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Abstract

Assessment of gait deficits relies on accurate gait segmentation based
on the key gait events of heel strike (HS) and toe-off (TO). Kinematics-
based estimation of gait events has shown promise in this regard especially
using the leg velocity signal and gyroscopic sensors. However, its valida-
tion for the amputee population is not established in the literature. The
goal of this study is to assess the accuracy of lower-leg angular velocity
signal in determining the TO and HS instants for the amputee popu-
lation. An open data set containing marker data of 10 subjects with
unilateral transfemoral amputation during treadmill walking was used. A
rule-based dual-minima algorithm was developed to detect the landmarks
in the shank velocity signal indicating TO and HS events. The predic-
tions were compared against the force platform data for 2595 walking
cycles from 239 walking trials. Results showed considerable accuracy for
the HS with a median error of -1ms. The TO prediction error was larger
with the median ranging from 35-84ms. The algorithm consistently pre-
dicted the TO earlier than the actual event. Significant differences were
found between the prediction accuracy for the sound and prosthetic legs.
The prediction accuracy was also affected by the subjects’ mobility level
(K-level) but was largely unaffected by gait speed. In conclusion, the
leg velocity profile during walking can predict the heel-strike and toe-off
events for the transfemoral amputee population with varying degrees of
accuracy depending upon the leg side and amputee’s functional ability
level.
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1 Introduction

Gait analysis is a valuable tool in assessing various pathologies. Devia-
tions from a healthy gait template often indicate underlying health con-
ditions. For people with amputations, an accurate gait assessment leads
to the development of more efficient prosthetic devices and better evalu-
ation of clinical outcomes. That is why, more and more clinics are using
technology-enabled gait analysis solutions as opposed to traditional visual
gait analysis.

A pre-requisite to effective gait assessment is the estimation of key
gait events of heel strike (HS) and toe-off (TO), which represent the mo-
ment the foot is placed and removed from the ground respectively [1].
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Traditionally, these are estimated using the force or pressure data from
specialized platforms in research laboratories. However, due to high cost
and space constraints, this method is not used widely in clinics. Instead,
kinematics-based solutions are becoming popular due to the possibility
of body-worn inertial sensors. These methods rely on leg or foot veloc-
ity/acceleration data and rule-based algorithms to estimate gait events.
Many authors have validated this approach for TO and HS detection for
healthy subjects [2, 3, 4, 5, 6, 7, 8, 9, 10, 11] as well as for subjects with
walking disorders [12, 13, 14, 15, 16]. However, its validity for the amputee
population is not well established in the literature.

The kinematic methods require an algorithm to identify observable
features in the velocity/acceleration data of body segments. Several rule-
based algorithms have also been developed for this purpose. A popular
choice is to use the shank angular velocity for TO and HS estimation
corresponding to the minima in the sagittal-plane angular velocity signal
[17]. Many researchers have exploited this signal over the years for diverse
subject populations and reported a reasonable degree of accuracy [18, 19,
7, 3, 20, 14, 21, 22, 2].

However, no study has focused on amputee subjects except [20] which
included data from a single subject. Since lower-body amputations lead to
gait deviations and compensatory movements, there is a need to evaluate
this paradigm with a large data set of persons with amputations. Hence,
the goal of this study is to compare the accuracy of gait event prediction
using the shank angular velocity against force platform data. A secondary
objective is to observe if this accuracy is affected by parameters such
as leg side (sound or prosthetic), subjects’ walking ability, and walking
speed. A published data set of amputee subjects by Hood et. al. [23] is
employed for this purpose containing optoelectronic and force plate data
for transfemoral amputees.

2 Materials and Methods

A data set consisting of marker and force plate data of 18 individuals
with unilateral transfemoral amputation was recently published [23]. It is
the most comprehensive gait data set available for prosthesis users which
provides force platform data for all steps taken during a trial. Moreover,
the walking speed was controlled accurately on a treadmill as opposed to
subjective instructions to walk ’slow’ or ’fast’.

Subjects were divided into two groups based on their comfortable walk-
ing speed with the speed of 0.8m/s acting as a threshold. On the Medicare
functional classification level (MFCL), subjects were either categorized as
limited community ambulators (K-level 2) or full community ambulators
(K-level 3) [24]. Each subject walked at five different speeds with K-level
2 subjects at [0.4, 0.5, 0.6, 0.7, 0.8m/s], and K-level 3 subjects at [0.6, 0.8,
1.0, 1.2, 1.4 m/s]. Complete details on the protocol and data acquisition
are available in [23].

