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Abstract 

 

Background: Copy number aberrations (CNAs) in cancer affect disease outcomes by regulating 

molecular phenotypes, such as gene expressions, that drive important biological processes. To gain 

comprehensive insights into molecular biomarkers for cancer, it is critical to identify key groups of 

CNAs, the associated gene networks, regulatory modules, and their downstream effect on outcomes. 

 

Methods: In this paper, we demonstrate an innovative use of sparse canonical correlation analysis 

(sCCA) to effectively identify the ensemble of CNAs, gene networks and regulatory modules in the 

context of binary and censored disease endpoints. Our approach detects potentially orthogonal gene 

expression modules which are highly correlated with sets of CNA and then identifies the genes within 

these modules that are associated with the outcome.   

  

Results: Analyzing clinical and genomic data on 1,904 breast cancer patients from the METABRIC 

study, we found 14 gene modules to be regulated by groups of proximally located CNA sites. We 

validated this finding using an independent set of 1,077 breast invasive carcinoma samples from The 

Cancer Genome Atlas (TCGA). Our analysis on 7 clinical endpoints identified several novel and 

interpretable regulatory associations, highlighting the role of CNAs in key biological pathways and 

processes for breast cancer. Genes significantly associated with the outcomes were enriched for early 

estrogen response pathway, DNA repair pathways as well as targets of transcription factors such as 

E2F4, MYC and ETS1 that have recognized roles in tumor characteristics and survival. Subsequent 

meta-analysis across the endpoints further identified several genes through aggregation of weaker 

associations.  

 

Conclusions: Our findings suggest that sCCA analysis can aggregate weaker associations to identify 

interpretable and important genes, networks and pathways that are clinically consequential.  
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Introduction 

 

Cancer genomes have an enriched burden of somatic copy number aberrations1–3 (CNAs) such as 

DNA copy number gains and losses that harbor or are  proximal to important oncogenes and tumor 

suppressor genes controlling cell growth and division4. The CNAs may directly regulate cellular growth 

pathways and other gene sets impacting key biological outcomes by altering gene expressions at the 

RNA level that are important for tumorigenesis and outcomes. Thus, identification of such driver CNAs 

and understanding the mechanism through which they affect downstream gene expression and the 

resulting effects on cancer outcomes are crucial for effective disease management and control.  

 

This past decade has witnessed significant advances in our ability to measure large volumes of data 

on CNA and gene expressions from tumor samples. These data offer unprecedented opportunities to 

identify biomarkers associated with disease outcomes. These opportunities have accelerated a shift 

towards the development of novel genomics-based prognostic and therapeutic tools. For example, 

CNAs are associated with poor survival in breast cancer patients5; mutations in PIK3CA are associated 

with poor survival in certain estrogen receptor (ER)-positive breast cancers6,7. Oncotype DX, the FDA-

approved score based on the expression of 21 genes, and MammaPrint, a score based on the 

expression of 70 genes, are associated with poor survival in breast cancer patients and are used for 

making treatment decisions in estrogen-positive early-stage breast cancers and all early-stage breast 

cancers, respectively8–11. Identifying such biomarkers have been pivotal to advancing cancer care in 

the past decade. However, due to low prevalence of specific CNAs and since existing gene expression 

scores are relevant for only specific subgroups of cancer patients, current biomarkers can only be used 

for managing the disease of a small segment of patients. Given the growth and aging of the US 

population and, with this, the projected 50% increase in cancer incidence over the next three decades12, 

further research is urgently needed to identify biomarkers for effective management of all types of 

cancers. In this article we present a novel statistical and computational approach to address this need, 

focusing on CNAs and gene expressions in breast cancer. 

 

Standard methods for identifying biomarkers examine the association between individual genomic 

features and outcome (such as survival) and select the top-ranking biomarkers after adjusting for 

multiple comparisons13–15. Penalized regression methods16, including the causal modeling with 

expression linkage for complex traits (Camelot) approach17, relate multiple CNAs and gene expressions 

to an outcome via a multivariable regression model to select biomarkers by imposing sparsity via L1 or 

L2 penalties. These methods prioritize biomarkers based on their individual effects on the outcome 

without leveraging the putative biological relationships between CNAs and gene expressions. It is well-
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understood that genes and their products rarely act in isolation but work with other genes or their 

products to form networks or pathways to address specific biological functions18. Thus, a 

comprehensive understanding of gene networks at DNA and RNA levels and the resulting impact on 

disease outcomes is warranted for identifying clinically relevant biomarkers. To this end, the piecewise 

linear regression spline (PLRS) method19, the lots of lasso (Lol) method20–22, the weighted correlation 

network analysis23, and Oncodrive-CIS24 identify significant CNA-gene expression pairs, but do not 

provide comprehensive maps of regulatory networks that are essential for gaining insights into 

biomarkers reflecting disease biology. The relationship between networks of CNAs and downstream 

networks of gene expressions and the resulting effect on cancer outcomes have not been fully explored.  

