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Gamma Knife (GK) radiosurgery is a non-invasive treatment
modality which allows single fraction delivery of focused radia-
tion to one or more brain targets. Treatment planning mostly
involves manual placement and shaping of shots to conform
the prescribed dose to a surgical target. This process can be
time consuming and labour intensive. An automated method
is needed to determine the optimum combination of treatment
parameters to decrease planning time and chance for operator-
related error. Recent advancements in hardware platforms
which employ parallel computational methods with stochastic
optimization schemes are well suited to solving such combina-
torial optimization problems efficiently. We present a method
of generating optimized GK radiosurgery treatment plans us-
ing these techniques, which we name ROCKET (Radiosurgi-
cal Optimization Configuration Kit for Enhanced Treatments).
Our approach consists of two phases in which shot isocen-
ter positions are generated based on target geometry, followed
by optimization of sector collimator parameters. Using this
method, complex treatment plans can be generated, on aver-
age, in less than one minute, a substantial decrease relative to
manual planning. Our results also demonstrate improved se-
lectivity and treatment safety through decreased exposure to
nearby organs-at-risk (OARs), compared to manual reference
plans with matched coverage. Stochastic optimization is there-
fore shown to be a robust and efficient clinical tool for the auto-
matic generation of GK radiosurgery treatment plans.
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Introduction
Gamma Knife® (GK; Elekta, Stockholm, Sweden) radio-
surgery is a treatment modality within stereotactic neuro-
surgery which permits single fraction, focused delivery of
radiation to the brain. This technique involves the use of
gamma radiation using 192 60Co sources which can be pre-
cisely focused to irradiate brain targets while sparing nearby
healthy tissue. GK is frequently used in the treatment for
lesions with high risk of surgical resection, including brain
tumors and arteriovenous malformations (1, 2), as well as

trigeminal neuralgia(3, 4) and movement disorders(5–7). The
key advantage, in addition to its non-invasive profile, is ef-
fective control and conformal delivery of radiation while pre-
serving brain function and with fewer post-operative compli-
cations compared to microsurgical resection(8–13).
The current clinical paradigm is a forward planning ap-
proach which consists of manually placing and shaping shots
throughout the target volume to generate a complex dose dis-
tribution. This procedure can be time consuming, taking up
to several hours per patient, substantially hindering the clinic
schedule and straining healthcare resources. Further, opera-
tor variability presents the opportunity for subjective errors
to occur. Automated inverse planning software (Wizard™
and Lightning™; Elekta, Stockholm, Sweden) is available
but, compared to manual planning, may be insufficiently pre-
cise for a satisfactory treatment quality without further man-
ual modification(14). Thus, an efficient and robust planning
method is needed to automatically generate treatment plans
in a short time which satisfy the clinical requirements of suf-
ficient dose to the target while protecting nearby healthy tis-
sue.
GK treatment planning may be framed as a combinatorial
optimization problem as a large array of parameters must
be considered in order to craft an effective treatment plan.
Recent advances in specialized hardware with parallel com-
putational abilities and stochastic optimization algorithms
have made it possible to find global solutions to these prob-
lems efficiently(15). Currently available platforms are ca-
pable of solving these problems at speeds and scales not
possible using traditional computational techniques such as
simulated annealing or parallel tempering(15, 16). Simi-
lar methods have been successfully implemented for treat-
ment optimization in intensity-modulated radiation therapy,
which is notable due to its similarities with GK treatment
planning(17, 18).
In this paper we present the clinical application of our GK
treatment planning method using a stochastic optimization
system which we term ROCKET (Radiosurgical Optimiza-
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A B Fig. 1. A) General diagram of
the target T, surrounding rind R,
and nearby organs-at-risk OAR1

and OAR2. Dose delivered to R,
OAR1, and OAR2 is explicitly min-
imized in the proposed optimiza-
tion approach. The prescription
isodose and 50% isodose lines
are indicated by DP and 1/2DP, re-
spectively. B) Specific object seg-
mentation in a patient with acous-
tic neuroma overlaid on a T1-
weighted image. OARs are the
cochlea (Co) and brainstem (Bs).

tion Configuration Kit for Enhanced Treatments). We ap-
ply this technique to a retrospective cohort of brain tumor
patients and perform a comparison with manually generated
treatment plans. Our hypothesis is that our proposed planning
method will result in significantly reduced plan generation
time with no significant reductions in metrics of treatment
plan quality. For the purposes of this study, we have selected
a common type of lesion treated with GK. Acoustic neuromas
are often treated with GK due to their location near the brain-
stem and the risks associated with surgical resection. The
proximity of key organs-at-risk (OARs) necessitates a high
level of precision in treatment planning, thus making acous-
tic neuroma an ideal model for optimization studies.

Methods
Research Subjects. A total of 49 patients (27 female) with
acoustic neuroma were randomly sampled through retrospec-
tive chart review with approval from the University Health
Network Research Ethics Board. Acoustic neuroma is among
the most common tumor types treated with GK and is an
ideal model for optimization studies due to the proximity of
nearby OARs and the wide range of tumor shapes and sizes.
Tumor sizes ranged from 0.23 to 11.17cm3. All subjects
were previously treated with a Leksell Gamma Knife® Per-
fexion™ (Elekta, Stockholm, Sweden) unit at the Toronto
Western Hospital in Toronto, Ontario, Canada using manu-
ally generated treatment plans. Given that this is a retro-
spective study, the time required to generate these archival
plans was estimated to require an average of two hours or
more, depending on the complexity of the case. All patients
underwent 3T magnetic resonance (MR) imaging with con-
trast enhancement and computed tomography (CT) imaging
for targeting guidance and treatment planning. T1-weighted
3D fast spoiled gradient echo (FSPGR) and T2-weighted 3D
fast imaging employing steady-state acquisition (FIESTA)
images were acquired with 1mm axial slice thickness and
in-plane voxel resolution of 0.39mm x 0.39mm. CT images
were acquired for each patient after being fitted with a stereo-
tactic frame for targeting accuracy and stability with voxel
size = 0.57 mm x 0.57 mm x 1 mm.
Delineation of tumor targets and nearby OARs was per-
formed manually by the treating physicians (neurosurgeon
and radiation oncologist) using pre-treatment MR and CT im-
ages. These same structure segmentations were used for dose
distribution measurements in both optimized and manual ref-

