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Abstract 

Prostate cancer treatment planning is largely dependent upon examination of core-needle 

biopsies.  In current clinical practice, the microscopic architecture of the prostate glands is what 

forms the basis for prognostic grading by pathologists. Interpretation of these convoluted 3D 

glandular structures via visual inspection of a limited number of 2D histology sections is often 

unreliable, which contributes to the under- and over-treatment of patients.  To improve risk 

assessment and treatment decisions, we have developed a workflow for non-destructive 3D 

pathology and computational analysis of whole prostate biopsies labeled with a rapid and 

inexpensive fluorescent analog of standard H&E staining. Our analysis is based on interpretable 

glandular features, and is facilitated by the development of image-translation-assisted 

segmentation in 3D (ITAS3D). ITAS3D is a generalizable deep-learning-based strategy that 

enables tissue microstructures to be volumetrically segmented in an annotation-free and 

objective (biomarker-based) manner without requiring real immunolabeling. To provide evidence 

of the translational value of a computational 3D pathology approach, we analyzed ex vivo 

biopsies (n = 300) extracted from archived radical-prostatectomy specimens (N = 50), and found 

that 3D glandular features are superior to corresponding 2D features for risk stratification of low- 

to intermediate-risk PCa patients based on their clinical biochemical recurrence (BCR) 

outcomes. 

 

Significance 

We present an end-to-end pipeline for computational 3D pathology of whole prostate biopsies, 

showing that non-destructive pathology has the potential to enable superior prognostic 

stratification for guiding critical oncology decisions.  
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Introduction 

Prostate cancer (PCa) is the most common cancer in men and the second leading cause of 

death for men in the United States 1. Currently, PCa management is largely dependent upon 

examination of prostate biopsies via 2D histopathology 2, in which a set of core-needle biopsies 

is formalin-fixed and paraffin-embedded (FFPE) to allow thin sections to be cut, mounted on 

glass slides, and stained for microscopic analysis. To quantify the aggressiveness of the cancer, 

the Gleason grading system is used, which relies entirely upon visual interpretation of prostate 

gland morphology as seen on 2D histology slides. Unfortunately, Gleason grading of PCa is 

associated with high levels of interobserver variability 3,4 and is only moderately correlated with 

outcomes, especially for patients with intermediate-grade PCa 5. This contributes to the 

undertreatment of patients with aggressive cancer (e.g. with active surveillance) 6, leading to 

preventable metastasis and death 7, and the overtreatment of patients with indolent cancer (e.g. 

with surgery or radiation therapy) 8, which can lead to serious side effects, such as incontinence 

and impotence 9.  

 

With conventional histopathology, only a small fraction of a clinical specimen (e.g., a biopsy) is 

typically sampled, and key prognostic microstructures are viewed as 2D cross-sections rather 

than in their native 3D configurations 10.  Here, the term “sampled” refers to the volume of an 

excised specimen that is converted into slide-mounted histology sections and viewed by a 

pathologist. For example, for a typical 1-mm diameter needle biopsy, only a few 4-μm-thick 

sections are visualized, representing ~1% of the biopsy. Attempting to interpret complex and 

heterogeneous 3D tissue structures using thin 2D tissue sections results in ambiguities and 

artifacts. For example, well-formed prostate carcinoma glands (Gleason pattern 3) can appear 

to be poorly formed (Gleason pattern 4) if those glands are tangentially sectioned on a 2D slide, 
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which can have major implications on disease management (e.g., active surveillance vs. 

surgery / radiation) 11-13. 

 

Motivated by recent technological advances in optical clearing to render tissue specimens 

transparent to light (i.e. iDISCO 14, CUBIC 15 etc.) in conjunction with high-throughput 3D light-

sheet microscopy, a number of groups have been exploring the value of non-destructive 3D 

pathology of clinical specimens for diagnostic pathology 13,16-20. Compared to conventional slide-

based histology, non-destructive 3D pathology can achieve vastly greater sampling of large 

specimens along with volumetric visualization and quantification of diagnostically significant 

microstructures, all while maintaining intact specimens for downstream molecular assays 10. 

However, since the associated information content of a 3D pathology dataset of a biopsy is 

>100× larger than a 2D whole-slide image representation (in terms of total number of pixels), 

computational tools are necessary to analyze these large datasets efficiently and reproducibly 

for diagnostic and prognostic determinations.  

 

We hypothesized that 3D vs. 2D pathology datasets could allow for improved characterization of 

the convoluted glandular structures that pathologists currently rely on for PCa risk stratification. 

