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Abstract 

 

Background: Copy number aberrations (CNA) have proved to be of clinical and therapeutic 

significance for many diseases including breast cancer, since they drive numerous key underlying 

biological processes, by regulating molecular phenotypes like gene expression and others. To 

comprehensively assess the effect of CNAs, it is not sufficient to only identify significant CNA-gene 

expression pairs, but also to identify the overall gene networks and regulatory structures that are 

influenced by CNAs, subsequently producing change in outcomes.  

Methods: In this article, we adopt a two-step analysis approach to identify CNA regulated genes 

whose expression levels affect breast cancer related outcomes: (1) we identify gene modules that are 

regulated by CNAs through sparse canonical correlation analysis (sCCA) which selects a set of 

closely located CNAs that regulates the expression levels of selected genes. (2) then, we use a using 

generalized linear model, to identify which genes within the gene modules are associated with breast 

cancer related outcomes.  

Results: Analyzing clinical and genomic data on 1904 breast cancer patients from the METABRIC 

study, we found 14 gene modules to be regulated by groups of proximally located CNA sites. The 

identification of gene modules was further validated using independent data on individuals in a study 

of breast invasive carcinoma from The Cancer Genome Atlas (TCGA). Association analysis on 7 

different breast cancer related outcomes identified several novel and interpretable regulatory 

associations which highlights how CNA can impact key biological pathways and process in context of 

breast cancer. Through downstream analysis of two example outcomes: estrogen receptor status and 

overall survival, we show that the identified genes were enriched in relevant biological pathways and 

the key advantage of our method is that we additionally identify the CNA that regulate these genes. 

Due to the availability of multiple types of outcomes, we further meta-analyzed the results to identify 

genes that had potentially associations with multiple outcomes. 

Conclusions: Overall we present a generalizable analysis approach to identify genes associated to 

different outcomes that are regulated by sets of CNA and can further be used to combine results 

across various types of outcomes. The results show that our method can identify novel and 

interpretable associations, by providing mechanistic insights on how the effects of CNA are cascaded 

via gene expression to impact breast cancer and related outcomes.  
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Introduction 

 

With rapid advancement in sequencing technologies, large-scale genomic studies have identified  

somatic variations that influence the risk of breast cancer (BrC) 1–4. These  findings have been critical 

in enhancing our understanding of the underlying biology of breast tumorigenesis5. This has further 

led to the development of diagnostic, prognostic and screening tests and more importantly, the 

development of effective targeted therapies and innovative prevention strategies6,7.  

 

Among the genetic variations that have been studied in context to breast cancer and related 

outcomes, copy number aberrations (CNAs), such as copy number gains and losses, constitute an 

important and widely studied class8. Several studies have shown that cancer genomes have an 

enriched burden of copy number aberrations9–11. Additionally, such alterations have been shown to 

harbor or be proximal to important oncogenes and tumor suppressor genes12. Thus, CNAs might 

directly regulate cellular growth pathways and other gene sets that impact key biological mechanisms 

that influence cancer-related outcomes. In fact, studies associating CNAs with breast cancer have 

considerably advanced our knowledge of breast cancer biology13,14, with translational efforts leading 

to advances in the clinic. Identification of driver CNAs and understanding how they affect gene 

expression, eventually impacting breast cancer and related outcomes, however, remains a challenge. 

 

It is popularly hypothesized that somatic variations like CNA, regulate a complex network of 

intermediate molecular phenotypes, like gene expressions. Identifying such genetic regulatory 

structures can inform downstream consequences of CNA and the broad biological functions and 

mechanisms that are affected15,16. However, standard association mapping methods typically aim to 

identify only significant pairs of CNA-gene expression, which does not provide insight into the overall 

gene modules and pathways that might be influenced. Thus, to achieve a comprehensive map of the 

regulatory networks, via which the effects of CNA might be cascaded, it is not sufficient to identify 

only individual CNA-gene pairs that are associated. Mapping CNAs or groups of closely related CNAs 

that impact gene networks or modules has significant potential for providing practical insights into the 

regulatory impact of CNA on gene networks, which can be further examined in translational 

investigations for devising novel therapeutic strategies.  

 

In this article, we present a two-step analysis framework that aims to map sets of CNA that regulate 

gene expression to affect breast cancer related outcomes: (1) In the first step, we identify gene 

modules that are regulated by CNAs by employing sparse canonical correlation analysis (sCCA)17,18 

which selects a group of closely located CNAs that regulates the expression levels of selected genes. 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 2, 2021. ; https://doi.org/10.1101/2021.08.29.21262811doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.29.21262811
http://creativecommons.org/licenses/by-nc/4.0/


This is an unsupervised step in the sense that it is agnostic of the breast cancer related outcomes 

and identifies overall patterns of gene-expression regulation by CNA. (2) Given the gene modules 

identified in the sCCA analysis, in the next step we use a standard association test using generalized 

linear model, to identify which genes within a particular module are associated with breast cancer 

related outcomes.  

