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Integrative genetic analysis of the amyotrophic lateral sclerosis spinal

cord implicates glial activation and suggests new risk genes
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Abstract

Amyotrophic lateral sclerosis (ALS) is a progressively fatal neurodegenerative disease affecting motor
neurons in the brain and spinal cord. We used 380 post-mortem tissue RNA-seq transcriptomes from
154 ALS cases and 49 control individuals from cervical, thoracic, and lumbar spinal cord segments to
investigate the gene expression response to ALS. We observed an increase in microglia and astrocyte
expression, accompanied by a decrease in oligodendrocytes. By creating a gene co-expression
network in the ALS samples, we identify several activated microglia modules that negatively correlate

with retrospective disease duration.

We map molecular quantitative trait loci and find several potential ALS risk loci that may act through
gene expression or splicing in the spinal cord and assign putative cell-types for FNBP1, ACSLS,
SH3RF1 and NFASC. Finally, we outline how repeat expansions that alter splicing of C9orf72 are

tagged by common variants, and use this to suggest ATXN3 as a putative risk gene.
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Introduction

Amyotrophic lateral sclerosis (ALS) is a progressively fatal neurodegenerative disease affecting upper
and lower motor neurons that control voluntary movement via the corticospinal tract. Most patients
have a disease onset in middle age but there is a wide clinical variability in onset of symptoms and the
pace of disease progression before death. Disease initiation is thought to occur at a particular point in
the spinal cord, brainstem or motor cortex, manifesting with initial clinical symptoms of weakness in a
particular limb, or in speech and swallowing. Neurodegeneration then spreads both vertically and
laterally within the spinal cord (Ravits and La Spada 2009). The degeneration and death of motor
neurons is accompanied by the hallmark TDP-43 protein pathology in 98% of patients (Neumann et al.
2006).

5-10% of ALS cases have a family history of disease (Byrne et al. 2011), with the remaining patients
deemed to be sporadic. The field has focused on rare mutations of large effect size, such as large
repeat expansions in the gene C9orf72, found in not only 40% of familial ALS but also in 10% of
sporadic ALS cases (Majounie et al. 2012). Other rare mutations, in genes such as SOD1, TARDBP,
FUS, NEK1, TBK1, and KIF5A make up only a small fraction of the total familial ALS population
(Renton, Chio, and Traynor 2014; Cirulli et al. 2016; Kenna et al. 2016; Nicolas et al. 2018) and the
majority of non-familial ALS cases have no known causative mutation. Large-scale genome-wide
association studies have repeatedly found common genetic variants associated with ALS risk (van Es
et al. 2009; Van Rheenen et al. 2016; Nicolas et al. 2018), making it a complex or polygenic disease.
Common polymorphic short-tandem repeats are a further contributor to genetic risk of ALS, the most
prominent being ATXN2, whereby intermediate lengths impart a small increase in ALS risk (Elden et
al. 2010). Since this finding, other members of the ATXN gene family have been associated with ALS
risk (Tazelaar et al. 2020; Lattante et al. 2018; Hirano et al. 2018). The interplay between rare and
common genetic variants in shaping ALS risk is still being explored. Crucially, there has been little
progress in assigning risk genes to particular cell-types. One method to achieve this is the mapping of
molecular quantitative trait loci (QTLs), the association between common genetic variants and a
molecular phenotype such as gene expression. By performing this in a relevant tissue, QTL variants
can be colocalized with GWAS risk variants to identify risk genes (Giambartolomei et al. 2014). In
Alzheimer’s disease, multiple studies have applied this framework to identify multiple disease risk
variants as acting through gene expression and/or splicing in genes specific to microglia and

monocytes (Lopes et al., 2021; Young et al. 2021; Novikova et al. 2021).
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Although spinal motor neurons are thought to be the primarily affected cell-type in ALS, much research
has focused on non-neuronal contributions to disease initiation and progression. Studies using mouse
models of SOD1 mutations have identified a non-neuronal contribution to disease initiation and length
of survival (Pramatarova et al. 2001; Jaarsma et al. 2008). These studies and many others identified
both astrocytes and microglia as being able to modify disease duration (Yamanaka et al. 2008; Lepore
et al. 2008; Boillée et al. 2006; Wang et al. 2009; Phatnani et al. 2013). As motor neurons degenerate
during disease they release factors which cause microglia to assume an activated pro-inflammatory
state (Town, Nikolic, and Tan 2005; Chiu et al. 2013), which can then induce an activated state in
astrocytes (Liddelow et al. 2017). Both activated microglia and astrocytes are toxic to motor neurons
(Zhao et al. 2004; Haidet-Phillips et al. 2011), and blocking this microglia-astrocyte crosstalk extends
survival in a SOD71 mouse model (Guttenplan et al. 2020). Several studies have profiled gene
expression in human post-mortem ALS tissues, in spinal cord (D’Erchia et al. 2017; Brohawn, O’Brien,
and Bennett 2016; Andrés-Benito et al. 2017), frontal cortex (Andrés-Benito et al. 2017), and motor
cortex (Dols-Icardo et al. 2020). These studies have identified a broad upregulation of inflammatory
and immune-related genes and a downregulation in oligodendrocyte and neuron genes. Further
investigation of glial activation and neuron-glia crosstalk in the context of ALS is therefore required.
However due to small sample sizes, these studies have been unable to identify more subtle changes
in gene expression, nor to compare these changes with clinically variable traits, or to leverage

molecular QTLSs.

In this study we combined 380 post-mortem tissue RNA-seq transcriptomes from 203 individuals from
three different spinal cord segments to investigate the gene expression response to ALS. We identified
widespread changes in cellular composition, with increases in astrocyte and microglia markers and
glial activation genes, and a decrease in oligodendrocyte expression. We generated gene
co-expression networks for the ALS spinal cord, identifying modules of genes that correlate with
clinical traits, observing a negative correlation between length of disease duration and modules

containing microglia genes.

We then performed QTL mapping and colocalization with ALS GWAS summary statistics. We
identified several genetic loci that may alter ALS risk by acting through gene expression and splicing in
the spinal cord. Finally, we integrated our differential expression, deconvolution, and co-expression

modules to suggest cell types that the colocalized genes may act through.
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Results

Cellular composition changes in the ALS spinal cord

We aligned and processed post-mortem RNA-seq data from three spinal cord regions (cervical,
thoracic, and lumbar) from 154 subjects with ALS and 49 non-neurological controls from the New York
Genome Center ALS Consortium, contributed by 8 different medical centres. All samples went through
extensive quality control (Supplementary Fig. 1-3). Full clinical and demographic details are in
Supplementary Table 1. Aimost no sample had quantifiable expression (TPM > 1) of known motor
neuron markers CHAT, ISL1, or MNX1 (Supplementary Fig. 4), in line with the low abundance of

motor neurons in the bulk spinal cord.

Performing differential expression between all ALS cases and controls in each spinal cord section,
controlling for sequencing batch, submitting site, and other technical factors, we found large numbers
of differentially expressed genes (DEGs), with the most identified in cervical spinal cord (Fig. 1a-c).
Correlation of both the test statistics and log, fold change effect sizes between each region found
strong concordance in direction (cervical vs lumbar R = 0.87; cervical vs thoracic R = 0.67; lumbar vs
thoracic R = 0.58; Supplementary Fig. 5). A small number of DEGs were strongly upregulated (log,
fold change > 2, equivalent to a 4-fold increase in mean expression) in all three regions, including
CHIT1, GPNMB, and LYZ. Interestingly, these three genes encode proteins secreted by activated
microglia. CHIT1, encoding the enzyme chitotriosidase, has been shown to be upregulated in the
cerebrospinal fluid (CSF) and plasma of ALS patients (Thompson et al. 2018). GPNMB, encoding
glycoprotein nonmetastatic melanoma B, is upregulated at the protein level in ALS patient CSF and
sera (Tanaka et al. 2012) and is expressed by activated microglia (Huttenrauch et al. 2018). A
common genetic variant within an intron of GPNMB has been associated with risk of Parkinson’s
disease (Murthy et al. 2017; Nalls et al. 2019). LYZ encodes human lysozyme, an antibacterial protein
secreted by myeloid cells, not previously linked to ALS. A marker of astrocyte activation, C3 (Liddelow
et al. 2017; Guttenplan et al. 2020), was also upregulated in all three tissues, albeit with a lower effect
size, whereas MOBP, an oligodendrocyte marker gene, was downregulated in all three spinal cord

sections (Fig. 1a).