A multi-stage computational pipeline was desired for classifying patient outcomes based on 

interpretable “hand-crafted” features 21-23 (i.e., glandular features) rather than an end-to-end 

deep-learning (DL) strategy for risk classification based directly on the imaging data 24-26. This 

was motivated by: (1) the attractiveness of an intuitive feature-based approach as an initial 

strategy to facilitate hypothesis-testing and clinical adoption of an emerging modality in which 

datasets are currently limited and poorly understood 10,27, and (2) the observation that when 

case numbers are limited, a hand-crafted feature-based approach can be more reliable than an 

end-to-end DL classifier 28,29. 
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Multi-stage feature-based classification approaches rely on the accurate segmentation of 

morphological structures such as nuclei 30,31, collagen fibers 32,33, vessels 18,34, or in our case, 

prostate glands 21,35. This is typically achieved in one of two ways: (1) Direct DL-based 

segmentation methods 36-39 that require manually annotated training datasets, which are 

especially tedious and difficult to obtain in 3D (Fig. 1a) 40; or (2) traditional computer vision (CV) 

approaches based on intensity and morphology, provided that tissue structures of interest can 

be stained/labeled with high specificity (Fig. 1b) 41,42. While immunolabeling can confer a high 

degree of specificity for traditional CV-based segmentation, it is not an attractive strategy for 

clinical 3D pathology assays due to the high cost of antibodies to stain large tissue volumes, 

and the slow diffusion times of antibodies in thick tissues (up to several weeks) 14,43. 

 

To address these challenges, we developed a generalizable annotation-free 3D segmentation 

method, hereafter referred to as “image-translation-assisted segmentation in 3D (ITAS3D)”. In 

our specific implementation of ITAS3D (Fig. 1c), 3D H&E-analog images of prostate tissues are 

synthetically converted in appearance to mimic 3D immunofluorescence (IF) images of 

Cytokeratin 8 (CK8) – a low-molecular-weight keratin expressed by the luminal epithelial cells of 

all prostate glands – thereby facilitating the objective (biomarker-based) segmentation of the 

glandular epithelium and lumen spaces using traditional CV tools. The deep-learning image-

translation algorithm is trained with a generative adversarial network (GAN), which has been 

previously used for 2D virtual-staining applications 44-46. However, unlike those prior 2D image-

translation efforts, we developed a “2.5D” virtual-staining approach based on a specialized GAN 

that was originally designed to achieve video translation with high spatial continuity between 

frames, but which has been adapted within our ITAS3D framework to ensure high spatial 

continuity as a function of depth (see Results) 47.   
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Fig. 1 | General methods for 3D gland segmentation. a, A single-step deep learning (DL) segmentation model can 
be trained with imaging datasets of tissues labeled with a fluorescent analog of H&E paired with manually annotated 
ground-truth segmentation masks. While H&E-analog staining is low-cost and rapid, manual annotations are labor-
intensive (especially in 3D) and based on subjective human judgements. b, By immunolabeling a tissue 
microstructure with high specificity, 3D segmentations can be achieved with traditional computer-vision (CV) methods 
without the need for manual annotations. While this is an objective segmentation method based on a chemical 
biomarker, immunolabeling large intact specimens is expensive and time-consuming due to the slow diffusion of 
antibodies in thick tissues. c, With image-translation-assisted segmentation in 3D (ITAS3D), H&E-analog datasets 
are computationally transformed in appearance to mimic immunofluorescence datasets, which enables the 
synthetically labeled tissue structures to be segmented with traditional CV methods. The image-sequence translation 
model is trained with a generative adversarial network (GAN) based on paired H&E-analog and immunofluorescence 
datasets. ITAS3D is rapid and low-cost (in terms of staining) as well as annotation-free and objective (i.e. biomarker-
based). 

 

As a clinical study to investigate the value of our computational 3D pathology workflow, 300 ex 

vivo biopsies were extracted from archived radical prostatectomy (RP) specimens obtained from 

50 patients who underwent surgery over a decade ago. We stained the biopsies with an 

inexpensive small-molecule (i.e., rapidly diffusing) fluorescent analog of H&E, optically cleared 

the biopsies with a simple dehydration and solvent-immersion protocol to render them 

transparent to light, and then used an open-top light-sheet (OTLS) microscopy platform to 

obtain whole-biopsy 3D pathology datasets. The prostate glandular network was then 

segmented using ITAS3D, from which 3D glandular features (i.e., histomorphometric 

parameters) and corresponding 2D features were extracted.  These 3D and 2D features were 
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evaluated for their ability to stratify patients based on clinical biochemical recurrence (BCR) 

outcomes, which serve as a proxy endpoint for aggressive vs. indolent PCa.   

 

Materials and Methods 

Key methodological information is provided below for the clinical-validation study.  The 

Supplementary Methods contain technical details on the training and validation of ITAS3D, as 

well as computational details for the clinical study, such as a description of gland features. 

 

Collection and processing of archived tissue to obtain simulated biopsies for the clinical 

study. Archived FFPE prostatectomy specimens were collected from 50 PCa patients (see 

Supplementary Table 3 for clinical data) of which 46 cases were initially graded during post-RP 

histopathology as having Gleason scores of 3+3, 3+4 or 4+3 (Grade Group 1 – 3). All patients 

were followed up for at least 5 years post-RP as part of a prior study (Canary TMA) 57. For 

deparaffinization, the identified FFPE blocks were first heated at 75°C for 1 hour until the outer 

paraffin wax was melted, and then treated with 65°C xylene for 48 hours. Next, one simulated 

core-needle biopsy (~1-mm in width) was cut from each of the 6 deparaffinized blocks (per 

patient case), resulting in a total of n = 300 biopsy cores. All simulated biopsies were then 

fluorescently labeled with the T&E version of our H&E-analog staining protocol.  