 

This approach is particularly amenable to interpretation since not only it identifies the genes whose 

expression levels impacts breast cancer related outcomes but also identifies the set of CNA which 

potentially regulates them. Broadly, this approach can provide a mechanistic insight on which gene 

networks and biological processes are regulated by CNA to influence breast cancer related 

outcomes. We analyze data on 1904 breast cancer patient whose CNA and gene-expression profiling 

was performed as a part of the METABRIC study8,19 (See Supplementary Methods for details on the 

study). We identified 14 gene modules regulated by groups of CNA across the genome which 

included several trans-associations as well. We further validated the identification of gene modules in 

an independent data on individuals in a study of breast invasive carcinoma from The Cancer Genome 

Atlas (TCGA), obtained from the cBioPortal catalog20. Subsequent association analysis on 7 different 

BrC related outcomes showed that novel and interpretable regulatory associations were identified 

which highlights how CNA disrupt and influence important biological functions and process in context 

of BrC. We have demonstrated the utility of our approach using examples of two outcomes: estrogen 

receptor status and overall survival. Due to the availability of multiple types of outcomes, we further 

meta-analyzed the results to identify genes that had potentially associations with multiple outcomes. 

 

 

Overview of methods 

To describe our approach, we assume that we have individual level data for n individuals on p copy 

number aberrations (CNA) and q gene-expressions. 

 

Step 1. Identifying Gene modules through sCCA 

We first aim to identify gene modules regulated by CNA, by mapping groups of CNA to groups of 

associated gene expressions using sparse canonical correlation analysis (sCCA). sCCA identifies 

approximate orthogonal gene modules that are regulated by CNA. This step is agnostic of any 

phenotypic information or outcomes. For n individuals, let ���� be the matrix for p sites of copy 

number aberration (CNA) sites with ��� being the number of insertion or deletions for individual i at 

site j, and ���� be the normalized gene-expression levels for q genes across n individuals. Sparse 
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canonical correlation analysis (sCCA) identifies sparse linear combinations of CNA (����; termed 

CNA component) and gene-expressions (����; termed gene component) such that the correlation 

between �� and �� is maximized i.e., 

 

��, �	 
  ����� ��
��
���� 

under ||��||�   �  �� ;||��||�   �  � and ||��||�   
  1, ||��||�   
  1 

 

where ||. ||� denotes the Lh norm and �� (or ��)denotes the normalized version of the corresponding 

matrix. The subsequent pairs of sCCA components are obtained similarly by matrix deflation and 

under the constraint of being uncorrelated or orthogonal to the previous components. Ideally each 

pair of sCCA components selects a sparse set of CNA sites that regulate the expression of a sparse 

set of genes across the genome, denoted by the non-zero elements in � and � respectively. Overall, 

the sCCA aggregates multiple associations between the selected CNA and genes and hence 

represents principal regulation or association patterns. Additionally, due to the orthogonality 

constraint each pair of sCCA component reflect approximately an independent or orthogonal pattern 

of regulation. �� (and �) represent the sparsity parameters for the CNA and gene components 

respectively. To facilitate interpretation, we choose the sparsity parameters such that there is no 

overlap between the CNA selected in the components. (See Supplementary Methods for details).  

 

Step 2. Association with outcomes   

 

Given the gene-modules identified in Step 1, we now identify which genes within these modules are 

associated with the outcomes of interest.   

 

Univariate outcomes. Let ��� be the � � � matrix of normalized gene-expressions for the genes 

selected in sCCA component k, where � = ||��||� and �� denotes the gene-component of the kth 

sCCA component. We use the following generalized linear model to associate the � genes to a 

phenotype � as  

�����	� 
   � ! ���   

Where ��. � is a canonical link function and  ,  � are regression parameters. For each of the gene 

modules identified by sCCA, we perform the association analysis and record gene-specific p-values 

and obtain the false discovery rates (FDR). Genes with with FDR < 0.05 are declared to be 

significantly associated with the outcome.  
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Multivariate outcomes. If multiple, potentially correlated, outcomes are available for the individuals, 

we can meta-analyze results across the multiple outcomes to identify genes that are possibly 

associated to more than one outcome.  Let "�, "�, …,"� be the univariate p-values for a particular 

gene for s outcomes, from the previous univariate association analysis. These p-values are likely to 

be correlated due to potential correlation between the outcomes. We perform a cauchy-transformed 

meta-analysis21 which has been shown to maintain correct false positive rate in presence of 

correlation as well22,23. We transform each of the p-values to a cauchy variable as 

�� 
 tan �&�"� ' 0.5		 
The test statistic is the unweighted mean of these transformed variables which follows a standard 

cauchy distribution, under the null hypothesis of no association, irrespective of the correlation 

between the outcomes21.  

