ABSTRACT AND KEYWORDS
Background Over 50 countries have used Wastewater-Based Epidemiology (WBE) and Whole-Genome Sequencing (WGS) of SARS-CoV-2 for monitoring COVID-19 cases. COVID-19 surveillance in the Philippines relies on clinical monitoring and contact tracing, with both having limited use in early detection or prediction of community outbreaks. Thus, complementary public health surveillance methods that can provide community-level infection data faster and using lesser resources must be explored.
Objectives This study piloted and assessed WBE and WGS as approaches for COVID-19 surveillance in low-resource and low-sanitation communities in Davao City, Philippines.
Methods Weekly wastewater samples were collected from six barangay community sewer pipes or creeks from November to December 2020. Samples were concentrated using a PEG-NaCl precipitation method and analyzed by RT-PCR to detect the SARS-CoV-2 N, RdRP, and E genes. In addition, SARS-CoV-2 RNA-positive samples were subjected to WGS for genomic mutation surveillance. Public data from clinical surveillance were also reviewed to interpret WBE data.
Results Twenty-two of the 24 samples (91.7%) obtained from the six barangays tested positive for SARS-CoV-2 RNA. The cycle threshold (Ct) values were correlated with RNA concentration and attack rate. Thirty-two SARS-CoV-2 mutations were detected in WGS, including novel non-synonymous mutations or indels in seven SARS-CoV-2 genes and ten mutations previously reported in the Philippines.
Discussion SARS-CoV-2 RNA was detected in community wastewater from the six barangays of Davao City, even when the barangays were classified as having a low risk of COVID-19 transmission and no new cases were reported. Despite the fragmented genome sequences analyzed, our genomic surveillance in wastewater confirmed the presence of previously reported mutations while identifying mutations not yet registered in clinical surveillance. The local context of a community must be considered when planning to adopt WBE and WGS as complementary COVID-19 surveillance methodologies, especially in low-sanitation and low-resource settings.
Competing Interest Statement
The authors have declared no competing interest.
Clinical Trial
not applicable
Funding Statement
This project was funded by the University of the Philippines Mindanao In-House Research Grant, the DOST - Philippine Council for Health Research and Development through the Philippine Genome Center Mindanao, the Just One Giant Lab through the Accessible Genomics Project, and USAID PEER subaward number (2000009924).
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Research Ethics Board (BMH-REC Code # 2020-08-02)
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
Raw data available in the supplemental materials