 

The T&E staining protocol (H&E analog) for the clinical study. Biopsies were first washed in 

100% ethanol twice for 1 h each to remove any excess xylene, then treated in 70% ethanol for 1 

h to partially re-hydrate the biopsies. Each biopsy was then placed in an individual 0.5ml 

Eppendorf tube (Cat: 14-282-300, Fisher Scientific), stained for 48 hours in 70% ethanol at pH 4 

with a 1:200 dilution of Eosin-Y (Cat: 3801615, Leica Biosystems) and a 1:500 dilution of To-

PRO™-3 Iodide (Cat: T3605, Thermo-Fisher) at room temperature with gentle agitation. The 

biopsies were then dehydrated twice in 100% ethanol for 2 hours. Finally, the biopsies were 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 2, 2021. ; https://doi.org/10.1101/2021.08.30.21262847doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.30.21262847
http://creativecommons.org/licenses/by/4.0/


 8 

optically cleared (n = 1.56) by placing them in ethyl cinnamate (Cat: 112372, Sigma-Aldrich) for 

8 hours before imaging them with open-top light-sheet (OTLS) microscopy. 

 

Open-top light-sheet (OTLS) microscopy and pre-processing. We utilized a previously 

developed OTLS microscope 19 to image tissues slices (for training data) and simulated biopsies 

(for the clinical study). For this study, ethyl cinnamate (n = 1.56) was used as the immersion 

medium, and a custom-machined HIVEX plate (n=1.55) was used as a multi-biopsy sample 

holder (12 biopsies per holder). Multi-channel illumination was provided by a four-channel 

digitally controlled laser package (Skyra, Cobolt Lasers). Tissues were imaged at near-Nyquist 

sampling of ∼0.44 μm/pixel. The volumetric imaging time was approximately 0.5 min per mm3 of 

tissue for each wavelength channel. This allowed each biopsy (~1 x 1 x 20 mm), stained with 

two fluorophores (T&E), to be imaged in ~20 min.   

 

Statistical analysis of the correlation between glandular features and BCR outcomes. 

Patient-level glandular features were obtained by averaging the biopsy-level features from all 

cancer-containing biopsies from a single patient. Patients who experienced BCR within 5 years 

post-RP are denoted as the “BCR” group, and all other patients are denoted as “non-BCR”. 

BCR was defined here as a rise in serum levels of prostate specific antigen (PSA) to 0.2 ng/ml 

after 8 weeks post-RP 57. The box plots indicate median values along with interquartile ranges 

(25% - 75% of the distribution). The whiskers extend to the furthest data points excluding 

outliers defined as points beyond 1.5× the interquartile range. The p values for the BCR group 

vs. non-BCR group are calculated using the two-sided Mann–Whitney U-test 82. To assess the 

ability of different 3D and 2D glandular features to distinguish between BCR vs. non-BCR 

groups, we applied ROC curve analysis, from which an area-under-the-curve (AUC) value could 

be extracted. The t-SNE83 analyses were performed with 1000 iterations at a learning rate of 

100.  
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To develop multiparameter classifiers to stratify patients based on 5-year BCR outcomes, a 

least absolute shrinkage and selection operator (LASSO) logistic regression model was 

developed 22 using the binary 5-year BCR category as the outcome endpoint. LASSO is a linear 

regression model that includes a L1 regularization term to avoid overfitting and to identify a 

subset of features that are most predictive. Here, the optimal LASSO tuning parameter, l, was 

determined with 3-fold cross validation (CV), where the dataset was randomly partitioned into 

three equal-sized groups: two groups to train the model with a specific l, and one group to test 

the performance of the model. Along the LASSO regularization path, the l with the highest R2 

(coefficient of determination) was defined as the optimal l. Due to the lack of an external 

validation set, a nested CV schema was used to evaluate the performance of the multivariable 

models without any bias and data leakage between parameter estimation and validation steps 

84. The aforementioned CV used for hyperparameter tuning was performed in each iteration of 

the outer CV. LASSO regression was applied on the training set of the outer CV once an 

optimal l was identified in the inner CV. AUC values were then calculated from the testing 

group of the outer CV (Supplementary Fig. 8). This nested CV was performed 200 times in 

order to determine an AUC (average and standard deviation). The exact same pipeline was 

used to develop multiparameter classifiers based on 3D and 2D features.  