The original study contained an equal number of subjects in both
groups. However, for this study, subjects using the handrails during
walking were excluded to avoid the effect of secondary support on the
gait pattern. This resulted in ten subjects for further analysis (including
three K-level 2 and seven K-level 3 subjects). These subjects are listed in
Table 1.

The data set reported four to five walking trials per speed resulting in
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Table 1: List of subjects for whom the walking data is used in this study.
Complete details on amputation can be found in [23]

Subject Age Amputation side K-level Number of trials in the analysis

K-level 2 subjects

TF05 72 Left K2 25
TF09 65 Left K2 25
TF12** 59 Left K2 23

K-level 3 subjects

TF01* 26 Right K3 21
TF07** 49 Left K3 22
TF08 42 Right K3 25
TF11** 51 Right K3 23
TF16 36 Left K3 25
TF17 38 Left K3 25
TF19 30 Left K3 25

Total trials 239

a total of 246 walking trials for the ten subjects. However, after careful
observation of the force platform and marker profiles, some trials were
discarded due to either incomplete or erroneous data. This resulted in a
total of 239 trials for the final analysis.

Estimation of leg velocity signal from marker data

The raw data consisted of three-dimensional trajectories of 61 cutaneous
reflective markers. The data contained the .c3d files for the marker trajec-
tories which were extracted using an open-source motion analyzer software
MOKKA (Motion Kinematic and Kinetic Analyzer [25]). For each trial,
the data were exported into a .csv file and read in Matlab for the calcula-
tion of lower-leg angular velocities from the coordinates of tibia markers.
Two tibia markers on each leg (Figure 1) were used to estimate leg orien-
tation using the method presented in [26]. The method uses two markers
in line with the bone axis to calculate the orientation of the segment,
which is further differentiated with respect to time to obtain the angular
velocity.

The raw marker data was collected at 200Hz and it is subject to a lot
of noise due to soft tissue artifacts. To reduce the noise in the resulting
angular velocity signal, a low pass filter was designed and implemented.
For this purpose, the frequency spectrum and the Nyquist frequency of
the signal for all subjects were analyzed. A cut-off frequency of 4 Hz gave
was chosen which resulted in negligible loss of data and time-shift of the
signal. An example of the filtering is shown in Figure 1 (right panel) for
a trial at 1.2m.s−1.

Algorithm

The determination of TO and HS events in the velocity signal is based on
the dual-minima approach similar to the one presented by [22]. It starts
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Figure 1: a): Placement of tibia markers for leg orientation and velocity calcu-
lation, b) A typical shank velocity signal with raw (grey) and filtered (black)
data, c) Enlarged view of one gait cycle from the velocity signal. The algorithm
starts with the detection of the largest positive peaks in the signal (marked
as MS) which define the intervals for gait events. TO is identified as the last
negative peak (or minima) just before the MS (circle) while HS is defined as the
negative peak just after the MS (square)

with the detection of all the positive peaks of the signal. These positive
peaks are associated with the midswing (MS) (c.f. Fig. 1). Each positive
peak is accompanied by two negative peaks (or minima) on either side
which indicate the reversal of leg velocity direction. The negative peak
(NP) preceding the MS is identified as the toe-off event while the NP after
the MS is marked as heel strike. The algorithm is implemented in Matlab.

Statistical analysis

For each walking cycle, the timings for the TO and HS events obtained
by this algorithm are compared against the force platform-based timings
provided in the data set. The errors (eTO, eHS) are calculated by taking
the difference between the corresponding predicted and actual events.

Error(eHS/eTO) = tactual − tpredicted, (1)

where the actual events refer to the ones marked using the force platform.
The error is positive when the predicted event precedes the actual event
and vice versa.

Shapiro-Wilk test and visual inspection of histograms indicated that
the error distribution was not normal. Hence a 5 number summary statis-
tic (involving the median, lower and upper quartiles, minimum and maxi-
mum values) was selected for further descriptive analysis. Non-parametric
statistical tests of significance were performed (at p = .05 level) for group
differences.

4

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 1, 2021. ; https://doi.org/10.1101/2021.08.27.21262720doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.27.21262720
http://creativecommons.org/licenses/by-nd/4.0/


Descriptive statistics of mean error (ME) and mean absolute error
(MAE) were also computed to compare the results of this study with the
literature which frequently report these averages.