* 
  1
+ , ��

�

���

 ~ .���/��0,1	 

The overall p-value can be calculated by inverting the cumulative density function of the standard 

cauchy distribution. 

 

Results 

We started with 1,904 individuals who had complete data at 22,544 CNA sites and expression level 

data for 24,360 genes. Sparse canonical correlation analysis (See Methods) identified 14 gene 

modules through the sCCA components. For the purpose of this article, we will use the terms 

modules and networks synonymously to denote the collection of genes selected in a gene component 

and set to denote the CNA sites selected in a CNA component. Across the 14 gene modules, sCCA 

selects 831 genes, whose expression levels are regulated by 1,976 CNA sites overall (Table 1). In 

general, for each sCCA component, the CNA component selects CNA sites located in a small sub-

region within a chromosome (Figure 1A). Our sCCA analysis was agnostic of the physical location of 

the CNA in the genome and hence the sCCA algorithm is not guided or biased towards selecting 

positionally proximal CNA. However, due to the high correlation between nearby CNA, each CNA 

component selects a smaller subregion in chromosome of high correlated CNA which might have 

regulatory effects on the gene selected in the corresponding gene component. For example, the 115 

CNA sites selected in CNA component 4, were located on chromosome 17q11.2-q21.32 region. The 

corresponding gene components can then be viewed as the gene module having strong association, 

on an average, with the selected CNA sites and mediates their effects. In other words, the 67 genes 

selected in gene component 4 would be the gene module (or network) that is regulated by the 115 

copy number aberrations selected in the CNA component 4. In general, we expect the regulatory 
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structures captured by the sCCA components to be approximately independent. However, we notice 

that the expression levels of genes selected in gene component 8 has a higher correlation with the 

CNA selected in CNA component 2 (Figure 1B). It is to be noted that CNA components 2 & 8 defined 

highly proximal regions in chromosome 8. Hence, the correlation between gene module 8 & CNA set 

2 is not unexpected due to LD and/or possible long range regulatory activity. This indicates that 

genes modules 2 and 8 are possibly coregulated by the CNA selected in the corresponding CNA 

components. Overall, a CNA components defines a chromosomal subregion which has potentially 

multiple independent regulatory effects on the gene module identified by the corresponding gene 

component. The advantage of the sCCA in this application is that it can aggregate multiple, possibly 

weaker association to select groups of CNA associated with genes modules (See Supplementary 

Table 1-2 for full list of CNA and genes selected). 

 

Gene modules capture cis and trans effects. Through the identification of gene modules, we capture 

regulatory effects of CNA. In general, we found that most of the associations aggregated by the sCCA 

components identified effects of CNA sites on nearby (cis) gene expression. On average, 44.8% of 

the genes selected in each sCCA component also has a CNA in or near the same gene selected in 

the respective CNA component. This is expected since cis effects are known to be much stronger 

compared to distal (trans) effects and would have a direct regulatory effect on the expression level of 

a nearby gene. However, several examples of distal (trans) regulatory effects on expressions of 

genes on different chromosome were also identified in the gene modules (Figure 2A-B). On average, 

3.2% of the genes selected in the gene components were on a different chromosome than the 

corresponding CNA component. Further, on average 15.9% of the genes selected in the gene 

components were more that 10Mb away from the sub-region of chromosome selected by the 

corresponding CNA component, indicating long range regulatory effects (Table 1). For example, 

among the 67 genes selected in component 4, 9 genes are on different chromosomes and an 

additional 4 genes are outside of the region 17q11.2-q21.32, which contains the CNA selected by 

CNA component 4. We found possible mechanistic explanations for several such distal associations 

in existing genomic and profiling data. For example, gene component 4, selects atlastin GTPase 3 

gene (ATL3) on chromosome 11. ATL3 is a downstream target for transcription factor Signal 

Transducer and Activator of Transcription 3 (STAT3) in ENCODE transcription factor database24,25. 

