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ABSTRACT 

Background: The tumor immune microenvironment (TIME) plays a key role in occurrence, 

progression and prognosis of colorectal cancer (CRC). However, the genetic and epigenetic 

alterations and potential mechanisms in the TIME of CRC are still unclear. 

Methods: We investigated the immune-related differences in three types of genetic or 

epigenetic alterations (gene expression, somatic mutation, and DNA methylation) and 

considered the potential roles that these alterations have in the immune response and the 

immune-related biological processes by analyzing the multi-omics data from The Cancer 

Genome Atlas (TCGA) portal. Additionally, a four-step method based on LASSO regression 

and Cox regression was used to construct the prognostic prediction model. Cross validation 

was performed to validate the model. 

Results: A total of 1,745 differentially expressed genes, 178 differentially mutated genes and 

1,961 differentially methylation probes were identified between the high-immunity group and 

the low-immunity group. We retained 15 genetic and epigenetic variables after using LASSO 

regression and Cox regression. For the prognostic predictions on the TCGA profiles, the 

performance of the model with 1-year, 3-year, and 5-year areas under the curve (AUCs) equal 

to 0.861, 0.797, and 0.875. Finally, the overall risk score model was constructed based on 

genetic, epigenetic, demographic and clinical characteristics, which comprised 18 variables 

and achieved a high degree of accuracy on the 1-year (AUC = 0.865), 3-year (AUC = 0.839), 

and 5-year (AUC = 0.914) survival predictions. Kaplan-Meier survival analysis 

demonstrated that the overall survival of the high-risk group was significantly poorer compared 

with the low-risk group. Prognostic nomogram, calibration plot and cross validation showed 

excellent predictive performance. 
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Conclusions: Our study provides a new clue to explore the TIME of CRC patients in genetic 

and epigenetic aspects. Meanwhile, the prognostic model also has clinical prognostic value 

and may provide new indicators for the treatment of CRC patients.  
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INTRODUCTION 

Colorectal cancer (CRC) is currently the third most common cancer in terms of morbidity 

and mortality according to Cancer Statistics 2020. It results in approximately 147,950 new 

cases and 53,200 deaths in the United States each year1. The tumor-node-metastasis (TNM) 

staging system proposed by The international American Joint Committee on Cancer (AJCC) 

provides both traditional and current guidelines for the classification of CRC patients2,3. 

However, even patients in the same stage and receiving the same clinical treatment have 

different survival outcomes4,5. Therefore, it is very crucial to find new indicators with prognostic 

value for the treatment of patients.  

With the development of medical technology, the treatment of CRC patients has 

developed from surgery, chemotherapy and radiotherapy to the current biological targeted 

therapy and immunotherapy6,7. For example, immune checkpoint blockers (ICBs) therapies 

show satisfactory results in the treatment of patients with microsatellite instability-high 

(MSI-H)/mismatch repair deficiency (dMMR)8. However, this method is affected by the tumor 

immune microenvironment (TIME). Therefore, an in-depth understanding of the tumor 

microenvironment (TME) is of great significance to the choice of immunotherapy. 

TME refers to the surrounding microenvironment in which tumor cells exist, including 

blood vessels, immune cells, fibroblasts, bone marrow-derived inflammatory cells, various 

signal molecules and extracellular matrix, which are closely related to tumor progression and 

immunotherapy results9-11. Tumor-associated macrophages (TAMs) are major components of 

tumor microenvironment that frequently associated with tumor metastasis and 

chemoresistance12,13. In addition, some indicators related to the TIME are gradually 

established. For example, 5 genes were identified as fibroblast-specific biomarkers in TIME of 

poorer prognosis of CRC patients by Zhou et al.14. Additionally, Wang et al.15 established an 

immune-related prognostic signature consisting of 8 genes which reflects the dysregulated 
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TIME and has a potential for better CRC patient management. However, most of the 

prognostic models for CRC only contain gene expression profiles and cannot reflect the 

overall situation of TIME15,16. 

To solve this problem, we aim to use the gene expression profiles from The Cancer 

Genome Atlas (TCGA) portal to construct TME infiltration pattern and evaluate the relationship 

between TIME and the genetic or epigenetic signatures through different immune levels. We 

expected to construct a prognostic prediction model using significant gene expression, 

whole-exome sequencing and DNA methylation data in order to have a comprehensive 

understanding of the immune-related genetic and epigenetic changes in CRC patients. 