3 Results

TO and HS events for a total of 2595 walking cycles from 239 trials were
compared. Results are summarized in Figure 2. The median heel strike
error (eHS) was -1ms with an interquartile range (IQR) of 31ms. The box
extended both above and below the median, indicating the predictions
to be early or late than the actual event. On the other hand, the me-
dian toe-off error (eTO), as well as the IQR, were larger (43ms and 51ms
respectively). The error is positive in all the cases indicating consistent
early detection by the algorithm for TO. The mean absolute values shown
at the bottom of the plot indicate that the magnitude of eHS was half as
compared to eTO indicating a better HS estimation.

The accompanying violin plots (in grey) show the distribution of error
values for both events. Interestingly, the distribution is bimodal in nature
for the eTO with two local maxima. This indicates a dichotomy of results
into two groups.

Difference by the leg side

To observe the differences in prediction error between legs (sound vs.
prosthetic), separate error values are plotted for each leg in Figure 3. A
Wilcoxon signed-rank test was also performed to reveal any significant
differences.

For the heel strike, the median error remained closer for both legs
(1ms and -8ms for sound vs. prosthetic side). But the error showed larger
dispersion on the prosthetic side with an IQR of 53ms. For the TO event,
there was clearly a large difference in the median error value between the
two legs. The median error on the sound side was 84ms versus 35ms on the
prosthetic side. This explains the bimodal distribution of error observed
in Figure 2.

Statistically significant differences were found between the two sides
for both TO and HS events (p < .001 ) .

Effect of K-level and walking speed

Finally, in order to observe the effect of subjects’ functional classification
level and walking speed on the prediction error, separate boxplots are
produced for both subject groups at different walking speeds (Figure 4).
Plots for trials from K2 subjects are shown on the left while trials from
K3 subjects are on the right. Walking speed is varied on the x-axis.

As a whole, the K2 group results had larger dispersion compared to K3
groups indicated by larger IQR values at all speeds. Moreover, the error
distribution was highly skewed for K2 subjects as indicated by asymmet-
rical boxplots. On the other hand, walking speed had a significant effect
on the TO prediction error on the sound side only for K3 subjects (p¡.05,
Friedman test). Other variables did not exhibit any significant correlation
with walking speed.
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Figure 2: Heel strike (left) and Toe-off (right) error plots for all 2595 walking
cycles. Boxplots (black) are superimposed with violin plots (in grey) indicating
error distribution. Key statistics are also indicated below each plot. The box
indicates the lower and upper quartiles with the central line showing the median.
The top and bottom lines of the box represent, respectively, the medians for the
upper and lower halves of the data and the whiskers represent the highest and
lowest values of the distribution, excluding outliers. Outliers are also presented
as circles

4 Discussion and conclusion

This is one of the most comprehensive studies for any population which
compares kinematics-based TO and HS prediction against the force plat-
form data. The results provide an insight into the degree of credence of
velocity-based gait event prediction. At the same time, the results can
be exploited by researchers for event prediction in the absence of force
platforms.

A key finding from this study is the consistent early prediction of the
toe-off event for both legs. This means that the actual toe-off takes place
after the 1st negative peak or minima of the velocity signal and points
towards an inherent limitation of this algorithm. In physiological terms,
it indicates that the leg has already started to accelerate forward before
the foot leaves the ground. Some authors have proposed the point of zero-
crossing (the point where the signal crosses the from negative-to-positive)
as TO event (e.g. [27]). However, observation of our velocity signals for
numerous trials does not support this view. We postulate that the actual
TO event occurs after the negative peak (NP) but before the zero-crossing
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Figure 3: Separate boxplots and error distribution for sound and prosthetic
legs. Median and interquartile ranges are mentioned at the bottom in each case.
Significant differences were found between errors on the sound and prosthetic
sides.

(ZC) of the velocity signal, hence yielding a narrow NP-ZC zone. Future
studies should focus on this zone for accurate prediction of TO event.

On the other hand, the HS prediction stretched both positive and neg-
ative values, indicating early and late prediction respectively. The error
magnitude was however smaller indicating that the actual heel-strike oc-
curs in a small window around the 2nd negative peak. The result of this
study can be used to define a search window around the negative peaks
of the leg velocity graph as shown in Figure 5. For the HS, the window
stretches about 50ms in both directions of the first negative peak. Sim-
ilarly, for the TO, the actual event window stretches up to 100ms after
the second negative peak. Future research should focus on these windows
while improving the prediction accuracy of kinematics-based methods pos-
sibly by including information from other signals such as foot and/or leg
accelerations.