 

Kaplan Meier (KM) analysis was carried out to compare BCR-free survival rates for high-risk vs. 

low-risk groups of patients. This analysis utilized a subset of 34 cases for which time-to-

recurrence data is available (see Supplementary Table 3). The performance of the models, 

either based on 2D or 3D features (non-skeleton features only), was quantified with p values (by 

log-rank test), hazard ratios (HR) and concordance index (C-index) metrics. For the 

multiparameter classification model used for KM analysis, the outer CV (3-fold) in our nested CV 
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schema was replaced by a leave-one-out approach, where one case was left out of each 

iteration (50 total iterations) to calculate the probability of 5-year BCR for that patient 85. The 

samples were categorized as low- or high-risk by setting a posterior class probability threshold 

of 0.5.  MATLAB was used for the KM analysis and all other statistical analysis was performed 

in Python with the “Scipy” and “Scikit-learn” packages. 

 

 

Results 
 

Annotation-free 3D gland segmentation. To segment the 3D glandular network within 

prostate biopsies, we first trained a GAN-based image-sequence translation model (see 

Supplementary Methods) to convert 3D H&E-analog images into synthetic CK8 IF images, 

which can be false colored to resemble chromogenic immunohistochemistry (IHC) (Fig. 2). As 

mentioned, the CK8 biomarker is expressed by the luminal epithelial cells of all prostate glands. 

The image-translation model is trained in a supervised manner with images from prostate 

tissues that are fluorescently tri-labeled with our H&E analog and a CK8-targeted monoclonal 

antibody (mAb).  

 

As shown in step 1 of Fig. 2, for whole-biopsy H&E-to-CK8 conversion, we first sub-divide the 

3D biopsy (~ 1 mm × 0.7 mm × 20 mm) datasets into ~1 mm × 0.7 mm × 1 mm (~ 1024 x 700 x 

1024 pixel) blocks. Each 3D image block is treated as a 2D image sequence as a function of 

depth. At each depth level, a synthetic CK8 image is inferred from the H&E-analog image at that 

level while simultaneously utilizing the images (H&E analog and CK8) from two previous levels 

to enforce spatial continuity as a function of depth. This “2.5D” image translation method is 

based on a previously reported “vid2vid” method for video translation (time sequences rather 

than depth sequences) 47 (see Supplementary Fig. 1 and Supplementary Methods). However, 
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our modified model omits the “coarse-to-fine” training strategy implemented in the original 

vid2vid method because this enables training times to be minimized with negligible performance 

loss (see Supplementary Note 1, Supplementary Fig. 2 and Supplementary Video 1). Once 

the synthetic CK8 image blocks are generated, they are mosaicked to generate a whole-biopsy 

CK8 IHC dataset for gland segmentation. In step 2 of Fig. 2, the synthetic CK8 dataset is used 

to segment the luminal epithelial cell layer (“Epithelium” in Fig. 2) via a thresholding algorithm. 

The gland-lumen space, which is enclosed by the epithelium layer, can then be segmented by 

utilizing both the epithelium segmentation mask and the cytoplasmic channel (eosin-analog 

images). Algorithmic details are provided in the Supplementary Methods.  
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Fig. 2 | Image-translation-assisted segmentation in 3D (ITAS3D): a two-step pipeline for annotation-free 3D 
segmentation of prostate glands. a, In step 1, a 3D microscopy dataset of a specimen, stained with a rapid and 
inexpensive fluorescent analog of H&E, is converted into a synthetic CK8 immunofluorescence (IF) dataset by using 
an image-sequence translation model that is trained with paired H&E-analog and real-CK8 IF datasets (tri-labeled 
tissues). The CK8 biomarker, which is utilized in standard-of-care genitourinary pathology practice, is ubiquitously 
expressed by the luminal epithelial cells of all prostate glands. In step 2, traditional computer-vision algorithms are 
applied to the synthetic-CK8 datasets for semantic segmentation of the gland epithelium, lumen, and surrounding 
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stromal regions. b, In step 1, a 3D prostate biopsy is sub-divided into overlapping blocks that are each regarded as 
depth-wise sequences of 2D images. A GAN-trained generator performs image translation sequentially on each 2D 
level of an image block. The image translation at each level is based on the H&E-analog input at that level while 
leveraging the H&E-analog and CK8 images from two previous levels to enforce spatial continuity between levels 
(i.e., a “2.5D” translation method). The synthetic-CK8 image-block outputs are then mosaicked to generate a 3D CK8 
dataset of the whole biopsy to assist with gland segmentation. In step 2, the epithelial cell layer (epithelium) is 
segmented from the synthetic-CK8 dataset with a thresholding-based algorithm. Gland lumen spaces are segmented 
by filling in the regions enclosed by the epithelia with refinements based on the cytoplasm channel (eosin 
fluorescence). See Supplementary Methods for details.  
 