We performed Gene Set Enrichment Analysis (GSEA) (Subramanian et al. 2005) using both curated
molecular pathways and sets of cell-type marker genes. Using MSigDB curated pathways (Liberzon et

al. 2015), we identified 10 pathways positively enriched in all three tissues (normalised enrichment
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score (NES) > 1; adjusted P < 0.05), which mostly reflected different immune and inflammatory
pathways, with the strongest enrichment observed in allograft rejection, an autoimmune response
(Fig. 1d). One pathway, cholesterol homeostasis, was negatively enriched in the cervical spinal cord
only (Supplementary Fig. 6). We next performed GSEA with lists of the 100 most specific human
cell-type marker genes for the four major brain cell-types (Kelley et al. 2018). We observed strong
positive enrichment of microglia and astrocyte markers, whilst oligodendrocyte markers were
negatively enriched (Fig. 1e). There was a modest enrichment in neuronal markers in genes

upregulated in the cervical spinal cord, though this was not observed in other tissues.

We then prepared a panel of immune activation genes using four studies of microglia and/or astrocyte
responses to pro-inflammatory stimuli in mice. These are disease-associated microglia (Keren-Shaul
et al. 2017), disease-associated astrocytes (Habib et al. 2020), activated astrocytes (Zamanian et al.
2012), and plaque-associated genes (Chen et al. 2020). These gene lists only partially overlap
(Supplementary Fig. 7), and represent signatures of microglia and astrocyte responses to a range of
stimuli, including amyloid plaques, neurodegeneration, hypoxia and lipopolysaccharide. All glial

activation sets were enriched in the upregulated genes in all three regions (Fig. 1f).

We estimated cell-type proportions in the bulk RNA-seq using both single-nucleus and single-cell
RNA-seq from human cortical samples (Mathys et al. 2019; Darmanis et al. 2015), using two different
algorithms (Wang et al. 2019; Hunt et al. 2019). The two reference datasets and algorithms produced
highly correlated estimates (Supplementary Fig. 8-11) and in comparing ALS to controls came to the
same broad conclusions as the gene-set enrichment analysis, with the addition of upregulated
endothelial cells and pericytes appearing in some but not all of the analyses (Supplementary Fig. 9).
We present the Mathys estimates for the cervical spinal cord (Fig. 1g). As a final analysis of cell-type
changes we ran expression-weighted cell-type enrichment (Skene and Grant 2016) using the
differentially expressed genes and the same single-nucleus RNA-seq data, which confirmed the
observations from deconvolution (Supplementary Fig. 12). These results suggest that although any
loss of motor neurons is too subtle to be detected in bulk spinal cord samples, there is a robust
inflammatory reaction driven by microglia and astrocytes, along with potential dysregulation of

oligodendrocytes.
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Fig. 1 | Differential gene expression in the ALS spinal cord is driven by cell-type composition. (a-c)
Volcano plots comparing ALS patients to controls in each spinal cord section. Genes coloured by whether not
differentially expressed (FDR < 0.05; grey), differentially expressed but with modest effects (|log, fold change| <
1; orange) and with stronger effects (|log, fold change| > 1; red). Numbers of genes in each category above the
plot. (d) GSEA results for the molecular signatures hallmark pathway gene sets. Normalised enrichment score
(NES) is a measure of enrichment of a gene set within a ranked list of genes compared to a permuted
background. All pathways are enriched in upregulated genes. Significance derived from empirical P-values from
a permutation test followed by Bonferroni correction. (e) GSEA results for the cell-type signature gene sets. (f)
GSEA results for the glial activation gene sets. (g) Estimated cell-type proportions in the cervical spinal cord,
between ALS patients and controls. Significance from a Wilcoxon non-parametric test after regressing technical
covariates, followed by Bonferroni correction. *** q < 1e-4; ** q < 1e-3; * q < 0.05; . g > 0.05. Oligos:
oligodendrocytes. Boxplots show the median, first, and third quartiles of the data.
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C9orf72-ALS samples are indistinguishable from sporadic ALS

Analysis of frontal cortex and cerebellum has reported distinct sets of differentially expressed genes
between C9orf72 repeat expansion carriers and sporadic ALS and/or FTD patients (Prudencio et al.
2015; Dickson et al. 2019). We repeated the differential expression analysis but split patients by
C9orfr2 repeat expansion status, as assessed by repeat-primed PCR or estimated through
ExpansionHunter (Dolzhenko et al., 2019). Comparing each disease set to controls, the directionality
of expression changes in each comparison were highly concordant within each spinal cord section
(Supplementary Fig. 13). Directly comparing C9orf72 carriers to sporadic ALS cases, no differentially
expressed genes were observed, with the exception of the C9orf72 gene itself, which was
downregulated in C9orf72-ALS (cervical spinal cord: log, fold change = -0.45; P = 1e-5). This has
been previously observed due to hypermethylation of the C9orf72 promoter in expansion carriers
(Jackson et al. 2020).

Co-expression network finds disease duration associations

We then created a weighted gene co-expression network using all 303 ALS samples, adjusting for
spinal cord region, contributing site and other technical factors. We identified 41 modules (Fig. 2a;
Supplementary Table 5), and labelled them in ascending order of size from M1 to M41. For each
module we created a module eigengene (ME), equivalent to the first principal component of the
expression of all genes within that module in each sample (Supplementary Table 6). Modules are
presented clustered by eigengene correlation (Fig. 2a). Co-expression modules are known to identify
cell-types (Oldham et al. 2008), and 6 modules were significantly enriched with cell-type marker genes
for the major cell types of the brain (Fig. 2b; Supplementary Table 7). Using the same panel of glial
activation gene sets as before, we found 9 modules enriched for different sets. We observed that the
modules enriched with microglia marker genes (M33 and M37) were also enriched for
disease-associated microglia and plaque-induced genes, whereas the two astrocyte marker-enriched
modules (M18 and M31) were enriched only with disease-associated astrocytes and not with the
reactive astrocyte lists. We next performed gene ontology (GO) enrichment on each module. Overall,
39 of 41 modules had at least 1 significant GO term (Supplementary Table 8). We manually
collapsed GO terms into broad sets (Fig. 2c). Some sets reflect probable cell-type specific functions,
such as myelination terms with oligodendrocytes, and immune response with microglia, whereas
modules enriched in terms relating to gene expression and translation were not enriched with cell-type

specific or glial activation markers.
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Fig. 2 | Gene co-expression modules in the ALS spinal cord. a-g. Weighted gene co-expression network
analysis of 303 ALS spinal cord samples identifies 41 gene modules. a. Modules are presented as hierarchical
clustering based on module eigengene (ME) correlation. b-f. Association results between each module and b)
cell-type marker genes from Kelley et al, ¢) glial activation genes, d) gene ontology (biological process)
enrichment, manually collapsed, e) differentially expressed genes (FDR < 0.05, no fold change cutoff) between
ALS and controls, across all spinal cord regions, f) Spearman correlation with disease traits. g. MEs for each
ALS patient. M33 and M31 correlate with duration of disease in months, and M41 with {STMN2 expression. *
refers to bonferroni adjusted P < 0.05, per panel. tSTMNZ2 - truncated STMN2. TPM - transcripts per million.
P-values for b,c,e from one-sided Fisher’s exact test, d from one-sided hypergeometric test, f from Spearman
correlation test.

We then used the modules to find associations with clinical variables (Supplementary Table 9).
Correlating each ME with different clinical traits, we observed 5 modules correlated with retrospective

disease duration, defined as the length of time between the age at recorded disease onset and age at
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death. 2 of the 3 positively correlated modules were enriched with astrocyte marker genes, and both
negatively correlated modules were enriched with microglia marker genes. Our previous study using
these same samples estimated the abundance of truncated STMN2 (tSTMN2), a novel cryptic exon
transcript created by loss of nuclear TDP-43 (Klim et al. 2019; Melamed et al. 2019). The abundance
of tSTMN2 correlates with levels of phosphorylated TDP-43, and may be a biomarker of TDP-43
pathology (Prudencio et al. 2020). 3 modules correlated with t{STMNZ2 abundance. One module, M41,
was positively correlated with tSTMNZ2 and enriched with neuronal marker genes, including full-length
STMN2. The two modules negatively correlated with t<STMN2, M2 and M11, have no enriched cell-type
or ontology but are both enriched for genes upregulated in ALS. No modules were significantly

associated with site of onset (limb vs bulbar), sex, or C9orf72 expansion status.

