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Abstract

In this paper, we analyze the progression of COVID-19 in the United States over a nearly one-year period beginning
March 1, 2020, with a novel metric representing the partial-average day-of-event, where events are new cases and new
deaths. The metric is calculated as a function of date and location to illustrate patterns of disease, showing growing
or waning cases and deaths. The metrics enable the direct comparison of the time distribution of cases and deaths,
revealing data coherence and how patterns varied over a one-year period. We also compare different methods of
estimating actual infections and deaths to better understand on the timing and dynamics of the pandemic by state. We
used three example states to graphically compare metrics as functions of date and also compared statistics derived
from all 50 states. Over the period studied, average case day and average death day vary by two to five months among
the 50 states, depending on data source, with the earliest averages in New York and surrounding states, as well as
Louisiana. The average day of death has preceded the average day of case in Centers for Disease Control (CDC) data
for most states and most dates since June of 2020. In contrast, “COVID-19 Projections” more closely align deaths and

cases, which are similarly distributed.

Keywords
COVID-19, Case Rates, Death Rates

Introduction

In this paper, we investigate differences in COVID-
19’s spread in the United States by examining the time
distribution of events, where an event is either a new
case or new death attributed to COVID-19. We focus on
the cumulative distribution of events within time-periods
along with the average time of events occurring within
time-periods. We compare three data sources, including the
Centers for Disease Control’s data on reported events and
two other sources that have used inference methods to
estimate actual infections and deaths.

Our examination provides normalized metrics as to when
the disease accelerated and decelerated by location and how
the disease patterns varied among the 50 United States.
As the novel Coronavirus disease-19 (COVID-19) pandemic
progressed across the United States in 2020 and early 2021,
the rates of cases and deaths varied by week and month
among states. While at the national level the United States
faced three major case waves (Spring 2020, Summer 2020,
and Winter 2020/21) during our period of study, the time
distribution of cases and deaths has varied by location. Very
early in the pandemic, large urban areas, especially in the
northeast, had the highest rates of cases and deaths. New
York City was the pandemic’s epicenter, registering 203,000
laboratory-confirmed cases in the first three months of the
pandemic (1). However, by July 2020, southern states, such
as Florida, Texas, and Arizona, became hot spots for the
pandemic. By late summer and early fall, Midwestern states,
such AP BHRSH, S8
cases and deaths (2). Rural areas were hardest hit during this
period. November through January represented a national
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surge in cases, when many states recorded new highs in
cases. States with lower case rates in the summer, like
New York and New Jersey, had surges again. In December
of 2020, 21 states registered at least 2,000 new cases per
100,000 residents, and twenty-six states had rates between
1,000 and 2,000 new cases per 100,000 residents (3). By
February, case rates started dropping off across the United
States.

Our metrics provide a novel assessment of the progression
of the disease, offering a way to examine the current state
of the disease in the context of the history of cases and
deaths. In the following section, we review prior research
examining patterns of COVID-19 in the United States. We
next introduce our methodology for developing metrics for
tracking disease-related events and illustrate these metrics
for an example of geometric growth and decay. Then we
present results, including graphs representing example states
and a comparison of statistics for all 50 states. We end with
conclusions and discussion.
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Literature Review

As the novel coronavirus spread worldwide, cases, hospital-
izations and deaths have been studied with epidemiological
models, characterizing the COVID-19 epidemic, forecast-
ing transmission, and evaluating pharmaceutical and non-
pharmaceutical intervention. Mathematical methods, such as
compartmental models, statistical models, general machine
learning models, and agent-based models have been applied
to simulate, characterize, and forecast COVID-19 (4; 5; 6; 7;
8).

Early mathematical models of COVID-19 updated
previous disease models to consider the unique characteristic
of COVID-19 (9), including updating older SIR models to
consider hospitalized and undetected infections (9; 10; 11).
Other research focused on risk factors and epidemiological
characteristics of COVID-19 patients, such as fevers and
coughing (12; 13; 14). Early research focused on Wuhan,
prior to when disease spread to other countries. Later
research focused on how the outbreak dynamics had differed
in countries such as China and the United States (15).
This type of research started analyzing localities because of
differing transmission rates, which may be related to human
behavior, living conditions and environmental factors.
Furthermore, epidemiological research started looking at
transmission rates in different settings (i.e., homes and work)
in other countries.