 

MATERIALS AND METHODS 

Data Collection 

Totally, 428 tumor samples and 38 normal samples of RNA-seq data, 363 tumor profiles 

of somatic mutation data processed by VarScan2, 271 tumor DNA methylation profiles based 

on the Illumina Human Methylation 450 platform, and corresponding demographic and clinical 

information were collected from the TCGA portal. 

TME Construction 

Construction of the TME was based on the transcriptome profiles with HTSeq-FPKM 

format from TCGA portal using the estimate algorithm16. Stromal, immune and estimate 

scores were calculated by R package “estimate” and compared between tumor samples and 

normal samples. Then, X-tile software17 was used to determine the best cut-off values of 

stromal, immune and estimate scores, the tumor samples were divided into high-immunity 

group and low-immunity group by the best cut-off value of immune scores. CIBERSORT 

algorithm18 was used to quantify the proportions of 22 various immune cell components of 
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CRC patients based on RNA-seq data. The P value of CIBERSORT represented the statistical 

significance, and samples with a P value < 0.05 were subjected to subsequent correlation 

analysis. Mann-Whitney U test or Kruskal-Wallis test was used to compare stromal, immune 

and estimate scores between different groups. For the tumor samples of the somatic mutation 

and DNA methylation data, we also constructed a high-immunity group and a low-immunity 

group by mapping the sample IDs of the gene expression profiles. 

Multi-omics Data Analysis 

For gene expression profiles, calculation of differential expressed genes (DEGs) was 

conducted using R package “edgeR”19 between the high-immunity group (n = 322) and the 

low-immunity group (n = 106). The criteria of DEG was log2 |Fold Change| > 1 and false 

discovery rate (FDR) < 0.05.  

For somatic mutation data, we obtained profiles disposed by Varscan220 from TCGA 

database and analyzed via the R package “maftools”, which provides a large amount of 

commonly used analysis and visualization modules in cancer genomic studies21. Somatic 

mutation profiles of the high-immunity group (n = 267) and the low-immunity group (n = 96) 

were used to detect the mutation types and SNVs. Identification of differential mutated genes 

(DMGs) was based on Fisher’s exact test with a P value < 0.05. The co-occurrence and 

mutually exclusivity analysis were carried out separately on the high-immunity cohort and the 

low-immunity cohort based on the CoMEt algorithm22. 

DNA methylation profiles based on the Illumina Human Methylation 450 platform were 

obtained from TCGA portal to detect the relationship between DNA methylation pattern and 

different immune levels. We processed DNA methylation data by deleting DNA methylation 

sites in which more than 20% samples have missing beta values and filling in remaining 

missing beta values based on k-nearest neighbor method. Then, R package “ChAMP”23 was 

used to filtered low-quality probes by ChAMP’s filter function, normalized by champ.norm 
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function and detected differential methylation probes (DMPs) between the high-immunity 

group (n = 191) and the low-immunity group (n = 80) by champ.DMP function. Furthermore, 

the correlation between the DNA methylations and gene expressions in different immune 

levels was explored via the Pearson correlation. 

Functional Enrichment Analysis 

Gene Ontology (GO) enrichment analysis of the DEGs and DMP-associated genes and 

Gene Set Enrichment Analysis (GSEA) were performed based on the R package 

“clusterProfiler”24. 

Construction and Validation of Prognostic Model 

Multi-omics data, overall survival time and status were used to establish prognostic model. 

We only considered samples which had gene expression values, somatic mutation status and 

DNA methylation probes to construct prognostic prediction model.  

The workflow of exploring the prognostic model from various immunity-related genetic or 

epigenetic alterations in CRC patients consists of four steps: (1) the LASSO Cox regression 

was performed to drop the less contributive variables using the R package “glmnet”25. (2) 

multivariate Cox proportional hazard regression with stepwise method to fit the prognostic 

prediction model using selected variables based on the “survival” R package and stepAIC 

function in the R package “MASS”. (3) The predictive risk score of each patient was calculated 

based on prognostic model by predict function in “survival” R package. The patients were 

stratified into high-risk group and low-risk group by the median value of their risk scores. Then, 

Kaplan-Meier method and the log-rank test was used to compare the difference in overall 

survival between high and low risk groups. 1-year, 3-year, and 5-year receiver operating 

characteristic curve (ROC) were drew using the R package “timeROC”26. Nomogram and 

calibration plot were predicted by “rms” and “caret” R package, respectively. (4) The 

prognostic signatures were constructed again combined with three other demographic and 
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clinical factors (age, sex and pathologic stage) and further included in the multivariate Cox 

proportional hazards regression model to evaluate the overall effect and assess the 

performance as step 3. 