Interestingly, a copy number aberration of STAT3 was selected among the CNA sites in CNA 

component 4, which suggests a possible cis-mediation mechanism for the association of this and 

other nearby CNA sites with ATL3.  
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Evidence of coregulation. To further validate whether the genes selected by the 14 significant sCCA 

components had any overall evidence of biological coregulation as well, we used large-scale 

transcription factor databases from the ENCODE study24 and existing ChIP-chip, ChIP-seq, and 

several other transcription factor binding site profiling experiments (ChEA)26,27. For the 181 

transcription factors and their downstream targets reported in ENCODE, we found that, across the 14 

gene module identified though sCCA components, on an average 67.3% of the genes were 

downstream targets for more than 20 transcription factors. For ChEA, which reports data on 202 TFs 

and their downstream targets, we found similarly that on average 65.1% genes were downstream 

targets for more than 20 transcription factors. This provides implicit evidence that a large proportion of 

the genes selected by the sCCA components might have evidence of being coregulated by TFs and 

the identification of gene modules using sCCA analysis can successfully detect such patterns of 

coregulation as an independent line of evidence.  

 

Replication of Gene Modules using TCGA breast invasive carcinoma data. Selection of genes and 

CNA can be influenced and biased if there are systematic biases and batch effects. So, we 

investigated whether the gene modules and CNA sites identified through sCCA, were replicable in an 

external dataset. For that, we used the TCGA breast invasive carcinoma data (See Supplementary 

Methods for details on the study), which reports data on CNA sites and gene expression in primary 

breast tumor tissue for more than 1,000 breast cancer patients. We adopted a resampling-based 

procedure to test whether the sCCA components represented gene modules and CNA sets that had 

stronger association than expected at random. For a given gene module (selected through a gene 

component), we evaluated whether the observed average squared correlation between these genes 

and CNA selected in corresponding CNA component were higher than what is expected at random. 

Similarly, for a set of CNA (selected through a CNA component), we evaluated whether the observed 

average squared correlation between these CNA and genes selected in corresponding gene 

component were higher than what is expected at random. We found that among the gene modules 

and CNA sets selected in METABRIC and present in TCGA, the average correlation for all the 14 

components were significantly (p-value < 0.05) higher than expected (Supplementary Figure S1). 

Further 10 of these components were strongly significant as well (p-value < 0.001). Such a result is 

not unexpected as the sCCA components include a majority of cis effects. Further, this also suggests 

that the sCCA components in METABRIC possibly captured true effects replicable across different 

datasets and not potential artefacts and batch effects within METABRIC. (See Supplementary 

Methods) 
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Association with breast cancer related outcomes. Given the 14 gene modules obtained through sCCA 

analysis, we investigated whether these gene modules were associated with 7 different types of 

breast cancer outcomes (Table 2). At a lenient cutoff of FDR < 0.05, we found that 539 genes across 

the 14 modules were associated with at least one of the outcomes (Supplementary Table 3). Further, 

at a stringent exome-wide cutoff of p-value < 2.5 х 10-06, we found 94 genes associated with at least 1 

outcome. Subsequently, through several downstream analysis we investigated whether the genes 

that are significant for a given outcome indeed had external evidence of association to BrC related 

outcomes. Here we demonstrate the results for two distinct types of outcomes:  

 

Estrogen Receptor (ER). Of the 1,904 individuals in the sample, 1,459 (76.6%) individuals had ER 

positive status. We performed logistic regression-based association tests of the 14 significant gene 

modules. Across the components we found that 210 genes were significant at an FDR < 0.05 and 36 

genes were significant with p-value < 2.5 х 10-06. Among the genes significantly associated with ER 

status, we identified known breast cancer related genes such as Microtubule Associated Protein Tau 

(MAPT), whose expression is highly associated with low sensitivity to taxanes that are important 

drugs for breast cancer treatment28, and Macrophage migration inhibitory factor (MIF), a pro-

inflammatory cytokine whose blockade reduces the aggressiveness of invasive breast cancer29. The 

advantage of our approach is that the sCCA-based model provides an explanation of the intermediate 

biological mechanisms. For example, among genes selected in gene component 4, we found that 

Dynein Axonemal Light Intermediate Chain 1 (DNALI1), on chromosome is associated with ER status 

(p-value = 4.8 х 10-04), being trans-regulated by CNA sites on chromosome 17 selected in CNA 

component 4 (Figure 3A). DNALI1 is a downstream target for transcription factors STAT3 and UBTF, 

both of which are selected in CNA component 4. Further, there is evidence of physical interactions 

between the proteins resulting from DNALI1 and UBTF in large protein interactions databases as 

well30. This indicates the possibility that DNALI1 mediates the effects of the CNA sites in chromosome 

5 selected by CNA component 1, on ER status. Thus, not only we identify the genes whose 

expression levels are associated with breast cancer outcomes, we also additionally identify which 

CNA potentially regulate such genes. 