 

The key challenges in analyzing such networks are the large dimensionality of the CNA and gene 

expression data sets and the sparsity of CNAs. The latter issue leads to considerable challenges for 

modeling large and sparse matrix of CNAs in relation to large gene expression matrix to identify 

combinations or networks of somatic changes that regulate combinations or modules of gene 

expressions. A pragmatic strategy to overcome this challenge would be to view this as a sparse 

canonical correlation analysis (sCCA)25,26 problem to produce sparse latent variables representing 

biologically relevant CNA sets and gene expression modules or networks to achieve maximal 

correlation between the CNA and gene expression matrices and relate the resulting gene expression 

modules to disease outcomes to identify the biomarkers of interest. This paper is based on the thesis 

that substantial biological and clinical relevance for cancer outcomes can be effectively captured using 

a sparse or smaller number of CNA sets and gene expression networks. But this requires innovative 

statistical and computational application of sCCA to extract such sparse latent variables effectively.  

 

We present a two-step analysis framework that aims to map networks of CNAs that regulate modules 

of gene expressions to affect cancer related outcomes.  In the first step, sCCA is used to identify gene 

expression modules that are regulated by CNA networks in an unsupervised manner that does not 

employ the disease outcomes. Given the gene modules, in the second step we use a multivariable 

generalized linear model framework to isolate genes within a particular gene expression module that 

are associated with breast cancer related outcomes. The key advantage of our proposed approach is 

that it is particularly amenable to interpretation as it not only identifies the genes whose expression 

levels are associated with outcomes but also identifies the set of CNA which potentially regulates them.  

 

We apply our approach to analyze data on 1904 breast cancer patients from the METABRIC study7,27 

for whom data are available on CNAs, gene-expressions, and various clinical information related to 

breast cancer (See Supplementary Methods for details on the study). As an example analysis, we focus 
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on two clinical outcomes: estrogen receptor status, which is a binary variable, and overall survival, 

which is a censored variable measured as months elapsed from the date of study entry to date of death 

or, if the patient is alive, the end of the study. Through extensive downstream analysis we demonstrate 

that the genes identified to be associated to the clinical outcomes have plausible independent evidence 

to be biologically relevant for the outcome of interest. Further, we meta-analyzed the results across six 

different clinical outcomes to identify genes that were potentially associated with multiple outcomes. 

We additionally validated the gene modules identified from the METABRIC study in an independent 

data on individuals in a study of breast invasive carcinoma from The Cancer Genome Atlas (TCGA) 

that includes CNAs, gene expressions, clinical variables, and outcomes in 1,077 patients. Both the data 

sets were obtained from the cBioPortal catalog28. 

 
 

 

Overview of methods 

To describe our approach, we assume that we have individual level data for n individuals on p copy 

number aberrations (CNA) and q gene-expressions. 

 

Step 1. Identifying Gene modules through sCCA 

We first aim to identify gene modules regulated by CNA, by mapping groups of CNA to groups of 

associated gene expressions using sparse canonical correlation analysis (sCCA). sCCA identifies 

approximate orthogonal gene modules that are regulated by CNA. This step is agnostic of any 

phenotypic information or outcomes. For n individuals, let 𝑮𝒏×𝒑 be the matrix for p sites of copy number 

aberration (CNA) sites with 𝑮𝒊𝒋 being the number of insertion or deletions for individual i at site j, and 

𝑬𝒏×𝒒 be the normalized gene-expression levels for q genes across n individuals. Sparse canonical 

correlation analysis (sCCA) identifies sparse linear combinations of CNA (𝒖𝒑×𝟏; termed CNA 

component) and gene-expressions (𝒗𝒈×𝟏; termed gene component) such that the correlation between 

𝑮𝒖 and 𝑬𝒗 is maximized i.e., 

 

(𝑢, 𝑣) =  𝑎𝑟𝑔𝑚𝑎𝑥 𝑣̃
𝑇𝐸̃𝑇𝐺̃𝑢̃ 

under ||𝑢̃||1   ≤  𝑐𝑢 ;||𝑣̃||1   ≤  𝑐𝑣 and ||𝑢̃||2   =  1, ||𝑣̃||2   =  1 

 

where ||. ||𝒉 denotes the Lh norm and 𝑮̃ (or 𝑬̃)denotes the normalized version of the corresponding 

matrix. The subsequent pairs of sCCA components are obtained similarly by matrix deflation and under 

the constraint of being uncorrelated or orthogonal to the previous components. Ideally each pair of 

sCCA components selects a sparse set of CNA sites that regulate the expression of a sparse set of 
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genes across the genome, denoted by the non-zero elements in 𝑢 and 𝑣 respectively. Overall, the 

sCCA aggregates multiple associations between the selected CNA and genes and hence represents 

principal regulation or association patterns. Additionally, due to the orthogonality constraint each pair 

of sCCA component reflect approximately an independent or orthogonal pattern of regulation. 𝑐𝑢 (and 

𝑐𝑣) represent the sparsity parameters for the CNA and gene components respectively. To facilitate 

interpretation, we choose the sparsity parameters such that there is no overlap between the CNA 

selected in the components. (See Supplementary Methods for details).  