For the validation of prognostic model, 5-fold cross validation was performed to 

accomplish reliable predictive measurement based on “caret” R package27. In the 5-fold cross 

validation, the TCGA samples were randomly divided into five different sets, four sets were 

used for training, and the remaining set was used for validation. 
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RESULTS 

Construction of the TME  

RNA-seq profiles with complete clinical information were collected from 466 samples, 

including 428 tumor samples and 38 normal samples. As shown in Figure 1A, the stromal 

scores ranged from -2,165.02 to 1,679.72, the immune scores were between -892.30 to 

2,378.73, and the estimate scores were distributed from -2,843.32 to 4,058.45. Stromal, 

immune and estimate scores in normal group were significantly higher than those in tumor 

group (P < 0.05).  

Then, the tumor group was retained to further construct the TME. The best cut-off values 

of stromal, immune and estimate scores, which were -28.83, 14.66 and -1,451.13, respectively. 

The tumor group were divided into high and low score groups according to the best cut-off 

values. As shown in Figure S1A, there were no significant differences in stromal scores 

among pathologic stage (P = 0.77), tumor size (P = 0.30), lymph node (P = 0.13), and distance 

metastasis (P = 0.65). Kaplan–Meier plot revealed that survival probability between low 

stromal group and high stromal group had no significant difference (P = 0.095). The same 

situation was existed in estimate scores among pathologic stage (P = 0.59), tumor size (P = 

0.59), lymph node (P = 0.67), distance metastasis (P = 0.08) and overall survival (P = 0.140) 

(Figure S1B). In contrast, the immune scores were different among pathologic stage (P < 0.05) 

(Figure 1C). Multiple comparisons showed that stage II had a higher immune score in 

comparison to stage IV (FDR < 0.05). M0 had a significantly higher immune score than M1 in 

distance metastasis (P < 0.05) (Figure 1E). Furthermore, samples with low immune scores (n 

= 106) had a bad prognosis compared with those subjects belong to high immune scores 

group (n = 322) (Figure 1B).  

Exploring the Tumor-infiltrating Immune Compositions 

The immune infiltrating cell composition of each sample was shown in Figure S2, CD4 
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resting memory T cell, CD8 T cell, naive B cell and macrophages (including M0, M1, and M2) 

account for more than half proportions. Next, we compared the components of immune cells in 

the high and low-immunity groups, the results showed that the proportion of M1 macrophages, 

M2 macrophages, CD8 T cells, naive B cells, and neutrophils in the high immunity group was 

significantly larger, while the low immunity group had significantly larger fractions of M0 

macrophages, memory B cells, resting NK cells, and naive CD4 T cells (P < 0.05) (Figure 1G). 

Identification of Differentially Expressed Genes Related to TIME. 

The collected RNA-seq profiles of CRC patients were used to identify differentially 

expressed genes (DEGs) between the high-immunity group and the low-immunity group. In 

the high-immunity group, 1617 genes and 128 genes were significantly up-regulated and 

down-regulated, respectively (Figure 2A). 

The results of Gene Ontology (GO) term enrichment analysis showed that the 

up-regulated genes were found to be enriched in the biological processes related to immune 

regulation and activation such as “lymphocyte mediated immunity” and “humoral immune 

response” (Figure 2C), meanwhile, the down-regulated genes were significantly enriched in 

the GO term such as “negative regulation of gene expression, epigenetic” and “nucleosome 

assembly”, indicating that those genes played a role in gene expression and transcription 

processes (Figure 2B). 