Evaluation of image translation and segmentation. Example 3D prostate gland-

segmentation results are shown for benign and cancerous regions in Fig. 3a. While the glands 

can be delineated on the H&E-analog images by a trained observer, automated computational 

segmentation of the glands remains challenging 49,50. Here we demonstrate that 3D image 

translation based on H&E-analog inputs results in synthetic-CK8 outputs in which the luminal 

epithelial cells are labeled with high contrast and spatial precision. We further show that these 

synthetic-CK8 datasets allow for relatively straightforward segmentation of the gland epithelium, 

lumen, and surrounding stromal tissue compartments (Fig. 3a). Glands from various PCa 

subtypes are successfully segmented as shown in Fig. 3a, including two glandular patterns that 

are typically associated with low and intermediate risk, respectively: small discrete well-formed 

glands (Gleason 3) and cribriform glands consisting of epithelial cells interrupted by multiple 

punched-out lumina (Gleason 4). Supplementary Video 2 shows depth sequences of an H&E-

analog dataset, a synthetic-CK8 dataset, and a segmentation mask of the two volumetric 

regions shown in Fig. 3a. A whole-biopsy 3D segmentation is also depicted in Supplementary 

Video 3. 
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Fig. 3 | Segmentation results with ITAS3D. a, 2D cross-sections are shown (from left to right) of false-colored H&E-
analog images, synthetic-CK8 IHC images generated by image-sequence translation, and gland-segmentation masks 
based on the synthetic-CK8 images (yellow for epithelium, red for lumen, and gray for stroma). The example images 
are from large 3D datasets containing benign glands (first row) and cancerous glands (second row). Zoom-in views 
show small discrete well-formed glands (Gleason pattern 3, blue box) and cribriform glands (Gleason pattern 4, red 
box) in the cancerous region. 3D renderings of gland segmentations, for a benign and cancerous region, are shown 
on the far right. Scale bar: 100 μm. b, Side views of the image sequences (with the depth direction oriented down) of 
real- and synthetic-CK8 immunofluorescence (IF) images. The 2.5D image-translation results exhibit substantially 
improved depth-wise continuity compared to the 2D image-translation results. Scale bar: 25 μm. c, For quantitative 
benchmarking, Dice coefficients (larger is better) and 3D Hausdorff distances (smaller is better) are plotted for 
ITAS3D-based gland segmentations along with two benchmark methods (3D watershed and 2D U-net), as calculated 
from 10 randomly selected test regions. Violin plots are shown with mean values denoted by a center cross and 
standard deviations denoted by error bars. For the 3D Hausdorff distance, the vertical axis denotes physical distance 
(in microns) within the tissue. 
 

To demonstrate improved depth-wise continuity with our 2.5D image-translation strategy versus 

a similar 2D image-translation method (based on the “pix2pix” GAN), vertical cross-sectional 
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views of a synthetic-CK8 dataset are shown in Fig. 3b. While obvious distortions and 

discontinuities are seen as a function of depth with 2D image translation, the results of our 2.5D 

image-sequence translation exhibit optimal continuity with depth. To further illustrate this 

improved continuity with depth, Supplementary Video 4 shows a depth sequence of en face 

images (z stack). Abrupt morphological discontinuities between levels are again obvious with 2D 

translation but absent with the 2.5D translation approach.  To quantify the performance of our 

image-translation method, a 3D structural similarity (SSIM) metric was calculated in which real 

CK8 IF datasets were used as ground truth. For images generated with 2.5D vs. 2D image 

translation, the 3D SSIM (averaged over 58 test volumes that were 0.2-mm3 each) was 0.41 vs. 

0.37, reflecting a 12% improvement at a p value of 7.8 × 10-6 (two-sided paired t-test). This 

enhanced image-translation performance facilitates accurate 3D gland segmentations in 

subsequent steps of our computational pipeline. 

 

To assess segmentation performance, ground-truth gland-segmentation datasets were first 

generated under the guidance of board-certified genitourinary pathologists (L.D.T. and N.P.R.). 

A total of 10 tissue volumes from different patients (512 × 512 × 100 pixels each, representing 

0.2-mm3 of tissue) were manually annotated. We then compared the accuracy of ITAS3D with 

that of two common methods: 3D watershed 51 (as a 3D non-DL benchmark) and 2D U-Net 52 

(as a 2D DL benchmark). ITAS3D outperforms the two benchmark methods in terms of Dice 

coefficient 53 and 3D Hausdorff distance 54 (Fig. 3c). As a visual comparison between ITAS3D 

and the two benchmark methods, Supplementary Video 5 displays image-stack sequences 

from three orthogonal perspectives of a representative segmented dataset, where the higher 

segmentation accuracy of ITAS3D can be appreciated. Note that a 3D DL-based benchmark 

method is not provided since there are currently insufficient 3D-annotated prostate gland 

datasets to train an end-to-end 3D DL segmentation model 39,55,56 ; again, this is one of the main 

motivations for developing the annotation-free ITAS3D method.  
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Clinical validation study: glandular feature extraction and correlation with BCR 

outcomes. Due to the slow rate of progression for most PCa cases, an initial clinical study to 

assess the prognostic value of 3D vs. 2D glandular features was performed with archived 

prostatectomy specimens. Our study consisted of N = 50 PCa patients who were followed up for 

a minimum of 5 years post-RP as part of the Canary TMA case-cohort study 57. The Canary 

TMA study was based on a well-curated cohort of PCa patients in which the primary study 

endpoints were 5-year BCR outcomes and time to recurrence, which are also used as endpoints 

for our validation study. In the original Canary TMA study, approximately half of the patients 

experienced BCR within 5 years of RP, making it an ideal cohort for our study. We randomly 

selected a subset of 25 cases that had BCR within 5 years of RP (“BCR” group), and 25 cases 

that did not have BCR within 5 years of RP (“non-BCR” group).  

