number 168 
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of positive tests increases more efficiently with the follow-up testing rate compared to the mass testing rate 169 

(upper panel in Fig. 4C). 170 

Subsequently, realistic scenarios were considered by adapting the limited resource L. Practically, we 171 

cannot freely control the follow-up and mass testing rates because of the limited clinical resources for both 172 

the follow-up and mass testing. Thus, it is necessary to determine the amount of resources allocated to the 173 

follow-up and mass testing. Here, we consider all the possible decisions subject to the limited resource L as: 174 

& � '�� � '�!, #�3.1�,  

where cf and cm indicate the costs for follow-up and mass testing, respectively; f and m are reflected by the 175 

decisions on how much follow-up and mass testing are conducted. Considering different L, cf, and cm, based 176 

on the disease, economic and technological situations of each country, we depicted three lines. We observe 177 

that the worst decisions (i.e., the choice of f and m) drastically varied depending on the situation (lower 178 

panels of Fig. 4).  179 

Regarding the high resource and low ratio of the cost of follow-up testing to that of the mass testing 180 

cost, the number of cumulative deaths abruptly increases more than 90% compared to the resource fraction 181 

assigned to mass testing (green line in Fig. 4A). This indicates that the mass testing dominant testing is the 182 

worst strategy for minimising the cumulative deaths. On the contrary, considering low resource and high 183 

ratio of follow-up cost to mass testing cost, the number of cumulative deaths abruptly decreases at the 184 

resource fraction of 20% to 30 % (blue line in Fig. 4A) assigned to mass testing. Contrary to the previous 185 

case, this result suggests that follow-up-dominant testing is the worst strategy. Regarding the intermediate 186 

situation between the two cases above, the simulation showed a U-shape with the resource fraction assigned 187 

to mass testing ranging from approximately 10 to 80 % (orange line in Fig. 4A). This indicates that both 188 

follow-up and mass-dominant testing are strategies to avoid, whereas the optimal strategy is a combination 189 

of the follow-up and mass testing. The choice of f and m also changed in the profiles of maximum 190 

hospitalisations and positive reports (Fig. 4B and C). Taken together, the optimal strategy for each 191 

country/region should be sought with the resources considered. 192 

Moreover, we examined how the three variables (i.e., the number of cumulative deaths, 193 

hospitalisations, and positive tests) are affected by the testing characteristics (i.e., sensitivity and specificity). 194 

We conducted sensitivity analyses for Se and Sp with values from zero to four with 0.01 increments. We 195 

obtained almost the same heatmaps in the sensitivity-specificity space although the heatmaps were inverted 196 

along the x-axis (Fig. 5). The equations (2.7, 2.8, 2.12, and 2.13) reveal that sensitivity and one-specificity 197 

essentially play the same roles in the follow-up and mass testing. The sensitivity and specificity of the test 198 

are not modifiable, whereas the testing strategy can be arbitrary. If the sensitivity is low, an increase in the 199 

mass testing rate can lead to the same infectious result with high sensitivity. On the contrary, if the specificity 200 

is low, a decrease in the follow-up testing rate can lead to the same infectious result with high specificity. 201 

Therefore, we must manage the optimal testing strategy based on the unmodifiable testing sensitivity and 202 

specificity. 203 

 We have investigated how the infection is expanded based on the testing strategy. However, this is 204 

the point of view of a perfect observer who knows the exact time course of the latent populations. Practically, 205 
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we are unable to know all the model variables, such as exposed and infectious populations inside and outside 206 

hospitals; nonetheless, we can merely monitor positive reports by follow-up and mass testing. In this study, 207 

we verify whether these two kinds of positive reports reflect the latent infectious population, which is the 208 

most resource-consuming and challenging social issue. Using regression analysis (see Materials and 209 

Methods), we demonstrate that latent infectious populations can be predicted from daily positive reports of 210 

follow-up and mass testing (Fig. 6A to C). These results suggest that the infectious population is not simply 211 

proportional to the sum of positive reports of follow-up and mass testing; nevertheless, they are proportional 212 

to their weighted sum (Fig. 6D). There are cases in which either weights can be negative, depending on the 213 

model parameters. We found that the weight for positive reports of follow-up testing was negative with high 214 

positive predictive values. This is because the negative weight of Pf acts in a repressive manner to estimate 215 

the latent number of infectious people, reflecting a low positive predictive value (Fig. 6D). 216 

217 
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4.Discussion 218 

We develop a testing-SEIRD model to consider two discrete populations inside and outside hospitals, impact 219 

of examination strategy (follow-up testing [f], and mass testing [m]), and testing characteristics (sensitivity 220 