Landscape of Significantly Mutated Genes in Different Immune Levels  

On the whole. As shown in Figure 3A, the numbers of nonsense mutation and nonstop 

mutation in high-immune group were larger than low-immune group (P < 0.05), and the 

percentage of nonstop mutation in high-immune cohort was larger than low-immune group (P 

< 0.05). Meanwhile, missense mutation was the largest proportion of gene mutations, 

accounting for almost 85% in both the high-immunity cohort and low-immunity group, and 

there appeared a larger percentage of missense mutations in the low-immunity group 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 30, 2021. ; https://doi.org/10.1101/2021.08.30.21262762doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.30.21262762


 

comparing to the high one (P < 0.05) (Figure S3A). The remaining mutation types showed no 

significant difference. As for SNVs, C > T mutation was the vast majority of various SNV types 

both in the high-immunity cohort (median frequency = 294.15; median percentage = 60.63%) 

and the low-immunity cohort (median frequency = 176.18; median percentage = 61.49%), the 

numbers of T > G, T > C and T > A, as well as the percentage of T > C in the high-immunity 

cohort were larger in comparison with the low-immunity cohort (Figure 3B and Figure S3B). 

 Panoramic views of the top 15 most frequently mutated genes of the high-immunity and 

the low-immunity groups in each sample were displayed in Figure 3C. APC, TP53, TTN and 

KRAS were accounted for the top four positions in both cohorts. As shown in Figure 3D, the 

number of pairwise genes of significant co-occurring and mutually exclusive mutations in the 

high immunity group is larger than that in the low immunity group. However, mutually exclusive 

relationship between TP53-PIK3CA was significantly in both two cohorts (P < 0.05). 

Additionally, there were 178 genes showed differential mutation frequencies between the 

high-immunity and the low-immunity cohorts (Fisher’s exact test, P < 0.05), ranked by 

ascending order of p-value (Table S1), and the top 20 genes are displayed in Figure 3E.  

Depicting Differential Methylation Probes in TIME 

DNA methylation is one of the most ubiquitous epigenetic modifications regulating gene 

expression that have an impact on the progression of various cancers28. A total of 1,961 DMPs 

related to immune levels were identified based on the criteria of ∆ β > 0.15 and FDR <0.05 

(Figure 4A and Table S2). In the high-immune group, there were 155 (7.90%) 

hypermethylation sites related to 124 genes and were located on 133 CpG islands; 1806 

(92.10%) hypomethylation sites involving 1370 genes and were located on 640 CpG islands. 

On the whole, the high-immunity group tends to have hypomethylated sites. Of the 1,473 

DMP-associated genes, 21 genes had both hypermethylation sites and hypomethylation sites; 

1349 genes had only hypomethylation sites, and 103 genes had only hypermethylation sites. 
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Meanwhile, a lot of DMP-associated genes were differentially expressed between the 

high-immunity group and the low-immunity group according to the criteria of log2 |Fold 

Change|> 1 and FDR < 0.05. Compared to the low-immunity group, there were 144 

up-regulated DEGs and a down-regulated DEG (GRM4) among 1370 hypomethylation genes 

(Table S3) and only 15 up-regulated DEGs among the 124 hypermethylation genes (Table S4) 

in the high-immunity group. The results of GO enrichment analysis showed that the 

DMP-associated genes were mainly enriched in the biological processes related to neuronal 

signal regulation such as “dendrite morphogenesis” and “synapse organization” (Figure 4B). 

Especially, gene set enrichment analysis (GSEA) shows that the DMP-associated genes with 

highly positive fold change differences have more essential contributions to the biological 

processes which related to immune regulation, indicating that DNA methylation may be 

involved in immune response through neuronal signal transmission (Figure 4C). 

The results of correlation between DNA methylations and gene expressions in different 

immune levels showed that among the 1,473 identified DMP-associated genes, there were 

111 positively correlated and 259 negatively correlated genes in the low-immunity group 

(Table S5). In contrast, in the high-immunity group, there were 336 positively correlated and 

376 negatively correlated genes (Table S6) (Pearson correlation, P < 0.05). In general, the 

correlation between DNA methylations and gene expressions was more inclined to negatively 

correlated in the low-immunity group. Meanwhile, as shown in Figure 4D, the immune level 

did not affect the correlation between DNA methylations and gene expressions. 