To inform intervention efforts, state and local health
departments have used various indicators to identify the
changes in the number of cases, hospitalization, and deaths.
For example, the Kentucky Department for Public Health
(KDPH) adopted a composite syndromic surveillance data,
number of new cases, number of COVID-19 associated
deaths, health care capacity data, and contact tracing capacity
as five indicators to assess the state-level COVID-19 status
(16). From empirical data, they scored each of the five
indicators using a 3-point scale (3= excellent, 2 =moderate,
1 = poor), and then combined the five scores with equal
weights to a composite state-level COVID-19 status by
a 5-point rating system. KDPH found that during May
19 — July 15, 2020, the Kentucky composite COVID-19
status worsened. Similarly, King County in Washington
state published a Key Indicators dashboard to provide an
overview of how they are doing in important areas: disease
activity, testing and healthcare system status (17). King
County calculated the 7-day average cases per capita, 7-
day average hospitalization per capita, 7-day average deaths
per capita, effective reproduction number, and percentage of
occupied hospital beds. The performance in each area could
be assessed by the comparison of the five indicators with
the settled target. These indicators provided a plain language
assessment to facilitate reopening decisions.

In addition, health care indicators can help compare
the healthcare outcomes across populations. For example,
cumulative death counts are associated with demographic
characteristics. Heuveline and Tzen proposed three measures
— the crude death rate, the age-standardized death rate, and
life expectancy at birth — to compare status over time (18).
They disaggregate the population into smaller administrative
units with respect to age and sex to provide more meaningful
comparisons.
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During the pandemic, it has been apparent that data and
predictions influence policy decisions aimed at lessening the
impact of COVID-19, yet suffer from significant uncertainty.
In this environment, it is difficult to develop the most
effective interventions, and instill public confidence that the
most effective interventions have been selected (19; 20).

Our research focuses on a novel way to track data on
cases and deaths. We focus on the time distribution of cases
and deaths as a standardized indicator for the time-varying
dynamic of the pandemic, showing when it is accelerating
or decelerating in the United States on a state level. We
calculate and compare partial averages by day to quantify
the progression of the disease. We focus on state-level data
to model how the progression of the disease has affected each
state of the country at different times. Finally, we assess three
data sources to understand how different estimation methods
(relative to official counts of reported cases and deaths) affect
how the pandemic appears to have developed in each state.

Methodology

Our research analyzes the time distribution of reported
(and estimated) cases and deaths attributed to COVID-
19 in the United States, beginning on March 1 of 2020.
We focus on the time distribution of reported events, as
indicators of the pandemic’s progression by location. In
this section we develop a methodology for analyzing event
statistics, focusing on partial averages, as a function of
date, along with the cumulative distribution of events in the
study period. An idealized geometric progression is used to
illustrate properties of time partial-averages. Understanding
the properties of the idealized model will help to understand
empirical results, which is the focus of Section 4.

Computing Partial Averages by Day

We consider a process where events are tracked over time by
counting the number occurring on each day. Our focus is on
cases (and estimated infections) and deaths, but the concepts
generalize to any process where events are counted by time
increment. We seek to track partial averages, representing the
average day of events occurring on day t or earlier. Let:

A(t) = average event day, for events occurring on day ¢ or
earlier.

Day 1 (t = 1) represents the day of the first recorded
event. By definition, A(1) must equal 1. A(¢) is a non-
decreasing function, with these properties:

A(t+ 1) > A(t) if new events occur on day ¢ + 1

A(t+ 1) = A(t) if no new events occur on day ¢ + 1

Let:

T = day of last recorded event

P(t) = proportion of events that occurred on day t or
earlier

By definition, P(T") = 1, as all events must occur before
day T'. Let:

p(i) = proportion of events that occur on day i

Then:

P(t)=3i_,p(0) @)

A(t)y=Yi_ iep(i)/P(t) )
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A(t + 1) can be computed as a weighted average, as follows:

Alt+1)=A(t)e[P(t)/P(t+1)]

+(t+1)e[p(t+1)/P(t+1)] 3)

Let A(t+ 1) represent the change in average event time
from day t to day t+1:

Alt+1) = A(t+1) — A(t) )

A(t + 1) can be derived algebraically from Eq.(3), resulting
in:

At+1)=[pt+1)/Pt+1D]e[(t+1)— A(¢)) 5)

Eq. 5 offers insight into how rapidly A(t) changes as a
consequence of p(t + 1), rising fastest in time periods when
the probability of an event exceeds the rate of events in
the preceding days, such as when events are occurring at
an accelerating rate. Another insight is that A(t) can grow
particularly fast in a second or later wave of a pandemic.
After an initial wave, A(¢) may remain stable for a period
of time, as p(¢ + 1) is small. If a pandemic re-emerges, then
A(t) may grow rapidly, both because p(t + 1) is large and
because ¢ + 1 is now much greater than A(t) (owing to the
prior lull when A(t) was increasingly slowly).