 

Step 2. Association with outcomes   

 

Given the gene-modules identified in Step 1, we now identify which genes within these modules are 

associated with the outcomes of interest.   

 

Univariate outcomes. Let 𝐸̃𝑘 be the 𝑛 × 𝑟𝑘 matrix of normalized gene-expressions for the genes 

selected in sCCA component k, where 𝑟𝑘 = ||𝑣𝑘||𝟎 and 𝑣𝑘 denotes the gene-component of the kth sCCA 

component. We use the following generalized linear model to associate the 𝑟𝑘 genes to a phenotype 𝑦 

as  

𝑔[𝐸(𝑦)] =  𝛽0 +  𝐸̃𝑘𝛽  

Where 𝑔[. ] is a canonical link function and 𝛽, 𝛽0 are regression parameters. For each of the gene 

modules identified by sCCA, we perform the association analysis and record gene-specific p-values 

and obtain the false discovery rates (FDR). Genes with FDR < 0.05 are declared to be significantly 

associated with the outcome.  

  

Multivariate outcomes. If multiple, potentially correlated, outcomes are available for the individuals, we 

can meta-analyze results across the multiple outcomes to identify genes that are possibly associated 

to more than one outcome.  Let 𝑝1, 𝑝2, …,𝑝𝑠 be the univariate p-values for a particular gene for s 

outcomes, from the previous univariate association analysis. These p-values are likely to be correlated 

due to potential correlation between the outcomes. We perform a cauchy-transformed meta-analysis29 

which has been shown to maintain correct false positive rate in presence of correlation as well30,31. 

Specifically, we transform each of the p-values to a cauchy variable as 

𝑐𝑖 = tan (𝜋(𝑝𝑖 − 0.5)) 

The test statistic is the unweighted mean of these transformed variables which follows a standard 

cauchy distribution, under the null hypothesis of no association, irrespective of the correlation between 

the outcomes29.  
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𝑇 =  
1

𝑠
∑ 𝑐𝑖

𝑠

𝑖=1

 ~ 𝐶𝑎𝑢𝑐ℎ𝑦(0,1) 

The overall p-value can be calculated by inverting the cumulative density function of the standard 

cauchy distribution. 

 

Results 

We started with 1,904 individuals who had complete data at 22,544 CNA sites and expression level 

data for 24,360 genes. Sparse canonical correlation analysis (See Methods) identified 14 gene modules 

through the sCCA components. In this article, we will use the terms modules and networks 

synonymously to denote the collection of genes selected in a gene component and set to denote the 

CNA sites selected in a CNA component. Across the 14 gene modules, sCCA selects 824 genes, 

whose expression levels are regulated by 1,851 CNA sites overall (Table 1). In general, for each sCCA 

component, the CNA component selects CNA sites located in a small sub-region within a chromosome 

(Figure 1A). Our sCCA analysis was agnostic of the physical location of the CNA in the genome and 

hence the sCCA algorithm is not guided or biased towards selecting positionally proximal CNA. 

However, due to the high correlation between nearby CNA, each CNA component selects a smaller 

subregion in chromosome of high correlated CNA which might have regulatory effects on the gene 

selected in the corresponding gene component. For example, the 115 CNA sites selected in CNA 

component 4, were located on chromosome 17q11.2-q21.32 region. The corresponding gene 

components can then be viewed as the gene module (or network) having strong association to or being 

potentially regulated by the selected CNA sites and can possibly mediate their effects. In general, we 

expect the regulatory structures captured by the sCCA components to be approximately independent. 

However, we notice that the expression levels of genes selected in gene component 8 has a higher 

correlation with the CNA selected in CNA component 2 (Figure 1B). It is to be noted that CNA 

components 2 & 8 defined highly proximal regions in chromosome 8. Hence, the correlation between 

gene module 8 & CNA set 2 is not unexpected due to LD and/or possible long range regulatory activity. 

This indicates that genes modules 2 and 8 are possibly coregulated by the CNA selected in the 

corresponding CNA components. Overall, a CNA component defines a chromosomal subregion which 

has potentially multiple independent regulatory effects on the gene module identified by the 

corresponding gene component. The advantage of the sCCA in this application is that it can aggregate 

multiple, possibly weaker association to select groups of CNA associated with genes modules (See 

Supplementary Table 1-2 for full list of CNA and genes selected). 
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Gene modules capture cis and trans effects. Through the identification of gene modules, we capture 

regulatory effects of CNA. In general, we found that most of the associations aggregated by the sCCA 

components identified effects of CNA sites on nearby (cis) gene expression. On average, 44.8% of the 

genes selected in each sCCA component also has a CNA in or near the same gene selected in the 

respective CNA component. This is expected since cis effects are known to be much stronger 

compared to distal (trans) effects and would have a direct regulatory effect on the expression level of 

a nearby gene. However, several examples of distal (trans) regulatory effects on expressions of genes 

on different chromosome were also identified in the gene modules (Figure 2A-B). On average, 3.2% of 

the genes selected in the gene components were on a different chromosome than the corresponding 

CNA component. Further, on average 15.9% of the genes selected in the gene components were more 

that 10Mb away from the sub-region of chromosome selected by the corresponding CNA component, 

indicating long range regulatory effects (Table 1). For example, among the 67 genes selected in 

component 4, 9 genes are on different chromosomes and an additional 4 genes are outside of the 

region 17q11.2-q21.32, which contains the CNA selected by CNA component 4. We found possible 

mechanistic explanations for several such distal associations in existing genomic and profiling data. 