To further investigate the associations with disease duration, we performed a transcriptome-wide
correlation analysis with disease duration as a continuous variable. 650 and 72 genes were
significantly associated with disease duration at FDR < 0.05 in the cervical and lumbar spinal cord,
respectively (Supplementary Table 10). Only 2 significant genes were observed in the thoracic spinal
cord, so it was removed from downstream analysis. Test statistics for each gene were highly
concordant between the cervical and lumbar cords (Pearson R = 0.71, P < 1e-16; Supplementary Fig
14). Using GSEA as before, we found that negatively correlated genes were enriched with microglia
markers and microglia activation genes, whereas positively correlated genes were enriched with
astrocyte markers but not astrocyte activation gene sets (Fig. 3b-c). Using cell-type proportion
estimates from the cervical spinal cord, we observed the same negative correlation between duration
and microglial proportion (R = -0.31; adjusted P = 0.002), (Fig. 3d), but not with astrocyte proportion
(R = 0.15; adjusted P = 0.49). CHIT1 was found to be the strongest negatively correlated gene with
disease duration in both cervical and lumbar spinal cord. There is a non-linear relationship between
age of onset and age at death in ALS, with shorter durations seen in both younger and older onset
patients. We confirm that the association with CHIT1 expression is strongest with disease duration,

and not with age of onset or death (Fig. 3e-f).
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Fig. 3 | Gene expression correlations with duration of disease. a. Volcano plots for correlation in each
tissue. b. GSEA with cell-type marker genes. ¢. GSEA with glia activation gene lists. d. Cell-type proportions in
the cervical spinal cord estimated with deconvolution plotted against disease duration. e. CHIT1 is strongly
upregulated in ALS in all three tissues. f. CHIT1 expression negatively correlates with disease duration, but not
with age of onset, and only weakly with age at death. All correlations are Spearman rank correlations. All
P-values in (b-d) are Bonferroni corrected: *** q < 1e-4; ** g < 1e-3; * q < 0.05; . g > 0.05.
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Mapping spinal cord QTLs

We took common genetic variants (minor allele frequency > 1%) from the matched whole genome
sequencing for all donors of European ancestry in the cohort, including cases of non-ALS
neurodegeneration. We used this to map quantitative trait loci (QTLs) for gene expression and
splicing, the latter using the intron-junction clustering method Leafcutter (Li et al. 2018). We identified
9,492 genes with an expression QTL (eQTL) and 5,627 with a splicing QTL (sQTL) in at least one
region (Fig. 4a). As a comparison, we downloaded summary statistics for the only other available
human spinal cord dataset, from GTEx (v8). We discovered substantially more genes with sQTLs than
the 965 found by GTEx. Using Storey’s 11, we observed high sharing of QTLs between each region
and with GTEx (Fig. 4b-c), although sharing was higher in sQTLs than eQTLs, as previously observed
(Lopes et al.,, 2021; The GTEx Consortium 2020). We used our previously generated cell-type
proportion estimates to find cell-type interaction QTLs (Kim-Hellmuth et al. 2020) but no tissue had

sufficient power to detect any such associations.

Putative ALS risk variants colocalise with spinal cord QTLs

We then used our QTLs, in combination with GTEX, to prioritise common genetic risk loci using the
latest available ALS GWAS (Nicolas et al. 2018) (Fig. 4d). Taking a relaxed approach, we extended
our search from the 10 genome-wide significant loci (P < 5e-8) to 64 nominally significant subthreshold
loci (P < 1e-5) (Supplementary Table 12). Among genome-wide significant loci, we identified strong
colocalization with QTLs at a posterior probability of colocalization hypothesis 4 (PP4) > 0.8, only in
C90f72. In the UNC13A locus we observed a potentially spurious colocalization with MVB12A only in
GTEx. Among the subthreshold loci, we observed colocalization in 16 loci, with the strongest
colocalizing genes (PP4 > 0.8) across our tissues and GTEx seen for ATXN3, GGNBP2, ACSL5 and
FNBP1 (Supplementary Table 13).

We then ran transcriptome-wide association study (TWAS), an orthogonal method that uses common
variants, gene expression, and splicing ratios to predict cis-regulated expression and splicing. TWAS
then imputes those models to GWAS summary statistics to identify genes that are associated with
disease risk. We generated TWAS models for each spinal cord section and used summary statistics
from the latest available ALS GWAS (Nicolas et al. 2018). In both cervical and lumbar spinal cord,
splicing in C9orf72 and ATXN3 were significantly associated with ALS (FDR < 0.05) (Supplementary
Fig. 17; Supplementary Table 14). The lumbar spinal cord TWAS models also identified an
association with expression of MAPT-AS1, and splicing of LINC02210 and LINC02210-CRHR1. These

three genes are within the contentious MAPT H1/H2 haplotype region, which has a complex linkage
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disequilibrium structure, and so are potential false positives. As a comparison, we downloaded
pre-computed expression and splicing weights for the dorsolateral frontal cortex (n = 453; (Li et al.
2019)), which found associations with C9orf72 in both splicing and expression. In addition, the cortex
TWAS models identified SLC9A8, G2E3, SCFD1, and GPX3 (Supplementary Fig. 17).
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Fig. 4 | Quantitative trait loci (QTL) colocalize with putative ALS risk variants. a. QTL discovery in the three
spinal cord tissues and compared with GTEx (v8). Numbers refer to genes with an expression QTL (eGenes) or
a splicing QTL (sGenes) at qvalue < 0.05. b-c. Sharing of QTLs between tissues using Storey’s 1, metric.
Values are not symmetric. d. Colocalization of subthreshold ALS GWAS loci with spinal cord QTLs. Loci are
named for their nearest protein-coding gene. P-values refer to the association of the lead variant in the locus
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with ALS risk. Numbers refer to the probability of a single shared variant in both GWAS and QTL (PP4). All
genes and loci shown with PP4 > 0.5 in at least one QTL dataset. Circles refer to eQTLs, triangles to sQTLs.
PP4: posterior probability of colocalization hypothesis 4.

Annotating prioritised genes to cell-types

We took each colocalised protein-coding gene (PP4 > 0.7) in any of the three spinal cord datasets and
looked to annotate cell-type, and to understand how these genes might be involved in ALS. We first
took cell-type fidelity ratings from Kelley et al, expressed as a fidelity score from 0-100, with high
scores suggesting greater cell-type specificity. Although most genes showed no preference towards
any cell type, FNBP1 (fidelity = 92) showed high specificity to oligodendrocytes (Fig. 5a;
Supplementary Fig. 19). We then used the ALS co-expression network modules generated earlier to
infer roles for the genes specifically in ALS. Using guilt-by-association, if a gene belongs to a module
enriched in a particular cell-type or marker list, it may also be involved in that cell-type. Both FNBP1
and SH3RF1 were placed in module M40, highly enriched for oligodendrocytes (Fig. 5b). NFASC was
placed within M18, a module enriched in both astrocyte marker genes and in disease-associated
astrocytes, whereas ACSL5 was located in M20, a module enriched in disease-associated microglia
genes but not microglia markers. We then correlated each prioritised gene with estimated cell-type
proportions for six cortical cell types (Mathys et al. 2019). A positive correlation with a particular
cell-type proportion is suggestive evidence for specificity. FNBP1, SH3RF1, and NFASC all positively
correlated with oligodendrocyte proportions (Fig. 5¢). ACSL5 positively correlated with microglia,
endothelial and pericyte proportions, with the strongest correlation seen with endothelial cells.
Repeating the analysis in just the control samples replicated the correlations between FNBP1 and

oligodendrocytes and ACSL5 with endothelial cells (Supplementary Fig. 20).

