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Abstract. 

In this experiment, an R-script was developed to select the best performing machine learning (ML) predictive 

classification algorithm for IBS-subtype, and compare the performance of two datasets from the same clinical cohort – 

1) The Complete Blood Count (CBC) results, and 2) A 250-gene Nanostring expression panel run on RNA from the “Buffy 

Coat” fraction.  This publicly available data was compiled from open-source repositories and previously published 

supplementary data.  Column labels were reformatted according to “tidy-data” standards.  NA values in the data were 

imputed based on the mean value of the data column.  Subject groups included Control (ie. healthy), IBS-D (diarrhea 

predominant), and IBS-C (constipation predominant) subtypes.  These groups had unequal numbers in the original study, 

and so random re-sampling was used to make the group numbers equal for downstream linear regression-based 

analyses.  The data was randomly split into training and validation subsets, and 5 classification algorithms were tested.  

Random Forest was clearly the best performing algorithm for both CBC and gene expression panel data, generally with 

>95% predictive accuracy, without additional tuning.  The 250-gene RNA expression panel performed somewhat better 

than the CBC profile under a Random Forest model, however the CBC profiles had only 13 predictor variables vs. the 250 

of the RNA expression panel.  Some artifacts may result from the duplication of IBS-D and IBS-C rows from to the group-

size balancing method, and so larger and more comprehensive datasets will be obtained for a follow-up analysis.  The R-

script and reformatted data are published as supplementary material here, and as a component of the 

‘AnalyzeBloodworkv1.2’ GitHub repository.        

 

Introduction. 

Differential diagnosis of GI diseases with similar symptom profiles has been an active area of clinical research.  IBS, 

gastroenteritis, IBD, and other conditions present with similar symptoms including diarrhea, constipation, and gastro-

abdominal pain, and biomarker profiling strategies incorporating symptom-based inventories have proven accurate in 

differential diagnosis of IBS vs other pathologies with similar symptom profiles. (Manning et al. 1978) 

Molecular and cellular biomarker strategies ideally provide fast, accurate, and cheap diagnosis.  An example of a cell-

count/cell-morphology based test panel is the standard (and venerable) Complete Blood Count with differential (CBC-D).  

This flow-cytometry test counts Neutrophils, Macrophages, Lymphocytes, Granulocytes, Red Blood Cells with additional 

parameters (ie. ESR, HCT, MCH), Platelets count and volume (MPV).  These datapoints are sufficient to narrow down a 

variety of differential diagnoses.  (Van Leeuwen et al. 2006) 

We previously showed that some of the CBC-D exhibited some statistical association with IBS-subtype in a clinical 

natural history cohort (Robinson et al. 2019).  However, this analysis remained flawed by uneven group sizes and 

significant missing data from the original study, which violates assumptions for linear regression and other statistical 

methodology.  We therefore sought to improve the analysis by implementing common statistical methods such as 

imputation of missing data points and random re-sampling to balance the group sizes. 

White Blood Cell (“Buffy Coat”) fractions were also collected, and RNA expression profiles were developed for the same 

clinical cohort using a 250-gene Nanostring gene expression panel (Robinson 2019).  Both the raw and normalized 

Nanostring expression data  and gene list and probe details of the 250-gene Nanostring probe panel “ImmunoGC”  are 

available in the NCBI Gene Expression Omnibus (GEO) database.  (Expression data: 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE124549; Probe panel: 
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https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL25996).  Briefly, the probe panel contains genes associated 

with cell-type specific immune cell genes, canonical adaptive/innate immune pathway genes, miRNA pathway genes, 

and others.  

In the following report, we take these datasets and compare their performance of several different machine learning 

classification algorithms, using the R-package “Caret” :   

1) Linear Discriminant Analysis (LDA),  

2) Classification and regression tree (CART),  

3) K-nearest neighbors (KNN), 

4) Support Vector Machine (SVM), 

5) Random Forest (RF). 

Based on the results of this model selection, we then took the best performing algorithm (Random Forest), and 

compared the accuracy of CBC-D-based models vs. gene-expression-based models using confusion matrix.   

Complete results are presented below. R-language code for replicating this analysis is provided as supplementary 

methods. “tidy”-formatted CBC-D and Nanostring data files are provided as supplementary data.  This code and data 

content are also found within the updated “AnalyzeBloodwork1.2” GitHub repository.   

 

Methods. 

A. R-code 

R-code was developed to perform these analyses in an automated manner.  In this version 1 of the pre-print, the 

supplementary .zip file contains the script “IBSclassification.R” and .csv-format data (“RobinsonEtAl_Sup1.csv” and 

“mRNAnorm.csv”, for CBC-D and gene expression data, respectively) within the proper file structure.  Once the file is 

unzipped, the script “IBSclassification.R” can be opened in R-Studio and run line-by-line without modification to obtain 

identical results.  The script was developed in RStudio v1.3.1073, using R version 4.0.2 (2020-06-22) on Windows 10 

(x86_64-w64-mingw32).  Running the code with other versions of R or R-Studio cannot be guaranteed to run error-free. 