For example, gene component 4, selects atlastin GTPase 3 gene (ATL3) on chromosome 11. ATL3 is 

a downstream target for transcription factor Signal Transducer and Activator of Transcription 3 (STAT3) 

in ENCODE transcription factor database32,33. Interestingly, a copy number aberration of STAT3 was 

selected among the CNA sites in CNA component 4, which suggests a possible cis-mediation 

mechanism for the association of this and other nearby CNA sites with ATL3.  

 

Evidence of coregulation. To further validate whether the genes selected by the 14 significant sCCA 

components had any overall evidence of biological coregulation as well, we used large-scale 

transcription factor databases from the ENCODE study32 and existing ChIP-chip, ChIP-seq, and several 

other transcription factor binding site profiling experiments (ChEA)34,35. For the 181 transcription factors 

and their downstream targets reported in ENCODE, we found that, across the 14 gene module identified 

though sCCA components, on an average 67.3% of the genes were downstream targets for more than 

20 transcription factors. For ChEA, which reports data on 202 TFs and their downstream targets, we 

found similarly that on average 65.1% genes were downstream targets for more than 20 transcription 

factors. This provides implicit evidence that a large proportion of the genes selected by the sCCA 

components might have evidence of being coregulated by TFs and the identification of gene modules 

using sCCA analysis can successfully detect such patterns of coregulation as an independent line of 

evidence.  
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Replication of Gene Modules using TCGA breast invasive carcinoma data. Selection of genes and CNA 

can be influenced and biased if there are systematic biases and batch effects. So, we investigated 

whether the gene modules and CNA sites identified through sCCA, were replicable in an external 

dataset. For that, we used the TCGA breast invasive carcinoma data (See Supplementary Methods for 

details on the study), which reports data on CNA sites and gene expression in primary breast tumor 

tissue for 982 breast cancer patients. We adopted a resampling-based procedure to test whether the 

sCCA components represented gene modules and CNA sets that had stronger association than 

expected at random. For a given gene module (selected through a gene component), we evaluated 

whether the observed average squared correlation between these genes and CNA selected in 

corresponding CNA component were higher than what is expected at random. Similarly, for a set of 

CNA (selected through a CNA component), we evaluated whether the observed average squared 

correlation between these CNA and genes selected in corresponding gene component were higher 

than what is expected at random. We found that among the gene modules and CNA sets selected in 

METABRIC and present in TCGA, the average correlation for all the 14 components were significantly 

(p-value < 0.05) higher than expected (Supplementary Figure S1). Further 10 of these components 

were strongly significant as well (p-value < 0.001). Such a result is not unexpected as the sCCA 

components include a majority of stronger cis effects. Further, this also suggests that the sCCA 

components in METABRIC possibly captured true effects replicable across different datasets and not 

potential artefacts and batch effects within METABRIC. (See Supplementary Methods) 

 

Association with breast cancer related outcomes. Given the 14 gene modules obtained through sCCA 

analysis, we investigated whether these gene modules were associated with 7 different types of breast 

cancer outcomes (Table 2). At a lenient cutoff of FDR < 0.05, we found that 562 genes across the 14 

modules were associated with at least one of the outcomes (Supplementary Table 3). Further, at a 

stringent exome-wide cutoff of p-value < 2.5 х 10-06, we found 94 genes associated with at least 1 

outcome. Subsequently, through several downstream analysis we investigated whether the genes that 

are significant for a given outcome indeed had external evidence of association to breast cancer related 

outcomes. Here we demonstrate the results for two distinct types of outcomes:  

 

Estrogen Receptor (ER). Of the 1,904 individuals in the sample, 1,459 (76.6%) individuals had ER 

positive status. We performed logistic regression-based association tests of the 14 significant gene 

modules. Across the components we found that 210 genes were significant at an FDR < 0.05 and 36 

genes were significant with p-value < 2.5 х 10-06. Among the genes significantly associated with ER 

status, we identified known breast cancer related genes such as Microtubule Associated Protein Tau 

(MAPT), whose expression is highly associated with low sensitivity to taxanes that are important drugs 
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for breast cancer treatment36, and Macrophage migration inhibitory factor (MIF), a pro-inflammatory 

cytokine whose blockade reduces the aggressiveness of invasive breast cancer37. Further our sCCA-

based model provides a potential explanation of the related biological mechanism. For example, among 

genes selected in gene component 4, we found that Dynein Axonemal Light Intermediate Chain 1 

(DNALI1), on chromosome 1 is associated with ER status (p-value = 4.8 х 10-04), being trans-regulated 

by CNA sites on chromosome 17 selected in CNA component 4 (Figure 3A). DNALI1 is a downstream 

target for transcription factors STAT3 and UBTF, both of which are selected in CNA component 4. 