Finally, looking at the differential gene expression between ALS and Controls, both FNBP1 and
SH3RF1 are downregulated in ALS cases, whereas NFASC expression is positively associated with
disease duration in the cervical spinal cord, the only colocalised gene to do so (Fig. 5d). GGNBP2
was upregulated in ALS patients but did not show a clear cell-type specificity. Despite C9orf72 being
highly expressed in mouse microglia (O’'Rourke et al. 2016), we observed no associations between

C9orf72 and any cell-type or module.
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Splicing QTLs implicate repeat expansions in ALS risk

The C9orf72 gene produces transcripts from two alternative promoters, exon 1a and exon 1b. The
ALS-associated G,C, hexanucleotide repeat expansion (HRE) is located between the two exons (Fig.
6a), with more than 30 copies of the HRE considered to be pathogenic (Renton et al. 2011). The
C9orf72 GWAS locus colocalizes with a splicing QTL in the C9orf72 transcript in the NYGC lumbar
spinal cord, as well as an eQTL in GTEx (Fig. 4a). The sQTL increases the usage of the intron J1
connecting exon 1a with exon 2, which spans the HRE (Fig. 6a). The lead GWAS SNP rs8349943 and
the lead sQTL SNP rs1537712 are in strong LD in Europeans (R? = 0.75) and we show that the GWAS
SNP is also associated with J1 intron usage (Fig. 6b). The lead GWAS SNP rs8349943 is known to
tag a founder haplotype which is more susceptible to the HRE (DeJesus-Hernandez et al. 2011).
Using ExpansionHunter to estimate the length of the HRE in our cohort, we replicate this finding, as

carriers of rs8349943 are also enriched for the HRE (Fig. 6¢). The usage of the J1 intron is correlated
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with repeat length (Fig. 6d). Therefore, the sQTL colocalization result is likely being driven by the

effect of the tagged repeat expansion on the splicing of intron J1.

We propose a similar mechanism for the colocalization of a subthreshold GWAS locus (P = 3.2e-7)
with the splicing of ATXN3, a promising potential ALS risk gene. The lead SNP rs10143310 fell just
short of genome-wide significance in the European ALS GWAS (Nicolas et al. 2018) but did cross the
threshold in a multi-ethnic meta-analysis (Nakamura et al. 2020). A CAG repeat in exon 10 of ATXN3
is highly polymorphic, and expansions greater than 45 copies cause spinocerebellar ataxia type 3
(SCA3), also known as Machado-Josephs disease (Paulson 2006). SCA3 patients have lower motor
neuron loss and have detectable TDP-43 protein inclusions (Seidel et al. 2010). Intermediate length
expansions, not sufficient to cause ataxia, have been shown to increase ALS risk in several other
ataxin family genes, most notably ATXN2 (Elden et al. 2010), but also ATXN1 (Tazelaar et al. 2020)
and ATXN8OS (Hirano et al. 2018). The idea of tagging repeat expansions in ATXN3 with common
genetic variants has been previously explored in the context of SCA3 (Prudencio et al. 2020). In both
lumbar and cervical spinal cord, as well as in GTEXx, the lead QTL SNP rs200388434 is associated
with splicing with a cluster of introns at the 3’ end of the ATXN3 gene, just downstream of the site of
the repeat expansion in exon 10 (Fig. 5e). The lead QTL SNP rs200388434 is in high linkage
disequilibrium (R? = 0.93) with the lead GWAS SNP rs10143310, and rs10143310 also associated with
intron splicing (Fig. 5f). Following the example of C9orf72, we hypothesised that the GWAS
association is tagging an intermediate length CAG repeat, and this may be the underlying causal
genetic factor. We were able to genotype the CAG repeat in 304 individuals in the cohort using
ExpansionHunter. We observed that the lead QTL SNP is associated with a narrow range of repeat
lengths >= 16 (Fig. 5g). CAG repeat length also correlated with splicing in the lumbar spinal cord (Fig.
5h).

The full NYGC ALS Consortium whole genome sequencing cohort has ExpansionHunter-derived
ATXN3 repeat lengths for 991 ALS cases and 202 controls. When comparing frequencies of each
ATXN3 repeat length we could not observe a significant difference (Supplementary Fig. 18), nor by
comparing the proportions of samples 21 or more repeats, an arbitrary threshold (31.6% of ALS,
26.2% of controls, P = 0.15).
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Fig. 6 | Splicing QTLs illuminate genetic associations with repeat expansions in C90rf72 and ATXN3. a.
The ALS-causing GGGGCC repeat expansion lies in between the two first exons, 1a and 1b. The intron
connecting the exon 1a with exon 2 (J1) has an sQTL in the lumbar spinal cord that colocalises with ALS risk
(PP4 = 0.78). b. The lead GWAS SNP rs8349943 is associated with J1 intron splicing in the lumbar spinal cord
(P = 1.3e-9), linear regression). ¢. The GGGGCC expansion is only observed in carriers of rs8349943. 30 copies
of the repeat is considered the threshold for disease initiation (Renton et al. 2011). d. The GGGGCC repeat
expansion is associated with J1 intron splicing. e. The ATXN3 gene produces multiple transcripts, including
several short transcripts at the 3’ end of the gene. Three introns have sQTLs that colocalise with a subthreshold
ALS risk GWAS locus with high PP4. The introns are all immediately downstream of a CAG repeat within exon
10. f. The lead GWAS SNP rs10143310 is associated with usage of the J1 intron. g. Carriers of rs10143310
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have a CAG repeat length > 16 copies. h. The length of the CAG repeat correlates with J1 splicing (p = 0.05,
Spearman correlation).

Discussion

In this study we assembled the largest ever cohort of post-mortem ALS spinal cords, far surpassing
previous studies. This has allowed us not only to identify greater numbers of differentially expressed
genes when compared to controls, but to identify genes associated with clinical characteristics within
the ALS patient cohort. By integrating common genetic variants we prioritise several new candidate
ALS genes that may have cell-type-specific functions. In this way, we can investigate both the cause

(genetic risk) and likely consequence (post-mortem gene expression changes) of disease.

Comparing ALS cases to controls we identified robust shifts in cell-type in the three spinal cord
regions, primarily composed of a downregulation of oligodendrocytes, and an upregulation in
astrocytes and microglia, as well as smaller upward shifts in endothelial cells and pericytes. These
observations are seen across the three spinal cord regions and are supported by multiple orthogonal
techniques (GSEA, deconvolution, EWCE). However, the interpretation of our results is limited by the
use of bulk tissue sections. The reduction in oligodendrocyte gene expression may reflect genuine cell
loss due to secondary demyelination accompanying axonal loss (Kang et al. 2013), but this may also
reflect a relative shift in proportion compared to increased astrocytes and microglia. For both microglia
and astrocytes, although we saw overall upregulation of multiple microglia and astrocyte activation
gene lists, it is currently intractable to separate changes in cell-type proportion from changes in cell
state in bulk tissue RNA-seq. Therefore the changes we observe could be explained by increased glial
proliferation, although the strong effect sizes seen in LYZ, GPNMB and CHIT1 suggest a genuine state
shift towards microglia activation. We also cannot rule out that the increased microglia and activated
microglia gene expression signatures we observe are not at least partly coming from peripheral
monocytes and/or T-cells, which are known to migrate into the spinal cord (Zondler et al. 2016). We
also observed small increases in endothelial cells and pericytes. Alterations to the choroid plexus,
including reductions in pericytes, have been observed in ALS (Saul et al. 2020). Increases in the
recently identified perivascular fibroblast cell-type have been observed in ALS spinal cord RNA-seq as

well as ALS mouse models (Manberg et al. 2021), although we did not explicitly look for this cell type.
New approaches will be needed to disentangle effects of tissue composition from cell-intrinsic changes

in state, such as single nucleus RNA-seq (Lake et al. 2016) or spatial transcriptomics (Maniatis et al.

2019). The relative paucity of motor neurons in the spinal cord is an obstacle to understanding
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cell-intrinsic effects in motor neurons, so viable strategies include enriching spinal cord samples for
motor neurons (Blum et al. 2021) or for inducing pluripotent stem cells from ALS patients into motor

neurons (Ho et al. 2021).