[Se] and specificity [Sp]) on three variables (i.e., the number of maximum positive tests, maximum 221 

hospitalisations, and cumulative deaths (Fig. 1)). We also demonstrate that the optimal and worst 222 

examination strategies are subject to limited testing resources (Fig. 4). In addition, we highlight the 223 

possibility that the infectious population can be predicted by a weighted sum of positive reports from follow-224 

up and mass testing (Fig. 6). 225 

 226 

(a) Comparison with previous models. 227 

There are several models of infectious dynamics, such as SIR [19], SEIRD models, and their alternatives, 228 

which have been widely used for policy making through model simulation [1,4,20–26]. However, some of 229 

the previous models do not include the hospital compartment, [20,25,27–29] and other models, even with 230 

hospital compartments, do not consider the examination strategy and testing characteristics [22,30]. They 231 

cannot address how the examination strategy and testing characteristics affect infectious population 232 

dynamics, such as clinical and social overshoot. Consequently, we develop the testing-SEIRD model by 233 

introducing new factors: the hospital compartment, examination strategy, and testing characteristics to the 234 

previous SEIRD model (Fig. 2 and 3). The testing-SEIRD model generalises the classical SEIRD model, and 235 

it can be equivalent to the classical SEIRD model if the examination strategy is removed (f=0, m=0). 236 

 237 

(b) Model prediction 238 

This model has three advantages. First, the testing-SEIRD model provides the best examination strategy for 239 

situations. The model provided heatmaps of the number of the three variables in the space of the examination 240 

strategy (Fig. 4). This map indicates the best direction as shown in the blue region in Fig. 4. This corresponds 241 

to the settling of infections using the shortest path. Second, the testing-SEIRD model can predict the optimal 242 

and worst strategies, considering the limited resources and ratios for the testing costs (Fig. 4). Because the 243 

total resource and testing costs depend on countries, our model offers the best examination strategy unique to 244 

each country. Third, the testing-SEIRD model demonstrate that the latent number of infectious population 245 

can be predicted from daily positive reports of the follow-up and mass testing (Fig. 6).  246 

 247 

(c) Validity of model components 248 

Here, we discuss the validity of the model components, which previous models do not have. First, we focus 249 

on the transition from Eo to Eh (Fig. 1). We assume that the hospitalisation of the exposed population is 250 

induced by the follow-up testing. Populations that are just exposed before developing symptoms do not take 251 

the tests themselves. They test only when urged by the follow-up. Second, related to the transition from Io to 252 

Ih, we assume that the hospitalisation of the infectious population is induced by the mass testing, which is 253 

defined as a person with symptoms. Considering our model, we address the rate of mass testing as a 254 
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modifiable parameter because the rate depends on the volume of the tests, such as polymerase chain reaction 255 

(PCR) and the degree of social penalty if it is positive. Third, we consider the transition from Eo to So and Eh 256 

to Sh. Regarding our model, all the exposed populations are not necessarily infected and some return 257 

susceptible compared to the previous models which assume that all the exposed populations are destined to 258 

be infected [20,22,24,25,27–33]. Consistent with our model, it is well known that some exposed populations 259 

return to susceptible populations without developing symptoms. 260 

 261 

(d) Future studies 262 

Considering the future perspectives of our model, first, our testing-SEIRD model simulates only a single 263 

peak time course of infection. However, we observed multiple peaks of COVID-19 infection in many 264 

countries [34]. To incorporate the multiple peaked dynamics, we must introduce the socio-psychological 265 

effects caused by policies such as lockdown and social distancing. Second, our model assumes that all the 266 

populations are homogeneous and do not address stratification based on attributes such as gender, age, social 267 

activities, and comorbidities [35,36]. A future study should consider this perspective. Finally, our model does 268 

not include the effects of vaccination. We are currently fighting the spread of COVID-19 using messenger 269 

RNA (mRNA) vaccines. It seems we are getting successful results; however, we do not know the duration of 270 

the effect of the vaccinations and its robustness against mutants [34,37,38]. Therefore, the tag-of-war model 271 

between vaccines and virus evolution remains elusive. 272 

  273 
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5.Materials and Methods 274 

(a) Parameter set 275 

The parameters and initial conditions of the simulation are listed in Table 1A. The total population N was set 276 

to 1,000,000 according to the United Nations Statistical Papers: The World’s Cities in 2018, which 277 

mentioned that one in five people worldwide lives in a city with more than one million inhabitants and the 278 

median value of inhabitants is between 500,000 and one million [39]. Sensitivity Se and specificity Sp were 279 

both set to 0.7, which correspond to those of the PCR for detecting COVID-19 (Table 1B) [20,31,40–42]. 280 

The values of b, g, rh, ro, and dh are based on previous reports (Table 1C) [3,21–26,28–30,32]. The sum of u 281 

and g is the inverse of the incubation period during the exposed state, which is reported to be five days 282 

(Table 1C) [23–25,33,41,43,44]. The sum of r and d is the inverse of the infectious period during the 283 

infectious state, which is reported to be ten days (Table 1D) [23,24,27,41,43].  284 