Geometric Growth and Decay Example

To understand patterns in empirical data from COVID-19, we
first explore the characteristics of the idealized scenarios of
geometric growth and decay, characterized by the function:

nt+1l)=n{t)ea=n(l)ea (6)

where

n (t) = number of events occurring in day t

« = rate of growth (or decay) in events .

Geometric growth occurs when « is greater than 1,
geometric decay when « is less than 1, and events occur at a
constant rate when « equals 1. Let:

N (t) = cumulative events from day 1 to day ¢

Then:

N () = XiZyn (1) ea’ )
As a geometric progression, N(t) can be expressed:

Nt)=[1-a")/(1-a)en(l), a#1 (8a)

N({t)=ten(l), a=1 (8b)

As defined in Eq. 4, A(t 4+ 1) is the change in the average
event day from day ¢ to day ¢+ 1. Substituting n(t +
1)/N(t 4 1) from above for the ratio p(t + 1)/P(t + 1):

At+1) = {a!/[0—at/A-a)} o {t+ o
1— A(t)}

In the special case where o > 1 (geometric growth), A(t +
1) is an increasing function, approaching the limit:

limy_yoe A(t+ 1)= [(a — 1)/a] @ {t + 1 — A(t)}

=1, a>1 (10)
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And further,
limy oo A(t) =t —1/(a—=1), a>1 (11

In the special case where « < 1 (geometric decay), A(t + 1)
is a decreasing function, approaching the limit:

lims oo AE+1) =0, a<1 (12)
and, further,
im0 A(t)=1/(1—-a), a<l (13)

Last, in the special case where v = 1 (constant), A(t + 1) =
.5 for all values of t, and thus A(¢) is simply (1 + t)/2.

The properties of A(t) are illustrated in Figure 1 for
example rates of growth (10%, o = 1.1; 5%, a=1.05) and
decay (-5%, o =.95), as well as constant (0%, o = 1.0). For
instance, for 10% growth, A(¢) approaches t-10 (equalling
t—1/(a—1) ), and for 5% decay, A(t) approaches 20,
equalling 1/(1 — «)).
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Figure 1. Average Day of Event as Function of Day (geometric
growth or decay, by % daily change)

For another metric, we introduce:

H(t) = days elapsed since average event on day ¢t =t —
A(t).

Figure 2 illustrates the limiting properties of H(t),
which approaches the constant 1/(« — 1) under geometric
growth; approaches ¢t — 1/(1 — «) under geometric decay;
and equals t/2 — 1/2 when o = 1. Last, Figure 3 plots H (¢ +
1) — H(t), illustrating again that for geometric growth,
H(t) approaches a limiting value as t becomes large, yet
approaches a constant growth rate of 1 for geometric decay.

As we examine empirical data in individual states in
Section 4, we will look for signals of geometric growth
(when the pandemic is accelerating) or decay (when the
pandemic is waning) through our examination of A(t) for
cases and deaths. As mentioned, AA(t 4 1) never exceeds one
for the idealized geometric model. As will be seen, A(t + 1)
can exceed one when events occur in multiple waves, as has
been the case for COVID-19. We will refer to this as super-
geometric growth.

Source Data and Indicators

We compared data from three sources: CDC Reported
Data, Covidestim estimated data, and COVID-19 Projections
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Figure 2. Days Since Event as Function of Day (geometric
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Figure 3. Daily Change in Average Days Since Event as
Function of Day (geometric growth or decay, by % daily change)

estimated data. Estimated data attempt to correct for errors in
reporting, which might, for example, include infections that
were never detected through testing.