Contrary to a previous study which examined the frontal cortex and cerebellum (Prudencio et al. 2015)
we observed no differences between C9orf72-ALS and sporadic ALS spinal cords, with the exception
of the C9orf72 gene. This result is probably affected by the low proportion of motor neurons in the
samples, thus masking any motor neuron-specific effects of the expansion. However, as
haploinsufficiency caused by the CO9orf72 expansion has been shown to affect microglia and

macrophages (O’'Rourke et al. 2016) we might have expected to see more changes.

Using co-expression networks built in ALS samples only, we observed a series of associations with
disease duration and co-expression modules enriched in microglia and astrocyte genes, in opposing
directions. Increased numbers of activated microglia, as measured by CD68 staining in the spinal
cord, have been observed in faster progressing ALS patients (Brettschneider et al. 2012). However, it
is unclear whether microglia activation accelerates neuronal death, or whether microglia activation is
an attempted compensatory process, with disease duration driven by some other factor. The negative
correlation between CHIT1 expression and disease duration replicates previous findings at the protein
level. Chitotriosidase protein expression is increased in ALS patient CSF, and this higher expression is
associated with faster disease progression (Thompson et al. 2018; Varghese et al. 2020). Higher
levels of chitotriosidase enzyme activity in blood have been seen in faster progressing ALS patients
(Pagliardini et al. 2015). There are further questions about the role of astrocytes. Although M31, a
module highly enriched in astrocyte and disease-associated astrocyte genes, positively correlated with
disease duration, this was not borne out by deconvolution, suggesting a potential subtype effect. One

possible mechanism is that astrocytes may act to stabilise degenerating neurons, increasing survival.

By mapping QTLs we provide a genetic resource for the ALS and wider neuroscience community to
understand common genetic drivers of gene expression and splicing in the spinal cord. The unique
composition of the spinal cord means QTLs found here could provide insights that cortex-derived
datasets lack, especially for diseases driven by glia. One drawback of our study was that we used only
donors of European ancestry, and treated each spinal section as an independent dataset. Both of
these concessions limited our discovery power. New mixed modelling methods that take account for
shared donors and a mixture of ancestries should be able to improve on this (Zeng et al. 2021). We

also hope that future studies will be able to combine the NYGC spinal cord samples with GTEX.
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Colocalization has allowed us to prioritise new ALS risk genes, but we must stress that the bulk of our
findings rely on nominally significant genetic loci. We are also mindful of the potential for false positive
associations due to gene co-expression and LD contamination, which affect both colocalization and
TWAS (Wainberg et al. 2019). We note that with the recent publication of a new larger ALS GWAS
while this manuscript was in preparation (van Rheenen et al. 2021), several of the loci where we
prioritised genes by colocalization are now genome-wide significant (SCFD1, COG3, SLC9AS).
However, the loci we focus on in this study are still below genome-wide significance. We believe that
using additional datasets, such as our spinal cord QTLs and TWAS, can overcome the relatively small
sample sizes found in ALS GWAS by giving more confidence and credibility to subthreshold GWAS

loci.

Our cell-type prioritisation analyses suggest FNBP1, NFASC and SHR3RF1 act primarily within
oligodendrocytes. Formin binding protein 1 (FNBP1) is involved in formin-mediated actin
polymerization (Aspenstrom 2010), a function shared by Profilin 1 (PFN1), a known familial ALS gene
(Wu et al. 2012). FNBP1 reached genome-wide significance in a trans-ethnic meta-analysis of
European, Chinese and Japanese ALS GWAS (Nakamura et al. 2020). Neurofascin (NFASC) is a
immunoglobulin cell adhesion protein that expresses different isoforms in neurons and
oligodendrocytes to guide myelination (Nelson and Jenkins 2017). Rare biallelic mutations in NFASC
cause a neurodevelopment phenotype with both central and peripheral demyelination (Efthymiou et al.
2019). However, its placement within a co-expression module enriched in astrocyte and
disease-associated astrocyte genes would suggest it may have other roles. SH3 domain containing
ring finger 1 (SH3RF1) is a Jun N-terminal kinase (JNK) scaffold involved in neuronal apoptosis. It has
been shown to accumulate in models of CHMP2B-mediated frontotemporal dementia (West et al.
2018). A recent study on polygenic risk scores in ALS suggested a genetic contribution by

oligodendrocytes, which may be mediated by these three loci (Saez-Atienzar et al. 2020).

Acyl-CoA synthetase long chain family member 5 (ACSL5) was found within a module enriched in
activated microglia and its expression in the ALS spinal cord correlates with endothelial cells and
pericytes, as well as microglia. ACSL5 was previously implicated in astrocyte activation in a canine
demyelinating disease (Klemens et al. 2019). The ACSL5 locus was also identified in a trans-ethnic
GWAS of European and East Asian individuals (Nakamura et al. 2020). Expression QTLs for ACSL5

in blood have been associated with ALS risk by Mendelian randomisation (Saez-Atienzar et al. 2020).
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By combining our splicing QTLs in ATXN3 with estimates of the SCA3 expansion, we suggest
intermediate repeats in ATXN3 may increase ALS risk, as has been shown for other ATXN family
genes. We were unable to demonstrate this in the whole genome sequencing cohort, but we note that
the most recent ataxin repeat gene to be associated with ALS, ATXN1, required a large meta-analysis
of 7,066 ALS patients and 4,634 controls (Tazelaar et al. 2020). We are therefore underpowered to

identify what is likely a small risk modifying effect.

Taken together, our analyses of the ALS spinal cord point to non-neuronal cells as firmly in the heart of
the response to disease in the spinal cord, responding to and potentially driving progression of the
disease. Our genetic analyses highlight potential new genes that may act on ALS through specific glial
cell types. Future genome-wide survival studies may highlight more glial genes in also driving ALS

progression. We hope our data are a useful resource for the design of future experiments.

Methods

NYGC ALS Consortium cohort

The 1,917 RNA-seq samples from the January 2020 freeze of the New York Genome Center (NYGC)
ALS Consortium were downloaded, comprising samples from cortical regions, cerebellum and spinal
cord. This study used only spinal cord samples. Diagnosis was determined by each contributing site.
Donors include non-neurological disease controls (hereafter controls), those with classical ALS
(hereafter ALS), frontotemporal dementia (FTD), mixed pathologies (ALS-FTD, ALS-Alzheimer’s), and
a small number of other diseases including Primary Lateral Sclerosis, Kennedy’s Disease and
Parkinson’s Disease. C9orf72 and ATXN3 repeat expansion lengths were estimated by the
Consortium using ExpansionHunter (Dolzhenko et al., 2019) on samples that had PCR-free whole
genome sequencing available. Patients with greater than 30 repeats were defined as C9orf72-ALS.
For ALS patients, age of symptom onset and age at death was reported by each contributing site.
Disease duration was defined as the difference between age at death and symptom onset, in months.
The NYGC ALS Consortium samples presented in this work were acquired through various
institutional review board (IRB) protocols from member sites and the Target ALS postmortem tissue
core and transferred to the NYGC in accordance with all applicable foreign, domestic, federal, state,
and local laws and regulations for processing, sequencing, and analysis. The Biomedical Research
Alliance of New York (BRANY) IRB serves as the central ethics oversight body for NYGC ALS
Consortium. Ethical approval was given and is effective through 08/22/2022.
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RNA-seq processing and quality control

The Consortium’s RNA-seq sample processing has been, in part, previously described (Tam et al.
2019; Prudencio et al. 2020). In brief, RNA was extracted from flash-frozen postmortem tissue using
TRIzol (Thermo Fisher Scientific) chloroform, followed by column purification (RNeasy Minikit,
QIAGEN). RNA integrity number (RIN) (Schroeder et al. 2006) was assessed on a Bioanalyzer
(Agilent Technologies). RNA-Seq libraries were prepared from 500 ng total RNA using the KAPA
Stranded RNA-Seq Kit with RiboErase (KAPA Biosystems) for rRNA depletion and lllumina-compatible
indexes (NEXTflex RNA-Seq Barcodes, NOVA-512915, PerkinElmer, and IDT for lllumina TruSeq UD
Indexes, 20022370). Pooled libraries (average insert size: 375 bp) passing the quality criteria were
sequenced either on an lllumina HiSeq 2500 (125 bp paired end) or an lllumina NovaSeq (100 bp
paired-end). Samples were subjected to extensive sequencing and RNA-Seq quality control metrics at
the NYGC that are described below. Notably, a set of more than 250 markers was used to confirm
tissue, neuroanatomical regions, and sex in the RNA-Seq data. Only samples passing these metrics
are available for distribution. The samples had a median sequencing depth of 42 million read pairs,

with a range between 16 and 167 million read pairs.