Leg and group effects

Group comparisons indicated that the eTO prediction accuracy was better
on the prosthetic side (Figure 3) and further correlated negatively with
walking speed (Figure 4) on the sound side. On the other hand, the
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Figure 4: Toe-off (top panel) and Heel-strike (bottom) median error values
separated by subject groups (K-level 2 on left and K-level 3 on right) and leg
side. Speed is varied on x-axis for each group (0.4 to 0.8m/s for K2 subjects,
0.6 to 1.4m/s for K3 subjects)

eHS variability was larger for K-level 2 subject group which warrants
precaution when using the kinematics method for subjects classified as
’limited community ambulators’ on the functional classification system.

Comparison with literature studies

As mentioned in the beginning, there are barely any published studies with
the amputee population which makes a direct comparison of results diffi-
cult. Nevertheless, a comparison of the results of this study with the avail-
able literature is presented in Table 2. Almost all studies have reported
early TO prediction with this algorithm, albeit with smaller magnitudes
than our results. Catalfamo et. al. [2] reported early TO prediction for
all steps with a mean error of 50-73ms for healthy and children suffering
from cerebral palsy. Trojaniello et. al. [14] reported mean absolute TO
errors in the range of 16 to 22ms for elderly and gait-impaired subjects.
These smaller magnitudes further reinforce our premise that the actual
TO event occurs in the NP-ZC zone mentioned earlier for all populations.
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Figure 5: Typical shank velocity graph supplemented with the windows likely
to contain the HS and TO events for a gait cycle based on the results of this
study.

Similarly, for HS prediction, the error values are smaller than for TO
prediction as in this study. For instance, Zahradka et al. [19] reported a
mean error of -10.45ms for a group of healthy and gait-impaired subjects
which is very close to our results. Storm et. al. [3] reported absolute
mean error for indoor and outdoor walking in healthy adults in the range
of 11-14ms. The study by Catalfamo et. al [2] reported a mean HS error
of -8ms, an absolute mean of 15ms for level-ground walking. All in all, the
findings of this study match well with the literature and indicate a higher
level of confidence for the HS prediction than for the TO prediction.

In conclusion, it is possible to detect heel-strike and toe-off events for
the amputee population using the leg velocity, albeit less accurately for the
toe-off event on the sound side and for patients with limited community
ambulation ability.
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[12] Rejane Vale Gonçalves, Sérgio Teixeira Fonseca, Priscila Albu-
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Table 2: A comparison with the error magnitudes found in this study and the
available relevant literature, ME: Mean Error, MAE: Mean Absolute Error

Study Subject pop-
ulation and
task

Prediction
method

HS error (ms) TO error (ms)

This study Amputee,
N=10, Level
treadmill
walking

Leg kinematics,
Dual-minima of
shank velocity

ME: -9.3, MAE:
29

ME: 57.7,
MAE: 58.6

Maqbool et.
al. 2015 [20]

Amputee,
N=1, Ramp
ascent and
descent

Leg kinematics,
Dual-minima

ME: -37 to 13 ME: -17 to 122

Storm et al.
2016 [3]

Healthy,
N=10 , Over-
ground

Minima of shank
velocity for HS.
Acceleration-
based for TO

MAE: 7 to 14 MAE: 16 to 51

Zahradka et
al. 2020 [19]

Healthy
and Gait-
impaired,
N=17, Level
treadmill
walking

Minima of shank
velocity for TO.
Zero-crossing for
HS

ME: -10.45 ME: -56.20

Trojaniello
et. al. 2014
[14]

Healthy
and Gait-
impaired,
N=40, Over-
ground

Minima of shank
velocity for HS.
Acceleration-
based for TO

ME:0 to -22,
MAE 10 to 22

ME: 0 to -16,
MAE: 16 to 22

Lee & Park
2011 [22]

Healthy, N=5,
Overground

Leg kinematics,
Dual-minima

ME: -17 to -21 ME: 3 to 15

Catalfamo
et. al. 2010
[2]

Healthy and
CP, N=7,
Overground
and ramp

Leg kinematics,
Dual-minima

ME:-8 to -21,
MAE: 15 to 24

ME: 50 to 73,
MAE: 50 to 73
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