 

Through pathway enrichment analysis (Table 3), we found that the genes significantly associated to 

ER status at FDR < 0.05, were enriched for hallmark pathways31 like early response to estrogen, 

DNA repair and MYC targets, MYC being a well-known oncogene32. Further, in pathways curated 

from chemical and genetic perturbation experiments, we found that the genes were enriched for 

genes highly positively co-expressed with BRCA1 and BRCA2, two genes well reported to be 

involved in BrC33–35. Further, the genes were also enriched for targets of several transcription factors, 
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like NELFE36,37, E2F438,39 and CREB140,41 which are known to play key roles in several cancers, 

including BrC. However, overlap of the identified significant genes with key cancer related pathways 

suggest a possible mechanistic explanation for the outcome. For example, of the 210 significant 

genes, 7 genes (ADCY9, ABAT, MAPT, SLC9A3R1, CANT1, BCL2, FAM102A) are in the early 

estrogen response hallmark pathway31. These 7 genes are identified as part of gene modules 4, 11, 

14, 7 and 10. This indicates that the CNA selected in the corresponding CNA components, which 

regulates these gene components respectively, as shown in sCCA analysis, significantly changes 

estrogen response and can possibly be causal for ER status. This interpretability is a key advantage 

of our analysis approach. 

 

Overall survival (OS). Of the 1,904 individuals in the sample, 1,109 (76.6%) individuals died during 

the study, with median survival time being 154 months approximately. In a cox proportional hazard 

model, we found 73 genes to be significant across the 14 components. Notably, several interesting 

distally regulated genes are identified in our analysis. For example, in sCCA component 11, we found 

that the expression of CD2BP2 gene on chromosome 5 is associated with the overall survival. This 

gene is differentially regulated in T47D cells of BrC patients in response to tamoxifen42, a widely used 

hormonal therapy drug for BrC43. The transcription start site for CD2BP2 is over 27 Mb downstream 

from the subregion of chromosome 5 selected through the CNA component 11. The corresponding 

selected set of CNA in component 11 contains a TF ZNF263, which has a long-range regulatory 

effect on CD2BP2 on the same chromosome24 and indicates that possibly CD2BP2 mediates the 

effects of the selected CNA producing significant change in overall survival probability (Figure 3B-C).  

 

A comprehensive pathway enrichment analysis (Table 4) reveals that the selected genes are 

enriched in gene-sets and pathways defined by several breast cancer related perturbation 

experiments. For example, we found a significant enrichment of the genes associated to OS, in the 

genes related to adipogenesis. Enrichment was found among genes up regulated in early primary 

breast tumors expressing ESR1 vs the ESR1 negative ones. In addition, the genes significantly 

associated to OS were enriched for targets of several key cancer TFs like ELK1, YY1 and RUNX344–

46. As highlighted above, through the sCCA components and the subsequent cox PH association 

model, we not only identify which genes are associated with OS but also detect the CNA sites 

regulating these gene expressions and, hence affecting OS. 

 

Multiple outcomes. We further meta-analyzed results across all the seven BrC related outcomes to 

identify genes that are possibly associated to multiple outcomes. Since the outcomes are correlated 

and as a result the association p-values across the outcomes for each gene are correlated, it is 
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difficult to use standard meta-analysis for this. In fact, the effect size estimates for association models 

pertaining to different types of outcomes (binary and survival), would complicate the interpretation of 

effect size based meta-analysis. Here, we used the cauchy combination test to meta-analyze results 

across the seven outcomes. 72 genes were identified to be significant at the exome-wide p-value 

threshold of 2.5 х 10-06 (Figure 3D). At FDR < 0.05, we found 495 genes to be significantly associated 

to the set of 7 outcomes. Although majority of these associations were driven by significant 

associations with one outcome and weaker association with several others, 4 genes were also 

identified which had no significant association (FDR > 0.05) to any single outcome but had possibly 

weaker association with multiple outcomes. For example, we found ZC3H3 gene to be significant 

through the cauchy combination approach which has nominal associations with the grade of tumor (p-

value = 0.020) and age at diagnosis (p-value = 0.031). PAK2, a gene well reported to be associated 

to different cancers including BrC47,48 and a target for MYC oncogene, had multiple weaker 

associations with age at diagnosis (p-value = 0.032) and overall survival (p-value = 0.005). We 

conducted pathway enrichment analyses with the 495 genes that were found significant at FDR < 

0.05 in meta-analyses. Similarly, as before, the results show that the numerous relevant pathways 

and gene-sets related to BrC are significantly enriched for these genes.  