Samples were uniformly processed using RAPID-nf, an efficient RNA-Seq processing pipeline
implemented in the NextFlow framework (Di Tommaso et al. 2017). Following adapter trimming with
Trimmomatic (version 0.36) (Bolduc, 2016), all samples were aligned to the hg38 build
(GRCh38.primary_assembly) of the human reference genome using STAR (2.7.2a) (Dobin et al.
2013), with indexes created from GENCODE, version 30 (Harrow et al. 2012). Gene expression was
quantified using RSEM (1.3.1) (B. Li and Dewey 2011). Quality control was performed using SAMtools
(H. Li et al. 2009) and Picard, and the results were collated using MultiQC (Ewels et al. 2016).

Aligned RNA-seq samples were subjected to quality control modeled on the criteria of the Genotype
Tissue Expression Consortium (Consortium and The GTEx Consortium 2020). Any sample failing 1 of
the following sequencing metric thresholds was removed: a unique alignment rate of less than 90%,
ribosomal bases of greater than 10%, a mismatch rate of greater than 1%, a duplication rate of greater
than 0.5%, intergenic bases of less than 10.5%, and ribosomal bases of greater than 0.1%. For tissue
identity, both principal components analysis and UMAP were performed on the TMM-normalised gene
expression matrix, followed by k-means clustering. This identified three clusters of samples, grouped
by cerebellum, cortex and spinal cord. Samples that clustered with a non-matching tissue type were
flagged and tissue identity was re-confirmed using the expression of the cerebellar marker CBNL1, the

cortical marker NRGN and the oligodendrocyte marker MOBP. 19 samples were removed for having
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ambiguous tissue identity. For duplicate samples, where samples of the same tissue from the same
donor were sequenced, the sample with the highest RIN was retained, this removed 15 duplicate
samples. Sex was confirmed using XIST and UTY expression. 11 samples with missing sex
information were confirmed as males. Due to the large impact of RNA integrity number (RIN) on
expression, only samples with RIN >= 5 were included in the differential expression analysis, totalling
380 spinal cord samples from 203 donors. For the QTL analyses (see below), no RIN threshold was

applied.

Covariate selection and modelling for differential expression

The following was run for each tissue separately: Clinical variables (disease status, age at death, sex,
contributing site) were combined with sequencing variables (RIN, sequencing preparation method,
sequencing platform), technical metrics of the RNA-seq libraries from Picard (% mRNA bases, 3’ bias,
etc), and genotype principal components (see below). Using voom-normalised gene expression
removing lowly expressed genes (genes must have >1 counts per million in at least 75% of samples),
principal components analysis was performed. The top 10 principal components were then associated
with each potential confounding variable using a linear model, estimating the variance explained (r?) of
the confounder on each principal component (Supplementary Fig. 3a). Using an orthogonal
approach, variancePartition (Hoffman and Schadt 2016) was run on a reduced set of confounding

variables, taking only the nominally independent sequencing metrics (Supplementary Fig. 3b).

For performing differential gene expression between ALS and control samples, multiple model designs
were fitted to account for differences in sequencing batch and contributing site, both of which are
correlated with disease status. To account for potentially non-linear dependence of RIN and age at
death, squared terms were included. To account for potential confounding differences due to genetic
background, the first 5 genotype principal components (gPCs) from EIGENSOFT (Price et al. 2006)
were included. For Cervical and Lumbar spinal cord, the following model was fitted: expression ~
disease + sex + library preparation method + contributing site + age + age? + RIN + RIN?+ % mRNA
bases + % chimeric reads + % ribosomal bases + % intergenic bases + median 3’ bias + median 5’
bias + % read 1 stranding + % adapter + gPC1 + gPC2 + gPC3 + gPC4 + gPC5. For the smaller set of
Thoracic spinal cord samples, a reduced model was fitted as it maximised the gene-gene correlation
of differential expression effect sizes with the other two regions: expression ~ disease + sex + RIN +
RIN? + age + age? + library preparation method + gPC1 + gPC2 + gPC3 + gPC4 + gPC5. Differential
gene expression was fitted using limma voom (Law et al. 2014) on TMM- and quantile-normalized

(Risso et al. 2011) read counts. P-values were adjusted for multiple testing using FDR correction, with
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genes were considered differentially expressed at FDR < 0.05. A gene was considered to have a large
effect size at |log, fold change| > 1.

For transcriptome-wide correlations with age of onset and disease duration, the same models as
before were used in the ALS samples only, with either age of onset (years) or disease duration (years)
used as continuous variables. Results for each tissue were correlated by matching the log, fold

change for each gene and performing Pearson correlation (Supplementary Fig. 5).

Gene set enrichment analysis

Sets of genes were collected from multiple sources and compared to the full differential expression
results for each tissue using Gene Set Enrichment Analysis (GSEA) (Subramanian et al. 2005), as
implemented in the Clusterprofiler R package (Yu et al. 2012). As input we included all tested genes
from the differential expression or disease duration analysis for each tissue at nominal (unadjusted)
P-value < 0.05, ranked by log, fold change. For each gene set, a running cumulative tally is made of
whether genes in a set are present or absent during a walk down the list. The maximal score during
the walk is the enrichment score (ES), which reflects the degree of which a gene set is enriched at
either the top or bottom of a list. Labels are then randomly permuted to generate an empirical null ES
distribution and a P-value is calculated. To aid comparison between sets, each ES is then divided by
the mean null ES to create a normalised enrichment score (NES). Hallmark pathway gene sets
(h.all.v7.2.symbols.gmt) were downloaded from the molecular signatures database (Liberzon et al.
2015). The top 100 high fidelity human marker genes (Kelley et al. 2018), for astrocytes, microglia,
neurons, and oligodendrocytes were downloaded from the accompanying resource website (see
URLs). Disease-associated Microglia (DAM) signature genes (Keren-Shaul et al. 2017),
Disease-associated astrocytes (Habib et al. 2020), Plaque-associated genes (Chen et al. 2020), and
LPS and MCAO-activated astrocyte genes (Zamanian et al. 2012) were downloaded from their
respective supplementary materials. Mouse genes were lifted over to their human homologues using
Homologene (Mancarci and French 2019). Any duplicate gene name, or gene name without a
matching Ensembl ID in GENCODE v30 was removed.

Cell-type deconvolution

Filtered counts and cell-type labels for single nucleus RNA-seq from 80,660 cells from 48 human
dorsolateral prefrontal cortex samples (Mathys et al. 2019) were downloaded from Synapse
(syn18681734). Only cells from the 14 donors without dementia were kept. Single cell RNA-seq data

of 466 cells from 12 donors (Darmanis et al. 2015) was downloaded from Gene Expression Omnibus
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(GSEG7835) using the count matrices and cell-type labels provided. Bulk spinal cord RNA-seq data
was voom-normalized before deconvolution was estimated using MuSiC (Wang et al. 2019), a
state-of-the-art method which incorporates the variance between multiple donors from single
cell/nucleus RNA-seq. Cell-type proportion estimates using the two different reference datasets were
highly correlated, although the magnitude of the estimates differed substantially (Supplementary Fig.
8-9). In addition, we ran dtangle (Hunt et al. 2019) using the Darmanis reference. Estimates from
dtangle and MuSiC were highly correlated (Supplementary Fig. 10-11). Estimated proportions of
each cell-type were compared between ALS and control using non-parametric Wilcoxon tests after
regressing the same technical covariates above. P-values were corrected for multiple testing using the
Bonferroni correction. For comparing duration of onset, estimated cell-type proportions were correlated

using a Spearman correlation.

Expression-weighted Cell-type Enrichment

Expression-weighted cell-type enrichment analysis was performed using the EWCE package (Skene
and Grant 2016). Cell-type specificity scores for each gene were created using human frontal cortex
single-nucleus RNA-seq (Mathys et al. 2019). Cell-type enrichment results were generated using the
top 250 upregulated and downregulated genes, ordered by t-statistic, for the differential expression
results for each segment. Specificity scores for each set were then compared to the mean of the
empirical null distribution from 10,000 random gene sets. Enrichment was expressed as the number of
standard deviations from the mean. P-values were Bonferroni corrected for multiple testing.