Further, there is evidence of physical interactions between the proteins resulting from DNALI1 and 

UBTF in large protein interactions databases as well38. This indicates the possibility that DNALI1 

mediates the effects of the CNA sites in chromosome 5 selected by CNA component 1, on ER status. 

Thus, not only we identify the genes whose expression levels are associated with breast cancer 

outcomes, we also additionally identify which CNA potentially regulate such genes. 

 

Through pathway enrichment analysis (Table 3), we found that the genes significantly associated to 

ER status at FDR < 0.05, were enriched for hallmark pathways39 like early response to estrogen, DNA 

repair and MYC targets, MYC being a well-known oncogene40. Further, in pathways curated from 

chemical and genetic perturbation experiments, we found that the genes were enriched for genes highly 

positively co-expressed with BRCA1 and BRCA2, two genes well reported to be involved in breast 

cancer41–43. Further, the genes were also enriched for targets of several transcription factors, like 

NELFE44,45, E2F446,47 and CREB148,49 which are known to play key roles in several cancers, including 

breast cancer. However, overlap of the identified significant genes with key cancer related pathways 

suggest a possible mechanistic explanation for the outcome. For example, of the 210 significant genes, 

7 genes (ADCY9, ABAT, MAPT, SLC9A3R1, CANT1, BCL2, FAM102A) are in the early estrogen 

response hallmark pathway39. These 7 genes are identified as part of gene modules 4, 11, 14, 7 and 

10. This indicates that the CNA selected in the corresponding CNA components, which regulates these 

gene components respectively, as shown in sCCA analysis, significantly changes estrogen response 

and can possibly be causal for ER status. So essentially perturbations in early estrogen response 

hallmark pathway can occur due to CNA in chromosomal sub-regions defined by components 4, 11, 7 

and 14. This interpretability is a key advantage of our analysis approach. 

 

We further benchmarked whether the 210 genes found to be significant using this sCCA based 

approach against 161 gene selected through a standard sparse logistic regression (See Supplementary 

Methods). Assessing the model fit for these two approaches in TCGA data, we found that the BIC of 

the model including genes significant through the sCCA-based analysis was substantially lower than 

the model that included the genes selected through sparse logistic regression. This indicates that our 
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approach not only provides a better interpretability of the overall genetic mechanism but also produces 

comparable or better model fit for the data. 

   

 

Overall survival (OS). Of the 1,904 individuals in the sample, 1,109 (76.6%) individuals died during the 

study, with median survival time being 154 months approximately. In a cox proportional hazard model, 

we found 73 genes to be significant (FDR < 0.05) across the 14 components. Notably, several 

interesting distally regulated genes are identified in our analysis. For example, in sCCA component 11, 

we found that the expression of CD2BP2 gene on chromosome 5 is associated with the overall survival. 

This gene is differentially regulated in T47D cells of breast cancer patients in response to tamoxifen50, 

a widely used hormonal therapy drug for breast cancer51. The transcription start site for CD2BP2 is 

over 27 Mb downstream from the subregion of chromosome 5 selected through the CNA component 

11. The corresponding selected set of CNA in component 11 contains a TF ZNF263, which has a long-

range regulatory effect on CD2BP2 on the same chromosome32 and indicates that possibly CD2BP2 

mediates the effects of the selected CNA producing significant change in overall survival probability 

(Figure 3B-C).  

 

A comprehensive pathway enrichment analysis (Table 4) reveals that the selected genes are enriched 

in gene-sets and pathways defined by several breast cancer related perturbation experiments. For 

example, we found a significant enrichment of the genes associated to OS, in the genes related to 

adipogenesis. Enrichment was found among genes up regulated in early primary breast tumors 

expressing ESR1 vs the ESR1 negative ones. In addition, the genes significantly associated to OS 

were enriched for targets of several key cancer TFs like ELK1, YY1 and RUNX352–54. As highlighted 

above, through the sCCA components and the subsequent cox PH association model, we not only 

identify which genes are associated with OS but also detect the CNA sites regulating these gene 

expressions and hence affecting OS. 