 

 

Discussions 

 

Extensive research has established that CNA are indeed important for several cancer types and 

subtypes, especially in breast cancers19. However, the intermediate mechanisms and processes via 

which CNA impact breast cancer related outcomes have not been conclusively established and 

warrants further research. In this article we have outlined a novel and generalizable analytic approach 

to identify how CNA regulate expression levels of gene modules that ultimately influence several 

breast cancer related outcomes. Our approach involves two steps: using sparse canonical correlation 

analysis to identify gene modules associated with sets of CNA, followed by testing association 

between the gene modules and cancer related outcomes. We further carried out a meta-analysis 

across different types of outcomes to identify genes with multiple associations. Extensive downstream 

analysis shows that the genes identified through our analysis have key relevance for breast and other 

cancers that have also been noted in other studies. Unlike these other studies, our approach also 

identifies CNA sets that possibly regulate the genes which in turn bring about changes in outcomes 

related to breast cancer. 
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The identification of gene modules using sCCA is a key advancement that we propose over existing 

work on this topic. Several authors have hypothesized that the effects of genetic variants like CNA 

are cascaded through complex intermediate gene network to bring about phenotypic change15. 

However, associations analysis using single CNA-gene expression pair fails to provide such a 

mapping to identify potential co-regulation of gene modules. Through our joint analysis approach in 

sCCA, we map groups of CNA to gene modules, which elucidates the concept of groupwise mapping 

rather than individual associations and hence is more amenable to interpretation in genetic contexts. 

Existing transcription factor databases and profiles show that the gene modules thus detected can 

potentially be coregulated which indicates that such groupwise mapping approach can identify 

biological regulation as well.  

 

One of the key interpretations of the gene modules is that they represent approximately independent 

regulatory patterns due to the orthogonality condition imposed by sCCA. Thus, in principle, the first 

step in our analysis, identifies key distinct biological regulatory processes that are activated within 

primary breast tumor tissue. sCCA identifies the gene modules that have multiple independent 

regulatory associations with the corresponding CNA set. This can possibly be powerful in comparison 

to identifying single CNA-gene pairs, since sCCA can aggregate multiple possibly weaker association 

within the identified components. In fact, contrasting the gene modules identified here with those 

identified in normal breast or mammary tissues might provide further insight as to the variation in 

biological mechanisms caused by tumorigenesis. There will possibly be a plethora of regulatory 

associations beyond the ones identified through sCCA, which can be identified in a larger sample. 

 

The subsequent association analysis using gene modules is relatively standard and has been used 

commonly. However, interpreting the association p-values needs caution since the association model 

is a joint regression. In general, single gene vs outcome tests are different from this since the joint 

model additionally adjusts for correlation between the genes and reports the p-value conditional on 

the gene module. This joint regression framework, thus, provides an intuitive “fine-mapping” among 

the genes in module with respect to an outcome, in that it identifies the genes that are associated 

while adjusting for the correlation within the module. While association between and outcome and a 

single gene can arise either due to true causality or due to correlation of the tested gene with the true 

causal gene, our approach accounts for the dependency and hence significant association can 

potentially be causal. 

 

The multiple outcome meta-analysis21 demonstrates another advantage of our approach. In general, 

complex diseases like cancers, and in particular breast cancer, can have numerous biomarkers of 
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disparate types. Combining results across the biomarkers can highlight overall important genes and 

genes affecting multiple biomarkers. However, meta-analyzing association results across them is not 

straightforward since the results are correlated. Further for different types of biomarkers (continuous, 

discrete, binary, survival etc.) the effect sizes have disparate interpretation and hence standard meta-

analysis might not be appropriate. However, our cauchy combination approach alleviates these 

problems since it is based on p-values and not on the effect size. Further, due to the correlation 

agnostic property of cauchy distributions, meta-analysis of correlated p-values controls false positive 

rates. In principle, using this approach, meta-analysis of different types of biomarkers and outcomes 

are possible, if the univariate association mean model is correctly specified. 

 

sCCA has previously been previously used for identifying patterns of regulation of genetic variants 

and gene expressions and other intermediate phenotypes18,49,50. It provides an intuitive approach to 

map sets of genetic variants to sets or networks of molecular phenotypes like gene expressions, 

protein levels, metabolites and others. In fact, this broad concept can further be extended to multi-

view data sets and can be useful in integrative analysis of multi-omics data. Further research is 

merited in this respect. 

 

Together, our analysis provides a comprehensive picture as to how CNA can impact different breast 

cancer outcomes via regulation of intermediate gene networks. If a particular gene is significantly 

associated with a breast cancer related outcome, we can identify which set of CNA of which genomic 

subregion regulates it using the identified gene modules. Further, overlap of the significant genes with 

several breast cancer related pathways identifies the genes within the predefined biological process 

is differentially regulated by CNA to bring about phenotypic change.  