Significance was set at adjusted P < 0.05.

Gene co-expression Networks

Gene expression from all 303 ALS samples from the three spinal cord regions was combined into a
single matrix. Genes annotated as protein-coding by Ensembl were kept, and only then if each gene
had at least 1 read count per million in at least 50% of samples, resulting in 14,375 genes. Gene
counts were then transformed using Voom and TMM normalization. The following covariates were
then regressed out using removeBatchEffect(): contributing site, spinal cord section, RIN, % mRNA
bases, % ribosomal bases, % intergenic bases, median 3’ bias, median 5’ bias, % chimeric reads, and
genomic PCs 1-5.

Co-expression network analysis was performed using Weighted Gene Correlation Network Analysis
following a standard pipeline. Scale-free topology (R? > 0.8) was achieved by applying a soft threshold

power of 5 into a signed network model. The adjacency matrices were constructed using the average
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linkage hierarchical clustering of the topological overlap dissimilarity matrix (1-TOM). Co-expression
modules were defined using a dynamic tree cut method with minimum module size of 50 genes and
deep split parameter of 4. Modules highly correlated with each other, corresponding to a module
eigengene (ME) correlation > 0.75, were merged, resulting in a total of 41 modules. Modules were
labelled according to their size.

We calculated the Spearman correlation between each module eigengene and the following clinical
variables: disease duration (years), site of disease onset (bulbar or limb), C9orf72 status, sex, and
tSTMNZ2 abundance. tSTMNZ2 abundance in TPM for the matching samples was extracted from the
supplementary data from (Prudencio, Humphrey, et al. 2020).

Cell-type and glial activation genes were tested for enrichment within each module using Fisher’s
exact test followed by Bonferroni correction. Gene ontology biological process terms were tested for
enrichment using the gProfiler2 package (Reimand et al. 2007). Terms with less than 10 genes were
removed before correction for multiple testing. Enriched terms were then manually grouped into sets
for presentation. Full module assignments, eigengenes, and enrichment results are shared as

Supplementary Tables 5-9.

Whole Genome Sequencing (WGS)

Read alignment to the human reference genome GRCh38, duplicate marking, and Base Quality Score
Recalibration (BQSR) were performed as described in the functional equivalence pipeline standard
developed for the Centers for Common Disease Genomics project (Regier et al. 2018). All 513
samples were jointly genotyped using GATK HaplotypeCaller 3.5 (Poplin et al, 2017). We used
GATK’s VariantRecalibrator to train the Variant Quality Score Recalibration (VQSR) model using
“‘maxGaussians 8” and “maxGaussians 4” parameters for SNVs and INDELs, respectively. We applied
the VQSR model to the joint call-set using ApplyRecalibration with truth sensitivity levels of 99.8% for
SNVs and 99.0% for INDELs. Variants overlapping the ENCODE hg38 blacklist regions (Amemiya,
Kundaje, and Boyle 2019) were removed. Variants were then filtered using the following rules inspired
by the GTEx v8 consortium (Aguet et al. 2019; The GTEx Consortium 2020), and a pipeline which
used empirical thresholds using discordant variant calls between replicate samples (Adelson et al.
2019). The pipeline was implemented in bcftools (Danecek et al. 2021), vcftools (Danecek et al. 2011)
and PLINK (Chang et al. 2015) using the snakemake framework (Késter and Rahmann 2012). SNPs
and indels were filtered using the following filters: genotype level read depth (GDP) > 10; Genome
quality (GQ) > 20; missingness < 15%; Overall read depth (total read depth) > 5000 (equivalent to
~10x coverage); 58.75 > mapping quality (MQ) > 61.25; variant quality score log-odds (VQSLOD) >

7.81; inbreeding coefficient > -0.8. Finally, a minor allele frequency cut-off of 1% was applied. In total,
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6,711,470 SNPs were used for testing. Numbers of SNPs retained at each filtering step are recorded

in Supplementary Table 11.

LD-pruned biallelic SNPs were selected from the cohort-level VCF and combined with the 1000
Genomes Project (1kGP) phase 3 call set (1000 Genomes Project Consortium et al. 2015). Ancestry
was inferred by projecting samples of interest onto genotype PCs computed based on the 1kGP
samples using smartpca v6.0.1 (Price et al. 2006). Non-European or admixed samples were flagged if
they were 4 standard deviations from the European super-population in the first 2 PCs, which flagged

65 individuals for exclusion from the analysis.

Samples were excluded if they had > 10% individual missingness, which removed no samples.
Relatedness was assessed with KING (Manichaikul et al. 2010). Samples were flagged if they had a
relatedness > 0.125. 25 pairs of duplicate individuals submitted by different cohorts and a pair of
related individuals, were removed. Samples were checked for ambiguous sex genotype, or a
mismatch between the DNA sex and the inferred sex from the RNA-seq. 1 individual was removed for
having assigned XO/XY mosaic karyotype. Possible sample swaps were assessed by comparing each
genotyped individual to inferred SNPs in the RNA-seq, using MBV from QTLtools (Fort et al. 2017). No
sample swaps were observed. Across the three spinal cord regions. 481 samples from 236 unique

donors were used for QTL mapping.

Quantitative Trait Loci mapping

To perform expression QTL (eQTL) mapping, we created a pipeline based on the one created by the
GTEX consortium. We completed a separate normalization and filtering method to previous analyses.
Gene expression matrices were created from the RSEM output using tximport (Love, Soneson, and
Robinson 2017). Matrices were then converted to GCT format, TMM normalized, filtered for lowly
expressed genes, removing any gene with less than 0.1 TPM in 20% of samples and at least 6 counts
in 20% of samples. Each gene was then inverse-normal transformed across samples. PEER (Stegle et
al. 2012) factors were calculated to estimate hidden confounders within our expression data. We
created a combined covariate matrix that included the PEER factors and the first 5 genotyping
principal component values as input to the analysis. We tested numbers of PEER factors from 0 to 30
and found that between 10 and 30 factors produced the largest number of eGenes in each region
(Supplementary Fig. 16).

To test for cis-eQTLs, linear regression was performed using the tensorQTL (Taylor-Weiner et al.

2019) cis_nominal mode for each SNP-gene pair using a 1 megabase window within the transcription
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start site (TSS) of a gene. To test for association between gene expression and the top variant in cis
we used tensorQTL cis permutation pass per gene with 1000 permutations. To identify eGenes, we
performed g-value correction of the permutation P-values for the top association per gene at a
threshold of 0.05.

We performed splicing quantitative trait loci (sQTL) analysis using the splice junction read counts
generated by regtools (Feng et al. 2018). Junctions were clustered using Leafcutter (Li et al. 2018),
specifying for each junction in a cluster a maximum length of 100kb. Following the GTEXx pipeline,
introns without read counts in at least 50% of samples or with fewer than 10 read counts in at least
10% of samples were removed. Introns with insufficient variability across samples were removed.
Filtered counts were then normalized using prepare_phenotype_table.py from Leafcutter, merged, and
converted to BED format, using the coordinates from the middle of the intron cluster. We created a
combined covariate matrix that included the PEER factors and the first 5 genotype principal
components as input to the analysis. We mapped sQTLs with between 0 and 30 PEER factors as
covariates in our QTL model and determined 5 and 15 factors produce the largest number of sGenes

(Supplementary Fig. 16).

To test for cis sQTLs, linear regression was performed using the tensorQTL nominal pass for each
SNP-junction pair using a 100kb window from the center of each intron cluster. To test for association
between intronic ratio and the top variant in cis we used tensorQTL permutation pass, grouping
junctions by their cluster using --grp option. To identify significant clusters, we performed g-value
(Storey 2003) correction using a threshold of 0.05.

We estimated pairwise replication (111) of eQTLs and sQTLs using the g-value R package. This
involves taking the SNP-gene pairs that are significant at g-value < 0.05 in the discovery dataset and

extracting the unadjusted P-values for the matched SNP-gene pairs in the replication dataset.