 

The script will perform the following for the CBC-D and RNA expression data, respectively:  

1) Install and load required packages,  

2) Load and pre-process the data files,  

3) Impute missing data and balance group sizes through random re-sampling, 

4) Split data into “training” and “validation” subsets, 

5) Train the classification models using the 5 algorithms mentioned above,  

6) Display a dotplot showing the predictive performance of each algorithm, 

7) Estimate the “skill” of the Random Forest models with a confusion-matrix analysis, 

8) Generate error-rate by number of trees generated plots. 

 

The code and modified data for this project is provided as Supplementary Material 1.  The code and results are also 

incorporated into the GitHub repository AnalyzeBloodwork1.5 software (Robinson, 2021; 

https://github.com/PhyloGrok/AnalyzeBloodwork). 

 

B. Machine-Learning model selection workflow 

The machine-learning in R workflow presented by Brownlee (2016) was adapted for this project, with a more formalized 

presentation of the workflow found in Brownlee (2020).  R “caret” package provided the primary machine learning 

functions used for this code (Kuhn 2021). 

 

C. Random Forest model and visualizations 

Briefly, the random forest algorithm generates a large number of random decision-trees, and then refines and selects 

the most accurate combined set of decision trees as an “ensemble” for classification decisions (Yiu, 2019).   
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Additional help for coding the random forest diagnostic plots came from the following web resources: 

https://stackoverflow.com/questions/39636186/plot-decision-tree-in-r-caret 

https://stats.stackexchange.com/questions/51629/multiple-curves-when-plotting-a-random-forest  

 

Results. 

Algorithm selection (Figure 1). In the model selection, it was shown that Random Forest was the best performing 

machine learning classification algorithm, for both the CBC panel, and the RNA-expression panel.  Furthermore, the 

ranked accuracy for each algorithm was also duplicated between datasets.  For the RNA-expression panel, Support 

Vector Machines performed somewhat better with the RNA expression data than with the CBC results.  Linear 

Discriminant Analysis was the poorest performing algorithm, in the case of RNA-expression was not able to complete 

(based on the high number of duplicated expression values resulting from the balancing re-sampling). 

 

Figure 1. Algorithm selection results. rf = random forest, svm = support vector machines, knn = k nearest neighbors, cart 

= classification and regression training, lda = linear discriminant analysis. 

 

 
 

Performance of Random Forest (Table 1).  While both datasets performed reasonably well under random forest, the 

RNA expression panel showed nearly perfect accuracy.  

 

Table 1. Confusion matrix and statistics for RNA expression VS CBC-based random forest models 

 

Confusion Matrix and Statistics - RNA expression panel Confusion Matrix and Statistics - Complete Blood Count

RNA expression Reference CBC Reference

Prediction Control IBSC IBSD Prediction Control IBSC IBSD

Control 80 0 0 Control 18 0 0

IBSC 0 80 0 IBSC 1 20 0

IBSD 0 0 80 IBSD 1 0 20

Overall Statistics RNA expression CBC

Accuracy 1 0.9667

95% CI (0.9847, 1) (0.8847, 0.9959)

No Information Rate 0.3333 0.3333

P-Value [acc > NIR] 2.20E-16 2.20E-16

Kappa 1 0.95

Statistics by Class RNA expression CBC

Control IBSC IBSD Control IBSC IBSD

Sensitivity 1 1 1 0.9 1 1

Specificity 1 1 1 1 0.975 0.975

Pos Pred Value 1 1 1 1 0.9524 0.9524

Neg Pred Value 1 1 1 0.9524 1 1

Prevalence 0.3333 0.3333 0.3333 0.3333 0.3333 0.3333

Detection Rate 0.3333 0.3333 0.3333 0.3 0.3333 0.3333

Detection Prevalence 0.3333 0.3333 0.3333 0.3 0.35 0.35

Balanced Accuracy 1 1 1 0.95 0.9875 0.9875
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In the CBC-derived random forest model, the error-rate for classifying control cases remains elevated regardless of the 

tree number, while in the RNA-expression model, the error converges to minimum in all categories at about 150 trees.  

In both cases, strict classification of Control cases was somewhat more error-prone than for IBS-D and IBS-C 

classifications.  (Figure 2) 

 

Figure 2: Random Forest error-rate plots. 

 

 

Discussion. 

A likely source of error is the incompleteness of the datasets, and artefacts resulting from the re-sampling/balancing 

strategy.  These may produce a somewhat “easy” predictive model for the smaller original groups (IBS-D, and IBS-C), due 

to the duplication of rows in the dataset.  Another problem faced with the interpretation of random forest models, is 

that the tree-selection process can be somewhat opaque.  In future studies, research will further investigate trees 

contributing to the random forest model, and determine some of the specific, conserved decision-making nodes.  This 

may provide some insight into the functional/biological characteristics of the models themselves. 

 

This study shows that smaller collections of data such as those found in the CBC-D results, or small-to-medium sized RNA 

expression panels, can provide a highly accurate diagnostic model for traditionally symptom-based diagnoses of 

GI/abdominal pain.  Future studies will utilize a more streamlined data intake approach to lever cloud-based data intake.  

Data will preferably take advantages of large cohort studies such as Framingham Heart Study 

(https://framinghamheartstudy.org/), or Healthy Aging in Neighborhoods of Diversity across the Life Span 

(https://handls.nih.gov), and utilization of Electronic Health Records (EHRs) and interoperability frameworks.       
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