 

FFPE tissue blocks were identified from each case corresponding to the 6 regions of the 

prostate targeted by urologists when performing standard sextant and 12-core (2 cores per 

sextant region) biopsy procedures (Fig. 4a). Next, a simulated core-needle biopsy was 

extracted from each of the 6 FFPE tissue blocks for each patient (n = 300 total biopsy cores). 

The biopsies were deparaffinized, labeled with a fluorescent analog of H&E, optically cleared, 

and imaged nondestructively with a recently developed OTLS microscope 19 (see Methods). 

Review of the 3D pathology datasets by pathologists (L.D.T. and N.P.R.) revealed that 118 out 

of the 300 biopsy cores contained cancer (1 – 5 biopsies per case). The ITAS3D pipeline was 

applied to all cancer-containing biopsies. We then calculated histomorphometric features from 

the 3D gland segmentations, and from individual 2D levels from the center region of the biopsy 

cores (to mimic standard 2D pathology practices), which were then analyzed in terms of their 

association with BCR outcomes.  

 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 2, 2021. ; https://doi.org/10.1101/2021.08.30.21262847doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.30.21262847
http://creativecommons.org/licenses/by/4.0/


 17 

We compared multiple 3D and 2D glandular histomorphometric features (see Supplementary 

Table 1 for a detailed list). For example, the curvature of the boundary between the lumen and 

epithelium is a feature that increases as glands become smaller or more irregular, as is often 

seen with aggressive PCa 21. This can be quantified in the form of the average surface 

curvature of the object in 3D, or the curvature of the object’s cross-sectional circumference in 

2D (Fig. 4b). As another example (Fig. 4c), the gland-to-convex-hull ratio (G/H) is defined as 

the volume ratio (in 3D) or the area ratio (in 2D) of the gland mask (epithelium + lumen) divided 

by the convex hull that circumscribes the gland. This G/H feature is inversely related to the 

irregularity or “waviness” of the periphery of the gland (at the scale of the gland itself rather than 

fine surface texture), which is generally expected to increase with aggressive PCa 21. For 

various 3D and 2D features (Fig. 4d - 4e and Supplementary Table 1), receiver operating 

characteristic (ROC) curves were generated to quantify the ability of the features to stratify 

patients based on 5-year BCR outcomes. When comparing analogous 3D and 2D glandular 

features, the 3D features largely exhibit an improved correlation with 5-year BCR outcomes in 

comparison to their 2D counterparts.  This is exemplified by the significant p values for the 3D 

features showcased in Fig. 4b – 4c (between BCR and non-BCR groups) and higher area-

under-the-ROC-curve (AUC) values (Figs. 4d – 4e).  

 

We also extracted the 3D skeleton of the lumen network and quantified its branching 

parameters (skeleton-derived features). Example skeleton networks for benign and cancerous 

glands are shown in Supplementary Video 6. Due to the complex 3D branching-tree 

architecture of the gland-lumen network, there are no straightforward 2D analogs for these 

skeleton-derived features. In Fig. 4d, we show two examples of skeleton-derived features: the 

average branch length and the variance of the branch lengths. Both features are correlated with 

BCR outcomes based on p values and AUC values (Fig. 4f – 4g). Our analysis reveals that 

aggressive cancers (BCR cases) have shorter branch lengths and a smaller variance in branch 
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lengths, which agrees with prior observations from 2D histology that glandular structures in 

higher-grade PCa are smaller and more abundant (i.e., less differentiated and varied in size). A 

histogram of branch lengths (Supplementary Fig. 3) demonstrates that the vast majority of 

branches are < 200-μm long, which suggests that the diameter of standard prostate biopsies 

(~1-mm) is sufficient for whole-biopsy 3D pathology to quantify PCa branch lengths with 

reasonable accuracy. 

 

To explore the prognostic value of combining multiple glandular features, we used linear 

regression models for feature selection and classification based on 3D vs. 2D features (see 

Methods). Brief descriptions and AUC values for the 3D and 2D glandular features involved in 

training the multi-parameter models are shown in Supplementary Table 1. The ROC curve of a 

model that combined 12 non-skeleton 3D features (“3D non-skeleton model”) yielded an AUC 

value of 0.80 ± 0.05 (average ± standard deviation; Fig. 4h), which is considerably higher than 

the AUC value (0.65 ± 0.06) of the model trained with 12 analogous 2D features (“2D model”). 