CDC reported data consists of two metrics for recorded
cases and deaths: confirmed case or death and probable case
or death (4). The CDC defines a confirmed case or death
as met by confirmed laboratory evidence for COVID-19.
Furthermore, the CDC defines a probable case or death as
meeting one of three standards (12):

o Clinical criteria and epidemiological evidence with no
confirmed laboratory testing

e Laboratory evidence and either clinical criteria or
epidemiological evidence

e Vital records with no confirmatory laboratory testing

We used the total combined count of confirmed and
probable for cases and deaths. The CDC further explains how
the reported data can fluctuate, due to:

e Jurisdictions reclassifying probable cases,

e Counts being revised as records are finalized ,

e Jurisdictions having different reporting time intervals
and methodologies for reporting cases and deaths,

e Delays in reporting and testing.

We compared metrics for CDC data to two estimated
data sources: Covidestim and COVID-19 Projections.
Covidestim is an experimental methodology using Bayesian
evidence synthesis to adjust reported data: accounting for
asymptomatic infections, undercounting due to lack of
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availability of testing, and delays in case and death counts
(21). The model was run every 28 days, given the lag time
for observed data, and is parameterized by four health states:
asymptomatic, symptomatic, severe, and death (21).

COVID-19 Projections is an experimental ‘“nowcasting”
model that aims to standardize the test positivity and estimate
the true incidence of COVID-19. The model adjusts the
test positivity by taking the average ratio for each date
and applying this ratio to states that report “unique people”
(22). Next, the model estimates the prevalence ratio by
using the positivity rate and date to estimate true infections
(22). Finally, the model estimates the number of infections
by parametrizing the prevalence ratio, positivity rate, and
confirmed cases using a 7-day moving average (22). For
our purposes, we will use COVID-19 Projections estimated
infections and total deaths.

Our analysis is based on the period March 1, 2020 through
February 21, 2021, with the end date matching the end date
of COVID-19 Projections’ estimation of infections. Data
were downloaded on these dates: Covidestim, June 25, 2021;
COVID-19 Projections, June 26, 2021; CDC, June 25, 2021.

Results

We examined case and death statistics/estimates for COVID-
19 for all 50 of the United States for the three data sources
CDC, Covidestim and COVID-19 Projections. For each state
and data source, we calculated A(t) and P(¢) for deaths and
cases. We also compared statistics as follows. Let:

Aq(t) = average death day for events occurring on day t or
earlier

A.(t) = average case day for events occurring on day t or
earlier .

We then computed the difference between average death
day and average case day:

L(t) = Ad(t) - Ac(t)'

Though for any individual, deaths must follow initial
infection, we will see that L(t) is not necessarily positive.

We also calculated the ratios:

Rq(t) = Aa(t)/t
R.(t) = Ac(t)/t

These ratios are naturally close to one at the onset of a
pandemic (i.e., average day of event is similar to the current
day). They remain close to one if cases and/or deaths grow
geometrically and they drop toward zero if cases and/or
deaths decay geometrically. In this manner, the ratios are
indicators of the progression of a pandemic.

Disease Patterns in Example States

For illustration, graphs are presented here for three states
— California, New York, Minnesota — which experienced
surges of COVID-19 at different times. Figure 4,5,6 show
results for California, for CDC, COVID-19 Projections
and Covidestim data, respectively. Figures 7,8,9 provide
results for New York and Figures 10,11,12 show results for
Minnesota.

Examining the slopes of A,(t) and A.(t), geometric
growth can be seen in the first 50 days of the pandemic,
where these functions increase at an approximate rate of one
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changes in survival rates over time. Yet plots of L(t) fell
well below zero, ranging between -10 and -100 around day
300, before rising at the end of the study period. Other than
possible improvement in survival, there are two explanations.
First, cases were relatively under-reported at the start of
the pandemic, thus creating an upward bias in the dates of
reported cases. This is particularly evident in CDC data for
New York. Second, in the later wave of the pandemic, cases
appeared prior to deaths, thus creating a temporary dip in the
L(t) indicator, as apparent in California and Minnesota.