 

Multiple outcomes. We further meta-analyzed results across all the seven breast cancer related 

outcomes to identify genes that are possibly associated to multiple outcomes. Since the outcomes are 

correlated and as a result the association p-values across the outcomes for each gene are correlated, 

it is difficult to use standard meta-analysis for this. In fact, the effect size estimates for association 

models pertaining to different types of outcomes (binary and survival), would complicate the 

interpretation of effect size based meta-analysis. Here, we used the cauchy combination test to meta-

analyze results across the seven outcomes. 72 genes were identified to be significant at the exome-

wide p-value threshold of 2.5 х 10-06 (Figure 3D). At FDR < 0.05, we found 508 genes to be significantly 
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associated to the set of 7 outcomes. Although majority of these associations were driven by significant 

associations with at least one outcome and weaker association with several others, 13 genes were also 

identified (cauchy combination FDR < 0.05) which had no significant association (FDR > 0.05) to any 

single outcome but had possibly weaker association with multiple outcomes. For example, we found 

E4F1 gene (cauchy combination test p-value = 0.028), a gene that a can induce cell growth arrest55, to 

be significant (FDR < 0.05) through the cauchy combination approach which has nominal associations 

with the presence/absence of lymph nodes (p-value = 0.0083), overall survival (p-value = 0.011) and 

HER2 status (p-value = 0.029). DDX5 (cauchy combination test p-value = 0.021), a gene well reported 

to be associated to breast cancer and regulates DNA replication and cell proliferation56, had multiple 

weaker associations with the grade of tumor (p-value = 0.017), overall survival (p-value = 0.004) and 

HER2 status (p-value = 0.022). We conducted pathway enrichment analyses with the 508 genes that 

were found significant at FDR < 0.05 in meta-analyses. Similarly, as before, the results show that the 

numerous relevant pathways and gene-sets related to breast cancer are significantly enriched for these 

genes.  

 

 

Discussions 

 

Extensive research has established that CNA are indeed important for several cancer types and 

subtypes, especially in breast cancers7. However, the intermediate mechanisms and processes via 

which CNA impact breast cancer related outcomes have not been conclusively established and merits 

further research. In this article we have outlined a novel and generalizable analytic approach to identify 

how CNA regulate expression levels of gene modules that ultimately influence several breast cancer 

related outcomes. Our approach involves two steps: using sparse canonical correlation analysis to 

identify gene modules associated with sets of CNA, followed by testing association between the gene 

modules and breast cancer related outcomes. We further carried out a meta-analysis across different 

types of outcomes to identify genes with multiple associations. Extensive downstream analysis shows 

that the genes identified through our analysis have key relevance for breast and other cancers that 

have also been noted in other studies. Unlike these other studies, our approach additionally identifies 

CNA sets that possibly regulate the genes which in turn bring about changes in outcomes related to 

breast cancer. Below we summarize the advantages of our analysis and its potential generalizability: 

 

Identifying and interpreting gene modules through sCCA: The identification of gene modules using 

sCCA, agnostic of the clinical or disease outcome, is a key advancement that we propose over existing 

work on this topic. Numerous methods have been developed to identify significant associations 
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between individual pairs of CNA and gene expressions. However, recently several authors have 

hypothesized that the effects of somatic genetic variants like CNA are cascaded through complex 

intermediate gene network to bring about phenotypic change57. Thus, identifying individual CNA-gene 

expression associations, although informative, cannot provide deeper insight into the gene networks 

that can potentially be impacted by CNA. Through our joint analysis approach in sCCA, we map groups 

of CNA to gene modules, which essentially identifies broad gene networks potentially regulated by 

CNA. In fact, existing transcription factor databases show that the gene networks thus detected through 

sCCA have suggestive evidence to be coregulated, which indicates that such groupwise mapping 

approach can identify patterns of biological regulation as well.  

 

One of the key interpretations of the gene modules is that they represent approximately independent 

regulatory patterns due to the orthogonality condition imposed by sCCA. Thus, in principle, the first step 

in our analysis, identifies key distinct biological regulatory processes that are impacted within primary 

breast tumor tissue. The advantage that sCCA provides over identifying single CNA-gene pairs is that, 

since sCCA can aggregate multiple possibly weaker association within the identified components, it 

can be statistically more powerful in identifying gene networks. In fact, transcriptomic studies have 

shown that at moderate sample size, similar to that of METABRIC study, sCCA can outperform 

standard pairwise regression in identifying broad downstream gene networks regulated by genetic 

variants. However, we acknowledge that there will possibly be a plethora of regulatory associations 

beyond the ones identified through sCCA, which can be identified in a larger sample. 

 

Association analysis using multivariable regression: The subsequent association analysis using gene 

modules is relatively standard and has been used commonly. However, interpreting the association p-

values needs caution since the association model is a joint regression. In general, single gene vs 

outcome tests are different from this since the joint model additionally adjusts for correlation between 

the genes and reports the p-value conditional on the gene module. This multivariable regression 

framework identifies the genes that are associated to the clinical outcome while adjusting for the 

correlation within the module. While association between and outcome and a single gene can arise 

either due to true causality or due to correlation of the tested gene with the true causal gene, our 

approach accounts for the dependency and hence significant association can potentially be causal. 

 

Meta-analysis of results from correlated clinical outcomes: The multiple outcome meta-analysis29 

demonstrates another advantage of our approach. In general, complex diseases like cancers, and in 

particular breast cancer, can have numerous biomarkers of disparate types. Combining results across 

the biomarkers can highlight overall important genes and genes affecting multiple biomarkers. 
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However, meta-analyzing association results across them is not straightforward since the results are 

correlated. Further for different types of biomarkers (continuous, discrete, binary, survival etc.) the 

effect sizes have disparate interpretation and hence standard meta-analysis might not be appropriate. 