By adding 5 skeleton-derived features to the 12 non-skeleton 3D features, a re-trained 3D 

multiparameter model (“3D model”) yielded a slightly higher AUC value of 0.81 ± 0.05. The 

distribution of the 50 cases, based on their glandular features, can be visualized using t-

distributed stochastic neighbor embedding (t-SNE), where a clearer separation between BCR 

and non-BCR cases is evident based on 3D vs. 2D glandular features (Supplementary Fig. 4). 

Multiparameter classification models based on 3D features alone (non-skeleton) or 2D features 

alone were used to divide patients into high- and low-risk groups based on 5-year BCR 

outcomes (Supplementary Table 3), from which Kaplan-Meier (KM) curves of BCR-free 

survival were constructed for a subset of cases in which time-to-recurrence (BCR) data are 

available (Fig. 4i). Compared to the 2D model, the 3D model is associated with a higher hazard 

ratio (HR) and C-index, along with a significant p value (p < 0.05), suggesting superior 

prognostic stratification.  
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Fig. 4 | Clinical study comparing the performance of 3D vs. 2D glandular features for risk stratification. a, 
Archived (FFPE) radical prostatectomy (RP) specimens were obtained from a well-curated cohort of 50 patients 
treated over a decade ago, from which 300 simulated (ex vivo) needle biopsies were extracted (6 biopsies per case, 
per sextant-biopsy protocol). The biopsies were labeled with a fluorescent analog of H&E staining, optically cleared to 
render the tissues transparent to light, and then comprehensively imaged in 3D with open-top light-sheet (OTLS) 
microscopy. Prostate glands were computationally segmented from the resultant 3D biopsy images using the ITAS3D 
pipeline, and glandular features (shown in panels b-g) were extracted. b,c, Violin and box plots are shown for two 
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examples of 3D glandular features, along with analogous 2D features, for cases in which biochemical recurrence 
(BCR) was observed within 5 years of RP (“BCR”) and for cases with no BCR within 5 years of RP (“non-BCR”).  For 
both sets of example features, “lumen boundary curvature” in panel b and “gland-to-convex hull ratio” (G/H) in panel 
c, the 3D version of the feature shows improved stratification between BCR and non-BCR groups. d,e, Receiver-
operating-characteristic (ROC) curves also show improved risk stratification with the 3D features vs. corresponding 
2D features, with considerably higher area-under-the-curve (AUC) values. f, Violin and box plots are shown of 
representative gland-skeleton features (average branch length and branch length variance), which can only be 
accurately derived from the 3D pathology datasets, showing significant stratification between BCR and non-BCR 
groups. g, ROC curves are shown, along with AUC values, for average branch length and branch length variance. h, 
ROC curves are shown of various multiparameter models, including those trained with 2D glandular features, 3D 
glandular features excluding skeleton features, and 3D glandular features including skeleton features. i, Kaplan-Meier 
curves are shown for BCR-free survival, showing that a multiparameter model based on 3D glandular features is 
better able to stratify patients into low-risk and high-risk groups with significantly different recurrence trajectories (p = 
6.6 × 10-5, HR = 11.2, C-index = 0.84).  
 

 

Discussion 

As high-resolution biomedical imaging technologies continue to evolve and generate 

increasingly larger datasets, computational techniques are needed to derive clinically actionable 

information, ideally through explainable approaches that generate new insights and hypotheses. 

Interpretable feature-based analysis strategies in digital pathology generally hinge upon 

obtaining high-quality segmentations of key structural primitives 10,29 (e.g., nuclei, glands, cells, 

collagen).  However, a common bottleneck to achieving accurate segmentations is the need for 

large amounts of manually annotated datasets 40. In addition to being tedious and difficult to 

obtain (especially in 3D), such annotations are often performed by one or more individuals who 

are not representative of all pathologists, thereby introducing an early source of bias.  The use 

of simulated data has been explored to alleviate the need for manual annotations, and has been 

reported to be effective for training DL-based segmentation models for highly conserved and 

predictable morphologies (e.g. ellipsoidal nuclei 58,59, or tubular vessel networks 59,60).  However, 

the 3D glandular networks of prostate tissues are highly irregular and variable, making it 

challenging to computationally generate simulated datasets. This complex and varied 3D 

morphology is also in part why 2D Gleason patterns may not be ideal for characterizing prostate 

glands.  
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The ITAS3D pipeline is a general approach for the volumetric segmentation of tissue structures 

(e.g., vasculature / endothelial cells, neurons, collagen fibers, lymphocytes) that can be 

immunolabeled with high specificity and that are also discernable to a deep-learning model 

when labeled with small-molecule stains like our H&E analog or similar covalent stains 61. 