 285 

(b) Definitions of reproduction numbers 286 

Considering Fig. 2, we computed the time courses of reproduction numbers inside and outside hospitals: RNh 287 

and RNo. 288 

��� �
1

�� � ��
·

���

�� � �� � ��
·

�

� � �
, #�5.1�  

��� �
1

�� � ��
·

���

�� ��� � �� � �� � ��
·

�

� � �
. #�5.2�  

Here, the first, second, and third factors in these equations indicate the average infectious period, infection 289 

rate, and probability that the exposed state transits to the infectious state, respectively. The reproduction 290 

number in the classical SEIRD model is defined in previous studies [1,4,20–26] as: 291 

�� �
1

� � �
·

��

� � � � � � �
. #�5.3�  

 292 
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 413 

Figure 1: Classical SEIRD and testing-SEIRD models 414 

(A) Classical SEIRD model: Susceptible population ‘S’ is exposed by infectious population ‘I’ at a rate 415 

proportional to the fraction of the infectious population. The exposed population ‘E’ become infectious ‘I’. The 416 

infected population finally recovers ‘R’ or become dead ‘D’. (B) Testing-SEIRD model: The population is 417 

divided into two subpopulations; inside and outside hospitals. The exposed ‘Eo’ and infectious population 418 

outside ‘Io’ are hospitalised if evaluated as positive by testing. Susceptible population ‘Sh’ is left from the 419 

hospitals. The black lines indicate the transitions of populations, regardless of capacity effect. The blue lines 420 

indicate the transitions of the populations, considering the capacity effect. Transitions from both ‘Eo’ to ‘Eh’ 421 

and ‘Io’ to ‘Ih’ are determined as hospitalised.  422 
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 424 

Figure 2: Changes in components over time in the testing-SEIRD model 425 

Time-courses of (A) populations of all infectious states, irrespective of being inside and outside hospitals; (B) 426 

Populations inside and outside hospitals and dead populations, irrespective of infectious states; (C) 427 

Populations of all infectious states inside hospitals; (D) Populations of all infectious states outside hospitals; 428 

(E) Daily reports of positive tests, hospitalisations, and deaths; (F) Time-courses of reproduction numbers 429 

inside and outside hospitals, as described in Materials and Methods section. 430 
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 432 
Figure 3: Impact of hospitalisations capacity on the three variables 433 

Time courses of (A) Daily reports of positive tests; (B) Daily reports of hospitalisations; (C) Daily reports of 434 

deaths with varying hospitalisation capacity. C/N indicates the capacity normalised to the total population. 435 

Hospitalisation capacity dependencies of (D) Maximum positive reports; (E) Maximum hospitalisations; (F) 436 

Cumulative deaths. Hospitalisation capacity-dependencies of (G) Peaks of daily reports of positive tests; (H) 437 

Peaks of hospitalisations; (I) Peaks of daily deaths. 438 
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 440 

Figure 4: Infectious spread based on the examination strategy 441 

The upper panels represent the number of (A) cumulative deaths, (B) maximum hospitalisations, and (C) 442 

maximum daily positive tests depending on the rates of follow-up and mass testing. The three lines in these 443 

heatmaps represent the possible testing strategies subject to different total resources for testing with 444 

different ratios for the testing costs. The lower panels represent the numbers along the three lines in the 445 

heatmap. 446 
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 448 

Figure 5: Infectious spread based on the testing properties 449 

Number of (A) Cumulative deaths, (B) Maximum hospitalisations, and (C) Maximum daily positive tests 450 

based on the sensitivity and specificity of the testing.  451 
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 452 

Figure 6: Prediction of infectious population from daily reports of positive tests 453 

(A-C) The Green and orange lines indicate the simulated and predicted infectious populations (Ih and Io) with 454 

different examination strategies. The infectious populations are estimated by the linear regression as wfPf + 455 

wmPm, where wf and wm indicate the weights and Pf and Pm indicate the daily positive reports of follow-up and 456 

mass testing, namely f (1-Sp) and mSe, respectively. The weights are estimated by the least square method. 457 

(D) The estimated weights for Pf and Pm are plotted, considering various combinations of ratios of the follow-458 

up cost to the mass testing cost (Pf /Pm).  459 
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 461 

Table 1: Variables and parameters in previous reports 462 

(A) Initial values for variables and parameters and (B) Reported sensitivity and specificity of PCR and CT for 463 

detecting COVID-19. Cells expressed as n/a indicate that we cannot find the (C) reported transition 464 

parameters with models. Values with † are calculated from the original values for comparison. All the values 465 

have dimensions of [one/day]. We cannot find values or models for the cells expressed as n/a. The values 466 

with † equal original values divided by the total population involved. (D) Reported incubation period and 467 

infectious period. All values have dimensions of [day]. 468 
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Supplementary Figures 470 

 471 

Figure S1: Sensitivity analyses of parameters b and m on the number of cumulative deaths 472 

Simulations were performed with different values of b and m.  473 
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 475 

Figure S2: Sensitivity analyses of parameter a on the number of cumulative deaths 476 

Simulations were performed with different values of a. 477 
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