Construction and Validation of Prognostic Model 

In summary, there were some significant immune-related changes in the multi-omics data, 

including gene expressions, somatic mutations, and DNA methylations. In terms of gene 

expressions, a total of 1617 up-regulated genes and 128 down-regulated genes were 

detected in the high-immunity group. For somatic mutations, 10 and 168 significantly mutated 
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genes were explored in the low-immunity group and the high-immunity group, respectively. As 

to DNA methylations, 1961 differential methylation probes related to immune levels were 

identified. We obtained 264 samples with these three types of data to construct prognostic 

model, detailed demographic and clinical information were displayed in Table 1. 

Table 1. Summary information of colorectal cancer patients. 

Characteristics 
CRC patients (N = 264) 

 
Number %  

 
PROJECT  
COAD 224 84.85  
READ 40 15.15  
AGE  
>60 169 64.02  
<=60 95 35.98  
GENDER  
Female 123 46.59  
Male 141 53.41  
PATHOLOGIC STAGE  
Stage I 41 15.53  
Stage II 101 38.26  
Stage III 81 30.68  
Stage IV 41 15.53  
TUMOR STAGE  
T1 + Tis 8 3.03  
T2 37 14.02  
T3 186 70.45  
T4 33 12.5  
METASTATIC  
M0 192 72.73  
M1 40 15.15  
MX 32 12.12  
LYMPH NODE STATUS  
N0 147 55.68  
N1 73 27.65  
N2 44 16.67  
SURVIVAL TIME  
>5 years 36 13.64  
<= 5 years 228 86.36  
STATUS  
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Alive 207 78.41  
Dead 57 21.59  

 

We identified signatures related to prognosis from numerous genetic changes through 

LASSO regression and Cox proportional hazard regression. Firstly, the LASSO Cox 

regression was performed to drop the less contributive variables, the regularization parameter 

was set to log(lambda) = -2.94. 32 variables were reserved (Table S7). Then, 32 variables 

included in the stepwise multivariate Cox proportional hazard regression to fit the best model 

that comprising of 19 variables. We tested the collinearity between the variables and deleted 4 

of them, leaving 15 variables as prognostic signatures, including the expression levels of 

AL139352.1, CST6, DNASE1L3, FCRL2, GRM4, HOTAIR, IGLV6-57, PLEKHF1 and 

SLC25A24P1, the mutation status of GRIK2 and NXF3, and the methylation levels of 

cg01726287, cg10717401, cg14332653 and cg16559243 (Figure S5A), the average 

concordance index (C-index) equal to 0.825 and the average AUC values predicted by the 

model for 1-year, 3-year, and 5-year were 0.861, 0.797, 0.875, respectively (Figure 5A). Next, 

we calculated the risk score of each sample according to the established model, the samples 

were divided into high-risk group and low-risk group according to the median risk score. 

Kaplan-Meier survival analysis (Figure S5B) displayed that the overall survival of the high-risk 

group was significantly poorer compared with the low-risk group (P < 0.001). 

Subsequently, to evaluate the influence of clinical characteristics on overall survival, the 

previous model was further combined with three clinical characteristics (age, gender and 

pathologic stage) to construct a new Cox model (Table S8). As shown in Figure 5C, variables 

were significantly expect gender (P > 0.05). The average concordance index (C-index) of new 

model was 0.842 and the average AUC values predicted by the new model for 1-year, 3-year, 

and 5-year were 0.865, 0.839, 0.914, respectively (Figure 5B), the performance of this model 
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was slightly improved compared to the previous model. We calculated the risk score of each 

sample based on the model that incorporates clinical characteristics and grouped samples by 

median risk score (Figure 5D). The results showed that the prognosis of the high-risk group 

was still significantly poorer than that of the low-risk group (Figure 5E). Therefore, a 

combination of 18 variables was determined as a prognostic prediction model, including 15 

variables about genetic alterations and 3 clinical factors. 

A prognostic nomogram for prediction of 1-year, 3-year, and 5-year overall survival based 

on 15 genetic alterations, age, gender and pathologic stage in CRC patients was established 

(Figure S6A). Calibration curves indicated that actual and nomogram-predicted overall 

survival matched very well (Figure S6B). For the lack of database contained these three types 

of data, 5-fold cross validation was performed to accomplish reliable predictive measurement. 

In the 5-fold cross validation, the TCGA samples were randomly divided into five different sets, 

four sets were used for training, and the remaining set was used for validation. As shown in 

Table 2 and Figure S7, the average 1-year, 3-year, and 5-year AUC of the training sets were 

0.871, 0.847 and 0.919, respectively, and the corresponding index of the validation sets equal 

to 0.861, 0.813 and 0.899, respectively. 