ITAS3D obviates the need for tedious and subjective manual annotations and, once trained, 

eliminates the requirement for slow/expensive antibody labeling of thick tissues (Fig. 1). The 

2.5D segmentation approach employed in ITAS3D (i.e., image-sequence translation) offers an 

attractive compromise between computational speed/simplicity and accuracy for 3D objects that 

are relatively continuous in space (e.g., prostate glands).  Details regarding 2.5D vs. 3D image 

translation are provided in Supplementary Note 2.  In addition, a video summary of our 

ITAS3D-enabled gland-segmentation approach for PCa assessment is provided in 

Supplementary Video 7.  Note that in this specific implementation of ITAS3D, intermediate 

images are synthetically generated to mimic an IHC stain (CK8) that is routinely used by 

genitourinary pathologists. Therefore, it has the added advantage of enabling intuitive 

troubleshooting and facilitating clinical acceptance of our computational 3D pathology approach.   

 

In this initial clinical study, we have intentionally avoided comparing our method with extant risk 

classifiers or nomograms that are largely based on 2D pathology (e.g. Kattan 62, CAPRA 63, and 

Canary-PASS 64).  Rather, our goal has been to demonstrate the basic feasibility and value of 

3D pathology by providing a direct comparison of intuitive 3D vs. 2D glandular features. Our 

results show clear improvements in risk stratification based on 3D glandular features, both 

individually and in combination (Fig. 4b – 4i). As mentioned, the added prognostic value of 3D 

pathology is due in part to the significantly increased microscopic sampling of specimens (e.g. 

whole biopsies vs. sparse tissue sections).  In addition, there are a number of advantages of 3D 

pathology datasets for computational analyses: (1) more-reliable segmentation of tissue 

structures due to the ability to leverage out-of-plane information (e.g. through continuity 
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constraints); (2) the ability to quantify tissue structures more accurately in 3D while avoiding 2D 

artifacts 11,65, and (3) the ability to extract novel prognostic features that cannot be derived from 

2D tissue sections (e.g. gland-skeleton features).   

 

When trained with large numbers of images/cases and an optimal set of histomorphometric 

features, computational 2D pathology (based on whole slide images) has been shown to be 

highly prognostic 21,66.  The goal of our study is not to suggest otherwise, but to provide early 

evidence of the additional prognostic value that 3D pathology can provide. The metrics 

presented in this study (Fig. 4) are intended to be comparative in nature (between 3D vs. 2D 

pathology) rather than regarded as definitive figures from a large prospective study.  

 

A limitation of our implementation of ITAS3D is that the tissues used to train our deep-learning 

image-sequence translation modules were predominantly from Gleason pattern 3 and 4 regions, 

as well as benign regions. Improved ITAS3D performance over a wider range of PCa grades 

would be facilitated by a more-diverse set of training specimens. To more-rigorously 

demonstrate the ability of 3D pathology to improve upon the standard-of-care for managing 

PCa, larger patient cohorts and imaging datasets are needed, including prospective randomized 

studies on active surveillance vs. curative therapies for low- to intermediate-risk patients (e.g., 

the PROTECT study 67), as well as studies to demonstrate the ability of computational 3D 

pathology to predict the response of individual patients to specific treatments such as androgen 

deprivation and both neoadjuvant and adjuvant chemotherapy. However, as mentioned 

previously, the slow progression rate of most PCa cases motivates the use of archived tissues 

for initial validation studies, as showcased here. Finally, future studies should also aim to 

combine computational 3D pathology with patient metadata, such as radiomics, genomics, and 

electronic health records, to develop holistic decision-support algorithms 10. 
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As future work, ITAS3D can be used for the extraction and analysis of other 3D features (e.g. 

nuclear features, vascular features, and stromal features) to develop powerful classification 

models based on multiple morphologic primitives for a variety of tissue types. Annotation-free 

ITAS3D segmentation results, once available in sufficient quantities, can also be used to train 

end-to-end DL-based segmentation methods that bypass the image-translation step within 

ITAS3D. In the context of PCa, studies are underway to identify additional prognostic 3D 

features based on our unique 3D-pathology datasets. A tiered approach to analyzing PCa 

glandular features could be useful, such as first identifying broad classes of glandular 

morphologies (e.g., cribriform glands) and then analyzing class-specific features, as has been 

suggested in recent studies based on 2D whole slide images of PCa 66. Nonetheless, as an 

initial step towards these goals, the results of this study, as enabled by the ITAS3D 

computational approach, provide the strongest evidence to date in support of the value of 

computational 3D pathology for clinical decision support, specifically for low- to intermediate-risk 

PCa patients. 

 

Data availability 
 

Example prostate images for testing ITAS3D codes and models are available in a GitHub 

repository at https://github.com/WeisiX/ITAS3D. Full 3D prostate imaging datasets are available 

upon reasonable request and with the establishment of a material-transfer or data-transfer 

agreement. Relevant clinical data for this study are provided in Supplementary Table 3. 

 

Code availability 

The Python code for the deep-learning models, and for 3D glandular segmentations based on 

synthetic-CK8 datasets, are available on GitHub at https://github.com/WeisiX/ITAS3D 
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