However, the Cauchy combination approach alleviates these problems since it is based on p-values 

and not on the effect size. Further, due to the correlation agnostic property of cauchy distributions, 

meta-analysis of correlated p-values controls false positive rates. In principle, using this approach, 

meta-analysis of different types of biomarkers and outcomes are possible, as long as the univariate 

association mean model is correctly specified. 

 

Generalizable Analysis: The approach that we adopted here is highly generalizable as an overall 

analysis framework. The first step pertains to groupwise mapping and identification of modules followed 

the association analysis in the second step. Although we adopted an sCCA approach here for its ease 

of interpretation, several other methods mapping sets of genetic variants to gene modules can be used 

instead. For example, methods for biclustering and matrix factorization can be adapted in the first step 

to identify gene modules. In fact, groupings based on functional annotation can also be incorporated to 

further strengthen the mechanistic interpretation of the identified modules. The subsequent association 

analysis can also be customized to address scientific questions of interest. However, one of the major 

advantages of our pipeline is that, in principle, the two steps can be performed on separate datasets 

as well. For example, in current studies large scale genomic and transcriptomic data for many 

individuals are available while detailed information on phenotypes and traits might not be available. 

Thus, the identification of gene modules can be performed using such data while the subsequent 

association analysis can be carried out in a separate data. 

 

Our analysis approach currently has several limitations. The optimal number of components in sCCA 

is chosen heuristically by maximizing the iterative ratio of canonical correlations rather than using any 

significance or enrichment tests. In the current set up, formulating analytical tests of significance is 

difficult and methods based on sCCA has mostly resorted to resampling methods. In the future, 

research on Bayesian formulations coupled with sequential testing is warranted to perform tests of 

significance for regularization and clustering methods which can indicate the optimal number of 

components and parameter settings. 

 

Together, our analysis provides a comprehensive understanding of the impact of CNA can impact 

different breast cancer outcomes via regulation of intermediate gene networks. If a particular gene is 

significantly associated with a breast cancer related outcome, we can identify which set of CNA of which 

genomic subregion regulates it using the identified gene modules. Further, overlap of the significant 
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genes with several breast cancer related pathways identifies the genes within the predefined biological 

process is differentially regulated by CNA to bring about phenotypic change. In future, as larger studies 

emerge with a greater coverage and spectrum of molecular phenotypes, a more comprehensive insight 

as to the intermediate regulatory mechanism will take shape. For that, it will be imperative to move 

beyond identifying single variant-gene or variant-outcome associations and conceptualize associations 

in context of networks and modules. The broad intuition of this analysis framework can further be 

extended to multi-view data sets and can be useful in integrative analysis of multi-omics data. 
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Figure 1: Results from sCCA analysis (A) Chromosomal subregions identified by 14 CNA components. For each CNA component the 
region between the most distal CNA selected in that component is marked. (B) Average squared correlation between the CNA selected in 
CNA components and genes selected in Gene components. Correlation between Genes in components 2 and CNA in component 8 (and 
vice versa) are observed due possible correlation between selected CNA and long-range regulatory effects. Similar correlation is observed 
for components 5 & 7 as well. 
 
Figure 2: Examples of trans-associations identified in using the genes selected through sCCA in (A) Gene component 1 (B) Gene 
component 4. Several genes in a chromosome different from that of the selected CNA is identified. Further, numerous distal genes (> 10Mb) 
on the same chromosome are detected as well. 
 
Figure 3: Association analysis with breast cancer related outcomes. (A) DNALI1 gene on chromosome 1 associated with ER status and 
trans-regulated by a CNA of transcription factor CHD1 on chromosome 5. (B) Trans regulation of CD2BP2 gene on chromosome 16p11.2 by 
a CNA in ZNF263 gene located in chromosome 16q13.3 which are approximately 27Mb apart. (C) Association of CD2BP2 expression level 
with overall survival probability. Expression levels have been dichotomized as high and low using 75-th percentile as cut-off. (D) p-values of 
72 genes identified to be strongly associated (p-value < 2.5 х 10-06) with multiple outcomes, across the 7 outcomes. P-values < 1 х 10-12 are 
collapsed to 1 х 10-12 for the ease of viewing. 
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Figure 3 
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Table 1: Description of the 14 gene modules and CNA components identified through sCCA. 
 