Table 2. The AUC value and C-index of 5-fold cross validation 

Model 1-Year AUC 3-Year AUC 5-Year AUC C-index 

Training Set 1 0.863 0.818 0.895 0.843 

Test Set 1 0.854 0.884 0.954 - 

Training Set 2 0.923 0.863 0.937 0.886 

Test Set 2 0.688 0.650 0.830 - 

Training Set 3 0.862 0.838 0.903 0.839 

Test Set 3 0.856 0.860 0.988 - 

Training Set 4 0.854 0.851 0.935 0.837 

Test Set 4 0.934 0.861 0.799 - 

Training Set 5 0.852 0.866 0.923 0.834 

Test Set 5 0.973 0.812 0.924 - 
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Average     

Training Set 0.871 0.847 0.919 0.848 

Test Set 0.861 0.813 0.899 - 

 
DISCUSSION 

Increasing studies have revealed the complex mechanisms of the occurrence and 

development of CRC, such as IncRNA-mediated regulation of Wnt/β-catenin signaling29,30. 

However, the current understanding of TME, especially the impact of TIME on the prognosis of 

patients with CRC, is not yet comprehensively understood.  

In our study, firstly, using estimate algorithm, we calculated stromal, immune and estimate 

scores for CRC patients and explored the potential connection between scores and overall 

survival. In survival analysis between high and low score group, the result is significant in 

immune scores but not in stromal and estimate scores. To sum up, the tumor infiltration 

immune scores have a stronger clinical correlation than the stromal scores and estimate 

scores. Therefore, following analysis were based on TIME. 

Subsequently, we used gene expression data to construct the TME of CRC patients, and 

compared the components of immune-infiltrating cells. Then, we explored the genetic and 

epigenetic alterations between different immune groups and the potential mechanism. The 

enrichment analysis results showed that apart from the representative immune-related 

biological processes such as leukocyte activation and immune response, some genetic 

alterations were also involved in transcription processes and neuronal signal regulation. 

Down-regulated genes may play a vital role in the transcription process of tumor cells and 

immune infiltrating cells. In addition, genes with differentially methylated sites may regulate 

immune responses through neural signaling pathways such as dendrite development and 

synapse organization, thereby affecting tumor progression and metastasis. A number of 

studies also reported similar findings31-33. Finally, a prognostic prediction model was 
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constructed based on the selected genetic, epigenetic, demographic and clinical variables, 

which had a superior performance with a higher AUC or C-index value in comparison to the 

previous prognostic models14,15.  

As expected, the proportion of some immune-infiltrating cells had a significantly difference 

between the high-immunity group and the low-immunity group. For example, M1 

macrophages participate in the inflammatory response and anti-tumor immune process by 

secreting pro-inflammatory cytokines such as IL-1, IL-12, TNF-α and many chemokine 

ligands34, which is consistent with our findings that M1 macrophages accounted for a 

significantly higher proportion in the high-immune group. 

Interestingly, the mutation frequency of APC, TP53, TTN and KRAS were accounted for 

the top four positions in both immunity cohorts, indicating that the four genes are less 

regulated the process related to immune infiltration but mainly participated in tumorigenesis 

and progression35-37. It is worth noting that gene mutations in different immune levels may 

have different effects on prognosis. For example, the mutation of TTN in the high-immunity 

cohort resulted in a worse prognosis for patients (P < 0.05), however, this situation did not 

occur in the high-immunity cohort. Meanwhile, a research found that TTN mutation was 

enriched in samples with high immunostimulatory signatures and suggested that TTN 

mutation load represents high TMB status38. Therefore, TTN mutation may be a therapeutic 

target for CRC patients. In contrast to the pervasive co-occurrence case, there is a unique 

situation in two groups (TP53-PIK3CA) that was mutually exclusive mutations, which indicates 

them probably share the same pathway within redundant effect. 

After that, we considered whether there is a correlation between DNA methylations and 

gene expressions in different immune levels39. In general, the correlation between DNA 

methylations and gene expressions was more inclined to negatively correlated in the 

low-immunity group. Meanwhile, as shown in Figure 4D, the immune level did not affect the 
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correlation between DNA methylations and gene expressions. 