GTEX Spinal Cord QTL summary statistics

Full summary statistics for the cervical spinal cord expression QTLs (v8) were downloaded from the
eQTL catalogue (see URLs). The splicing QTLs were downloaded from the Google Cloud portal. Top

associations for each gene were downloaded from the GTEx portal.

Genome-wide association study summary statistics

Full summary statistics for the latest ALS GWAS (Nicolas et al. 2018) were downloaded from the EBI

GWAS Catalogue, which have lifted over the variants to the hg38 build. Genome-wide significant loci
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were taken to be the most significant variants within 1 megabase at a threshold of P < 5e-8.
Subthreshold loci were defined at a relaxed threshold of P < 1e-5. Loci were named by their nearest

protein-coding gene using SNPnexus (Oscanoa et al. 2020).

Colocalization analysis

We used coloc (Giambartolomei et al. 2014) to test whether SNPs from different loci in the ALS GWAS
colocalized with expression and splicing QTLs from the spinal cord. For each genome-wide and
subthreshold locus in the ALS GWAS we extracted the nominal summary statistics of association for
all SNPs within 1 megabase either upstream/downstream of the top lead SNP (2Mb-wide region total).
In each QTL dataset we then extracted all nominal associations for all SNP-gene pairs within that
range and tested for colocalization between the GWAS locus and each gene. To avoid spurious
colocalization caused by long range linkage disequilibrium, we restricted our colocalizations to GWAS
SNP - eQTL SNP pairs where the distance between their respective top SNPs was < 500kb or the two
lead SNPs were in moderate linkage disequilibrium (r? > 0.1), taken from the 1000 Genomes (Phase
3) European populations using the LDLinkR package (Myers, Chanock, and Machiela 2020).

For splicing QTLs we followed the same approach but collapsed junctions to return only the highest
PP4 value for each gene in each locus. Due to the smaller window of association (100kb from the
center of the intron excision cluster) we restricted reported colocalizations to cases where the GWAS
SNP and the top sQTL SNP were either within 100kb of each other or in moderate linkage

disequilibrium (r? > 0.1).

Estimating repeat expansions with ExpansionHunter

ExpansionHunter (v2.5.5) was employed to estimate the length of disease-associated repeat
expansion sites from lllumina PCR-free whole-genome sequencing data (Dolzhenko et al., 2019).
ExpansionHunter estimates the number of copies of repeated short unit sequences by performing a
targeted search through a BAM file for reads that span, flank, or are fully contained within each repeat.
By combining evidence from multiple read signals, this approach is capable of genotyping repeats at a
locus of interest even when the expanded repeat is substantially larger than the read length.
Specifically, the method is capable of discovering and accurately estimating the size of C90rf72 repeat
expansions containing as many as ~1000 (~6Kbp) copies of the motif. For the ATXN3, heterozygous
repeat calls were generated. The largest repeat allele for each sample was used for association with

splicing and disease.
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Transcriptome-wide association study (TWAS)

We generated TWAS weights using FUSION (Gusev et al. 2016) for both gene expression and
splicing, using the splice junction usage ratios computed by Leafcutter. The same spinal cord samples
were used as in the QTL analysis, with the three spinal cord sections treated independently to create
three splicing and three expression panels. For each reference panel, the same PEER covariates
were used as for the QTL analysis. A linkage-disequilibrium matrix was created from the phased
biallelic SNV and INDEL autosomal genetic variants (called de novo on the hg38 build (Lowy-Gallego
et al. 2019)) for the selected subset of unrelated Non-Finnish European (NFE) samples (n=404) from
the 1000 Genomes data (1000 Genomes Project Consortium et al. 2015) This custom LD reference
data was then annotated with doSNPv151 and the variants with HWE P < 10 were excluded. For the
pre-computed weights we used an existing European LD reference mapped to the hg19 build (see
URLs). TWAS uses GCTA-GREML (Yang et al. 2010) to estimate cis-SNP heritability (all SNPs 1Mbp
from gene or intron start site) for each gene or splice junction. Only genes or splice junctions that were
significant for heritability estimates at a Bonferroni-corrected p <0.05 were retained for further
analysis. Only variants present in the LD matrix were used to construct the weights. The gene
expression or splice junction usage predictive weights were then computed by four different models
implemented in the FUSION framework: best linear unbiased prediction, LASSO, Elastic Net, and top
SNPs. The model with the best cross-validation prediction accuracy is then used to impute expression
or splice junction usage into a GWAS, in this case the latest available ALS GWAS (Nicolas et al.
2018). The imputed gene expression or intron usage is then associated with disease risk, creating a
Z-score and P-value. To account for multiple hypotheses, we applied an FDR of 5% within each
expression and splicing reference panel. For comparison, pre-computed expression and splicing
TWAS weights from 452 dorsolateral prefrontal cortex samples as part of the CommonMind
Consortium (Li et al. 2019) were downloaded from the FUSION website (see URLS).

All plots were created using ggplot2 (Wickham 2009) in R (version 3.6.0), with ggrepel (Slowikowski,
2021), ggfortify (Tang, Horikoshi, and Li 2016), patchwork (Pedersen 2019), and ggbio (Yin, Cook, and

Lawrence 2012) for additional layers of visualization.

Data availability

All raw RNA-seq data can be accessed via the NCBI's GEO database (GEO GSE137810,
GSE124439, GSE116622, and GSE153960). Whole genome sequencing data can be accessed via

dbGAP (in progress) . Full summary statistics for expression and splicing QTLs have been deposited

30


https://paperpile.com/c/7fbrNz/wqRa
https://paperpile.com/c/7fbrNz/JJfO
https://paperpile.com/c/7fbrNz/JJfO
https://paperpile.com/c/7fbrNz/8p7l
https://paperpile.com/c/7fbrNz/47qq
https://paperpile.com/c/7fbrNz/ybNe
https://paperpile.com/c/7fbrNz/ybNe
https://paperpile.com/c/7fbrNz/k0J1
https://paperpile.com/c/7fbrNz/YINJ
https://paperpile.com/c/7fbrNz/Eay9
https://paperpile.com/c/7fbrNz/Eay9
https://paperpile.com/c/7fbrNz/7Yy9
https://paperpile.com/c/7fbrNz/kbvd
https://paperpile.com/c/7fbrNz/237B
https://paperpile.com/c/7fbrNz/237B
https://doi.org/10.1101/2021.08.31.21262682
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2021.08.31.21262682; this version posted September 2, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

on Zenodo (10.5281/zenodo.5248758). All TWAS weight files have been deposited on Zenodo
(10.5281/zen0do.5256613). All RNA-seq and whole genome sequencing data generated by the NYGC
ALS Consortium are made immediately available to all members of the Consortium and with other
consortia with whom we have a reciprocal sharing arrangement. To request immediate access to new
and ongoing data generated by the NYGC ALS Consortium and for samples provided through the
Target ALS Postmortem Core, complete a genetic data request form at CGND_help@nygenome.org.

Code availability

All analysis code written in R is available in Rmarkdown workbooks in a Github repository, and specific

data processing pipelines are in separate repositories (see URLSs).
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URLs

Code written for this project:

https://github.com/jackhump/ALS_SpinalCord_QTLs

Full QTL summary statistics:

https://zenodo.org/record/5248758
Full TWAS weights:

https://doi.org/10.5281/zenodo.5256613
Molecular Signatures Database (MSigDb):

http://www.gsea-msigdb.org/gsea/msigdb/index.jsp
Kelley et. al. gene fidelity marker genes:

http://oldhamlab.ctec.ucsf.edu/data-download/
ENCODE Blacklist:

https://github.com/Boyle-Lab/Blacklist/blob/master/lists/hg38-blacklist.v2.bed.gz
WGS QC pipeline:

https://github.com/jackhump/WGS-QC-Pipeline
QTL mapping pipeline:

https://github.com/RajLabMSSM/QTL-mapping-pipeline
DLPFC TWAS weights:

http://qusevlab.org/projects/fusion/#reference-functional-data
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ExpansionHunter:

https://qithub.com/lllumina/ExpansionHunter

VCFs of 1000 Genomes samples:
ftp://ftp.1000genomes.ebi.ac.uk/voll/ftp/data_collections/1000_genomes_project/release/20190312_bi
allelic._ SNV_and_INDEL/
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