Comparing the three data sources, measures of deaths are
similar, but measures of cases differ significantly. Under
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COVID-19 projections, cases are distributed earlier in the Day
pandemic, particularly in New York, more closely following
the patterns of deaths, which were perhaps a more accurate
indicator of actual infections.
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Comparison of Statistics for all 50 States

We now examine comparative statistics for the 50 states.
For each state, we calculated the average case day and
average death day, as of 2/21/2021, for all three data sources.
The distributions of these statistics were then plotted as
cumulative distributions in Figures 13 and 14. As shown in
Figure 13, average case day, computed from Covidestim,
varies from 229 (Louisiana) to 280 (Wyoming), with an
average (of the averages) of 253 (Table 1). For contrast, case
averages from COVID-19 Projections range from 139 (New
Jersey) to 283 (Wyoming) with an average (of the averages)
of 227. Thus, the latter estimates show cases occurring much
earlier in states that experienced the most severe outbreaks
in the March/April timeframe, yet only 26 days earlier on
average. The distributions of average death day are similar to
COVID-19 Projections’ case day distribution, with averages
ranging from about 133 to 283.

Figure 15 shows how L(t) varied from month to month.
For each month and state, we counted the number of days that
L(t) was positive (i.e., average death day is later than average
case day) and then computed an average for this statistic
among the states. These results are shown for the three
data sources, expressed as the percentage of days within the
month. The percentages peaked in April and May, toward
the end of the first wave of the pandemic. They dropped to
a minimum toward the peak of the December wave, as cases
appeared prior to associated deaths. However, even as the
pandemic waned in February, the average case day tended
to be later than the average death day (though less so with
COVID-19 Projections).

Figures 16,17,18 provide another graphical comparison
among states, which are color-coded as to the average case
days for CDC and COVID-19 Projections data, and average
death day for CDC data. Notably, CDC case data suggest
a much narrower distribution for the time distribution of
the pandemic than either CDC death data or COVID-19
Projections case data, for which the pandemic is shown to
occur much earlier in New York and surrounding states, as
well as in Louisiana.

Figure 19 provides a final comparison, plotting the average
day of case minus the average day of death (which we call the
difference in days) for CDC data. Each dot represents a state,
which are color coded by region (according to US Census
designation) and plotted according to state population (2020
census). Visually, the difference in days appears largest
in northeastern states. By linear regression, the difference
in days was only found to be significantly different in
the northeast region than other regions in the country (55
days on average, with t statistic of 6.5). State population
was not a significant determinant of the difference in days
(t=1.0). These results appear to reflect the early experience of
COVID in northeastern United States, when reported deaths
were proportionately much higher relative to reported cases
compared to later in the pandemic.

Discussion and Conclusions

We have developed and applied a methodology to illustrate
how the time distribution of disease events (cases and deaths)
varies over time by location. We see how geometric growth
of daily cases and deaths result, in the limit, to a constant
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Table 1. Statistics for Average Case and Death Day by State

Covidestim Covid-19 Projections CDC
Average Day of | Average Day of | Average Day of | Average Day of | Average Day of | Average Day of
Case in State Death Case in State Death Case in State Death
National Average 253 236 227 235 252 235
SD Among States 12 34 24 33 12 31
Minimum Among States 230 133 145 139 219 144
Maximum Among States 280 282 264 283 280 283
——Covidestim —COVID-19 Projections —CDC Average Case Day as of 2021-02-21 T
1 219.46 279.61
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Figure 13. Cumulative Probability Distribution for Average Day
of Case Among States
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Figure 14. Cumulative Probability Distribution for Average Day
of Death Among States

Figure 16. Average Case Day on 2021-02-21 (CDC)
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Figure 15. Average % of Days that Average Death Day is
Greater than Average Case Day (March 2020 to February 21,
2021)

separation between the present day and the average event
day, and we see how this phenomenon appeared in the early
days of the pandemic, particularly in New York. When the
partial average grows at the rate of one per day, the pandemic
is accelerating. We also found that later in the pandemic,
during a second or third wave, the partial average grew at
rates exceeding one per day. Thus, the separation between
the current day and the average day became smaller, signs

Prepared using sagej.cls
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Figure 18. Average Case Day on 2021-02-21 (COVID-19
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that the pandemic worsened. We also observed that the time
distribution varied by several months among the 50 states, as
the pandemic accelerated and decelerated at different times.
Last, we observed that the average day of deaths preceded the
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average day of cases much of the time, particularly during the
December 2020 to January 2021 period.

The key contribution of this paper has been to provide
a normalized representation through which the time
distribution of cases and deaths can be compared, by location
and data source. These representations supplement other
conventional measures in a way that provides new insights
into both the accuracy of underlying data and the actual
state of pandemic by locality. The analyses might then
be applied toward implementing interventions that reflect
the trajectory of the disease, and to retrospectively analyze
the effectiveness of interventions that may correlate with
historical data.
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