Our study provides a comprehensive interpretation of TIME for CRC patients and 

establishes a predictive model with superior performance. However, there are still some 

limitations. The first drawback is that, because lacking the multi-omics data and corresponding 

clinical information, we only collected data from TCGA portal and did not include data from 

other sources. The model built in this study cannot be verified on other datasets. The second 

limitation is that the application of three types of profiles used in this study, including RNA-seq, 

WES and DNA methylation data, which are expensive to detected and not easy to implement 

in clinical practice. Despite the above shortcomings, there is no denying that our research 

provides a new clue to explore the TIME of CRC patients in many aspects. Meanwhile, the 

model also has clinical prognostic value and may provide new biomarkers for the treatment of 

CRC patients. 
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FIGURE LEGENDS 

Figure1. Construction of TME in CRC patients. (A) Comparison of the distributions of estimate, 

immune and stromal scores between tumor and normal samples. (B) Kaplan-Meier curves 

show the independent relevance between overall survival time and immune scores. (C) 

Comparison of immune scores on the pathological stage. Comparisons of immune scores on 

(D) tumor size, (E) distance metastasis, and (F) lymph nodes. (G) Comparisons of the immune 

cell members between high-immunity group and low-immunity group. Symbols indicated 

statistical significance for the Mann-Whitney U test: ns, P > 0.05; *, P <= 0.05; **, P <= 0.01; 

***, P <= 0.001; ****, P <= 0.0001. 

 

Figure2. Investigation of the Immune Infiltration-Dependent Expression Change. (A) Volcano 

plot showing the differentially upregulated (red nodes) and downregulated genes (blue nodes). 

(B) Bar plot showing the biological processes enriched by the downregulated genes. (C) Bar 

plot showing the biological processes enriched by the upregulated genes. The y axis in (B) 

and (C) reflects the name of GO terms. The x axis reflects the overlapped gene numbers 

between each GO term and query gene set. The color of the bars represents the gradient of 

adjusted p values (FDR correction). 

 

Figure 3. Landscape of Somatic Mutation in High-Immunity and Low-Immunity Cohorts. (A) 

Boxplots showing the comparisons of mutation frequencies of every mutation type classified 

by effects every mutation type classified by effects. (B) Boxplots showing the comparisons of 

mutation frequencies of every mutation type classified by effects every mutation type classified 

by effects and SNP. (C) Waterfall plot shows the mutation distribution of the top 15 most 

frequently mutated genes. The central panel shows the types of mutations in each CRC 

sample. The upper panel shows the mutation frequency of each CRC sample. The bar plots 
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on the right side show the frequency and mutation type of genes mutated in the low-immunity 

and high-immunity cohort. The lower part shows the clinical features (pathological stage, 

gender, sex, and race) and SNV types of each sample. The bottom panel is the legend for 

mutation types and clinical features. (D) The heatmap illustrates the mutually co-occurring and 

exclusive mutations of the top 25 frequently mutated genes. The color and symbol in each cell 

represent the statistical significance of the exclusivity or co-occurrence for each pair of genes. 

(E) Forest plot displays the top 10 most significantly differentially mutated genes between two 

groups. Symbols indicated statistical significance for the Mann-Whitney U test or Fisher’s 

exact test: ns, P > 0.05; *, P <= 0.05; **, P <= 0.01; ***, P <= 0.001. 

 

Figure 4. DNA Methylation Pattern in TIME. (A) Volcano plot showing the differentially 

methylation probes. (B) Bar plot showing the results of GO biological process enrichment 

analyses on DMP-associated genes. (C) Gene set enrichment analysis (GSEA) shows the 

significant enrichment in four immune-associated biological processes. (D) Scatterplot 

showing the correlations of methylation-expression correlation coefficients between 

high-immunity and low-immunity cohorts. 

 

Figure 5. Establishing a Prognostic Model for CRC. (A) ROC curves of the risk score for 

predicting 1-year, 3-year, and 5-year survival. (B) ROC curves of the risk score combined with 

clinical factors for predicting 1-year, 3-year, and 5-year survival. (C) Forest plot of the 

prognostic impact of 18 variables. (D) Scatterplots illustrate the distribution of risk score and 

survival status of CRC patients. (E) Kaplan-Meier curves show the independent relevance 

between overall survival time and risk score. 
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