 

The analysis approach that we adopted here is highly generalizable as an overall intuitive framework. 

The first step pertains to groupwise mapping and identification of modules followed the association 

analysis in the second step. Although we adopted an sCCA approach here for its ease of 

interpretation, several other methods mapping sets of genetic variants to gene modules can be used 

instead. For example, methods for biclustering and matrix factorization can be adapted in the first 

step to identify gene modules. In fact, groupings based on functional annotation can also be 

incorporated to further strengthen the mechanistic interpretation of the identified modules. The 

subsequent association analysis can also be customized to address scientific questions of interest. 

However, one of the major advantages of our pipeline is that, in principle, the two steps can be 

performed on separate datasets as well. For example, in current studies large scale genomic and 

transcriptomic data for many individuals are available while detailed information on phenotypes and 
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traits might not be available. Thus, the identification of gene modules can be performed using such 

data while the subsequent association analysis can be carried out in a separate data. 

 

Our analysis approach currently has several limitations. The optimal number of components in sCCA 

is chosen heuristically by maximizing the iterative ratio of canonical correlations rather than using any 

significance or enrichment tests. In the current set up, formulating analytical tests of significance is 

difficult and methods based on sCCA has mostly resorted to resampling methods. In the future, 

research on Bayesian formulations coupled with sequential testing is warranted to perform tests of 

significance for regularization and clustering methods which can indicate the optimal number of 

components and parameter settings. 

 

Overall, our analysis provides an overall understanding about the gene regulation by CNA and their 

impact on several breast cancer related outcomes. In future, as larger studies emerge with a greater 

coverage and spectrum of molecular phenotypes, a more comprehensive insight as to the 

intermediate regulatory mechanism will take shape. For that, it will be imperative to move beyond 

identifying single variant-gene or variant-outcome associations and conceptualize associations in 

context of networks and modules. 
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Figure 1: Results from sCCA analysis (A) Chromosomal subregions identified by 14 CNA components. For each CNA component the 
region between the most distal CNA selected in that component is marked. (B) Average squared correlation between the CNA selected in 
CNA components and genes selected in Gene components. Correlation between Genes in components 2 and CNA in component 8 (and 
vice versa) are observed due possible correlation between selected CNA and long-range regulatory effects. Similar correlation is observed 
for components 5 & 7 as well. 
 
Figure 2: Examples of trans associations identified in using the genes selected in (A) Gene component 1 (B) Gene component 4. 
Several genes in a chromosome different from that of the selected CNA is identified. Further, numerous distal genes (> 10Mb) on the same 
chromosome are detected as well. 
 
Figure 3: Association analysis with breast cancer related outcomes. (A) DNALI1 gene on chromosome 1 associated with ER status 
and trans-regulated by a CNA of transcription factor CHD1 on chromosome 5. (B) Trans regulation of CD2BP2 gene on chromosome 
16p11.2 by a CNA in ZNF263 gene located in chromosome 16q13.3 which are approximately 27Mb apart. (C) Association of CD2BP2 
expression level with overall survival probability. Expression levels have been dichotomized as high and low using 75-th percentile as cut-
off. (D) p-values of 72 genes identified to be strongly associated (p-value < 2.5 х 10-06) with multiple outcomes, across the 7 outcomes. P-
values < 1 х 10-12 are collapsed to 1 х 10-12 for the ease of viewing. 
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Figure 3 
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Table 1: Description of the 14 gene modules and CNA components identified through sCCA. 
 
 
  

CNA components 
 

Gene components (modules) 

sCCA 
component 

Number of 
CNA selected 

Chromosome 
Number 

Genomic location of 
selected CNA (Mb) 

Number of 
Genes selected 

Genes on different 
chromosome 

Distal genes on 
same 
chromosome 

1 139 5 72.17 – 119.54 70 24 18 
2 107 8 135.45 – 145.01 59 0 14 
3 131 1 153.20-156.96 56 0 6 
4 115 17 41.86 – 45.50 67 9 4 
5 145 22 35.64 – 44.57 63 0 6 
6 130 16 65.28 – 77.25 58 0 6 
7 125 22 17.95 – 24.63 58 0 10 
8 125 8 115.95 – 134.48 59 0 24 
9 145 7 100.40 – 127.61 71 0 17 
10 151 9 121.82 – 131.49 74 0 1 
11 129 16 1.06 – 3.72 64 1 11 
12 117 1 9.65 – 16.64 63 0 12 
13 147 3 168.00 – 193.44 71 0 11 
14 145 17 58.16 – 69.14 62 0 1 
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Table 2: Description of the seven breast cancer related outcomes analyzed, and the number of genes associated significantly.  
 