 

  
CNA components 

 
Gene components (modules) 

sCCA 
component 

Number of 
CNA selected 

Chromosome 
Number 

Genomic location of 
selected CNA (Mb) 

Number of 
Genes selected 

Genes on different 
chromosome 

Distal genes on 
same 
chromosome 

1 139 5 72.17 – 119.54 70 24 18 

2 107 8 135.45 – 145.01 59 0 14 

3 131 1 153.20-156.96 56 0 6 

4 115 17 41.86 – 45.50 67 9 4 

5 145 22 35.64 – 44.57 63 0 6 

6 130 16 65.28 – 77.25 58 0 6 

7 125 22 17.95 – 24.63 58 0 10 

8 125 8 115.95 – 134.48 59 0 24 

9 145 7 100.40 – 127.61 71 0 17 

10 151 9 121.82 – 131.49 74 0 1 

11 129 16 1.06 – 3.72 64 1 11 

12 117 1 9.65 – 16.64 63 0 12 

13 147 3 168.00 – 193.44 71 0 11 

14 145 17 58.16 – 69.14 62 0 1 
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Table 2: Description of the seven breast cancer related outcomes analyzed, and the number of genes associated significantly.  
 

Outcome % cases Median survival  Significant Genes (FDR < 0.05) 

Estrogen Receptor status (ER) 76.6 - 210 

Progesterone receptor status (PR)  52.9 - 237 

Human Epidermal growth factor Receptor 2 status (HER2) 12.4 - 255 

Grade (Grade 3 vs Grade lower than 3) 47.5 - 65 

Lymph Nodes Examined to be present (present vs absent) 47.8 - 12 

Age at diagnosis (< 50 years) 78.4 - 100 

Overall Survival - 154.2 73 
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Table 3: Different categories of pathways enriched for the 210 genes associated (FDR < 0.05) with ER status. 
 

Category Pathway Adjusted p-value Genes in 
pathway 

Genes overlap 

 
 
GO 

Cellular macromolecule localization 5.7 x 10-09 1886 39 
Intracellular protein transport 1.2 x 10-07 1156 28 
Cellular response to DNA damage stimulus 4.4 x 10-07 841 23 
Catalytic complex 4.7 x 10-10 1552 36 
Adenyl Nucleotide binding 3.9 x 10-06 1536 30 

Hallmark Estrogen Response (early) 4.9 x 10-03 200 7 
DNA repair 4.9 x 10-03 149 6 
E2F targets 9.3 x 10-03 200 6 
MYC targets 9.3 x 10-03 200 6 
MTORC1 signaling 4.5 x 10-02 200 5 

 
Curated 
Gene sets 
 

NIKOLSKY_BREAST_CANCER_8Q23_Q24_AMPLICON 8.2 x 10-14 157 17 
PUJANA_BRCA1_PCC_NETWORK 2.3 x 10-08 1617 34 
CHARAFE_BREAST_CANCER_LUMINAL_VS_MESENCHYMAL_UP 4.3 x 10-07 446 17 
VANTVEER_BREAST_CANCER_ESR1_UP 5.7 x 10-05 208 15 
PUJANA_BRCA2_PCC_NETWORK 5.4 x 10-04 423 12 

Immunologic 
Signatures 

GSE4984_GALECTIN1_VS_VEHICLE_CTRL_TREATED_DC_DN 1.4 x 10-06 198 12 
GSE2770_UNTREATED_VS_IL12_TREATED_ACT_CD4_TCELL_2H_DN 3.8 x 10-06 200 12 
GSE19825_NAIVE_VS_IL2RAHIGH_DAY3_EFF_CD8_TCELL_DN 1.8 x 10-05 200 11 

 
 
TF targets 

ENCODE: NELFE 6.5 x 10-46 9442 173 
ENCODE: E2F4 2.8 x 10-34 12626 180 
ENCODE: CREB1 5.7 x 10-33 12289 177 
ChEA: EGR1 3.1 x 10-09 5000 82 
ChEA: ELF3 2.2 x 10-07 1760 40 
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Table 4: Different categories of pathways enriched for the 73 genes associated (FDR < 0.05) with overall survival (OS) 
 
 

Category Pathway Adjusted p-value Genes in 
pathway 

Genes overlap 

 
 
GO 

RNA metabolic process 4.2 x 10-03 1542 14 
Macromolecule catabolic process 4.2 x 10-03 1366 13 
Cellular component disassembly 1.2 x 10-02 537 8 

Hallmark Adipogenesis 2.8 x 10-02 200 4 

 
Curated 
Gene sets 

DIAZ_CHRONIC_MEYLOGENOUS_LEUKEMIA_UP 1.2 x 10-03 1397 14 
Reactome: Metabolism of RNA 1.3 x 10-03 668 10 
NIKOLSKY_BREAST_CANCER_17Q21_Q25_AMPLICON 2.1 x 10-02 332 6 

Immunologic 
Signatures 

GSE3982_NEUTROPHIL_VS_TH1_DN 4.8 x 10-04 199 7 
GSE3982_EOSINOPHIL_VS_NKCELL_DN 1.5 x 10-03 197 5 
GSE27786_NKCELL_VS_NEUTROPHIL_UP 8.1 x 10-03 199 5 

 
 
TF targets 

ENCODE: RUNX3 8.1 x 10-16 11816 63 
ENCODE: ELK1 1.5 x 10-14 11349 61 
ENCODE: YY1 1.5 x 10-12 12289 177 
ChEA: ETS1 8.0 x 10-08 1359 20 
ChEA: PADI4 9.4 x 10-03 877 9 
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