Outcome % cases Median survival  Significant Genes (FDR < 0.05) 
Estrogen Receptor status (ER) 76.6 - 210 
Progesterone receptor status (PR)  52.9 - 237 
Human Epidermal growth factor Receptor 2 status (HER2) 12.4 - 255 
Grade (Grade 3 vs Grade lower than 3) 47.5 - 65 
Lymph Nodes Examined to be present (present vs absent) 47.8 - 12 
Age at diagnosis (< 50 years) 78.4 - 100 
Overall Survival - 154.2 73 
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Table 3: Different categories of pathways enriched for the 210 genes associated (FDR < 0.05) with ER status. 
 
Category Pathway Adjusted p-value Genes in 

pathway 
Genes overlap 

 
 
GO 

Cellular macromolecule localization 5.7 x 10-09 1886 39 
Intracellular protein transport 1.2 x 10-07 1156 28 
Cellular response to DNA damage stimulus 4.4 x 10-07 841 23 
Catalytic complex 4.7 x 10-10 1552 36 
Adenyl Nucleotide binding 3.9 x 10-06 1536 30 

Hallmark Estrogen Response (early) 4.9 x 10-03 200 7 
DNA repair 4.9 x 10-03 149 6 
E2F targets 9.3 x 10-03 200 6 
MYC targets 9.3 x 10-03 200 6 
MTORC1 signaling 4.5 x 10-02 200 5 

 
Curated 
Gene sets 
 

NIKOLSKY_BREAST_CANCER_8Q23_Q24_AMPLICON 8.2 x 10-14 157 17 
PUJANA_BRCA1_PCC_NETWORK 2.3 x 10-08 1617 34 
CHARAFE_BREAST_CANCER_LUMINAL_VS_MESENCHYMAL_UP 4.3 x 10-07 446 17 
VANTVEER_BREAST_CANCER_ESR1_UP 5.7 x 10-05 208 15 
PUJANA_BRCA2_PCC_NETWORK 5.4 x 10-04 423 12 

Immunologic 
Signatures 

GSE4984_GALECTIN1_VS_VEHICLE_CTRL_TREATED_DC_DN 1.4 x 10-06 198 12 
GSE2770_UNTREATED_VS_IL12_TREATED_ACT_CD4_TCELL_2H_DN 3.8 x 10-06 200 12 
GSE19825_NAIVE_VS_IL2RAHIGH_DAY3_EFF_CD8_TCELL_DN 1.8 x 10-05 200 11 

 
 
TF targets 

ENCODE: NELFE 6.5 x 10-46 9442 173 
ENCODE: E2F4 2.8 x 10-34 12626 180 
ENCODE: CREB1 5.7 x 10-33 12289 177 
ChEA: EGR1 3.1 x 10-09 5000 82 
ChEA: ELF3 2.2 x 10-07 1760 40 
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Table 4: Different categories of pathways enriched for the 73 genes associated (FDR < 0.05) with overall survival (OS) 
 
 
Category Pathway Adjusted p-value Genes in 

pathway 
Genes overlap 

 
 
GO 

RNA metabolic process 4.2 x 10-03 1542 14 
Macromolecule catabolic process 4.2 x 10-03 1366 13 
Cellular component disassembly 1.2 x 10-02 537 8 

Hallmark Adipogenesis 2.8 x 10-02 200 4 
 
Curated 
Gene sets 

DIAZ_CHRONIC_MEYLOGENOUS_LEUKEMIA_UP 1.2 x 10-03 1397 14 
Reactome: Metabolism of RNA 1.3 x 10-03 668 10 
NIKOLSKY_BREAST_CANCER_17Q21_Q25_AMPLICON 2.1 x 10-02 332 6 

Immunologic 
Signatures 

GSE3982_NEUTROPHIL_VS_TH1_DN 4.8 x 10-04 199 7 
GSE3982_EOSINOPHIL_VS_NKCELL_DN 1.5 x 10-03 197 5 
GSE27786_NKCELL_VS_NEUTROPHIL_UP 8.1 x 10-03 199 5 

 
 
TF targets 

ENCODE: RUNX3 8.1 x 10-16 11816 63 
ENCODE: ELK1 1.5 x 10-14 11349 61 
ENCODE: YY1 1.5 x 10-12 12289 177 
ChEA: ETS1 8.0 x 10-08 1359 20 
ChEA: PADI4 9.4 x 10-03 877 9 
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