erence plans as well as for isocenter position generation prior
to optimization of dose distribution. OARs were present in
all subjects as determined by the proximity of critical struc-
tures to the tumor. These include, but are not limited to, the
brainstem, cochlea, optic chiasm, and trigeminal nerve.
Our ROCKET plan generation procedure is divided into two
distinct phases: i) isocenter position determination followed
by ii) sector size optimization (SSO). In the isocenter posi-
tioning phase, we generate the number of shots and coordi-
nates of each shot in order to coarsely cover the target volume
using a novel sphere packing (SP) approach. These isocenter
positions remain fixed throughout the subsequent optimiza-
tion phase. During the SSO phase the sector collimation vari-
ables and weights are finely tuned to shape each shot.
To investigate the effects of each phase, we compare three
different treatment plans: manual forward planning, Fwd-
ROCKET, and SP-ROCKET. Manual forward plans are the
retrospectively acquired reference plans which were deliv-
ered to patients. Fwd-ROCKET plans use the same manu-
ally determined isocenters but with our SSO method applied
in the second phase. SP-ROCKET plans are entirely auto-
matically generated with SP in the first phase and SSO in the
second phase.

Treatment Plan Evaluation. Clinical treatment plans are
generally assessed on their ability to deliver the prescribed
dose to the target while minimizing the dose deposited to ad-
jacent healthy tissue. Quantitative metrics commonly used in
the GK clinic are coverage, selectivity, gradient index, and
beam-on time (BOT)(19). Coverage refers to the portion of
the target volume which receives at least the prescription dose
or greater. Selectivity refers to the volume of the prescription
isodose which coincides with the target volume. Ideally, cov-
erage and selectivity would be as close as possible to 100%.
Gradient index refers to the rate at which dose spatially drops
off outside of the prescription isodose volume (calculated as
the ratio of half the prescription isodose volume to the vol-
ume of the full prescription isodose). Gradient index is kept
as low as possible, indicating a sharp dose drop-off with little
dose leakage into surrounding healthy tissue. BOT, the ex-
posure time required to deliver a treatment, is also a consid-
eration as total treatment time must be tolerable for patients.
Explicit optimization of BOT may also enhance treatment ef-
ficiency and safety.
While the quantitative metrics discussed above provide the
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ability to objectively compare different treatment plans, these
measures can be difficult to interpret and may not reflect ev-
ery clinical concern relevant to the case. It is not possible to
achieve optimality in each clinical objective in every case as
one may negatively impact another; for example, maximiz-
ing a target’s prescription dose coverage may exceed the safe
dose threshold of a nearby OAR. Further, there is some het-
erogeneity amongst facilities regarding the specific metrics
used for plan evaluation as there are advantages and disad-
vantages to each depending on the type, size, and location of
the target(19). For this reason, visual inspection of the spatial
dose distribution and dose-volume histogram (DVH) is of-
ten performed clinically to complement quantitative metrics.
DVH analysis and measured dose to OARs will therefore also
be considered in this work.

Optimization Platform. In this study we use ROCKET, a
stochastic search optimization algorithm which is operated
using specialized hardware to solve the combinatorial opti-
mization problem(15, 16). These hardware systems frame the
problem in a specific format called Quadratic Unconstrained
Binary Optimization (QUBO)(20). QUBO is a powerful for-
mulation for solving combinatorial optimization problems
found across a variety of fields including engineering, fi-
nance, and government policy(21–24).
An objective function in QUBO format is constructed which
simultaneously considers all available parameters to be con-
figured. Penalty terms and coefficients may be added to the
function to constrain or prioritize specific output measures of
interest. For the purposes of this study, objective functions
are constructed for each phase with penalty terms to encour-
age dose conformity to the target and minimize dose deliv-
ered to adjacent healthy tissue. A stochastic Markov Chain
Monte Carlo (MCMC) algorithm is run in parallel in order
to minimize this function(25). These techniques have been
demonstrated to outperform specialized quantum hardware
such as D-Wave devices as well as traditional techniques such
as simulated annealing and parallel tempering(16, 26).

Isocenter Positioning. In the first phase of our proposed
method, we employ a novel QUBO-based SP algorithm to
generate isocenter position coordinates.
A three-dimensional lattice of candidate shot positions is es-
tablished over the target volume with a binary variable to
place or not place a shot at each coordinate. An objective
function is constructed which is minimized by the stochastic
algorithm to uniformly distribute shots over the target vol-
ume. Shots are forbidden outside the target and penalty terms
are incorporated to discourage shot placement close to the
target periphery in order to prevent excessive dose to healthy
tissue. In this phase, shots are defined as spheres with all col-
limators set to the same size. Shot spheres with dynamic ra-
dius are used to accommodate irregularly shaped targets and
those with overlapping radii are penalized to avoid large gra-
dients within the dose distribution (i.e. hotspots).
Once the optimal configuration of isocenter positions is iden-
tified, these shot coordinates are held fixed as we proceed to
the sector optimization phase where the shot shapes will be

finely tuned. It is important to note that this phase allows
multiple shots at a single isocenter location. A limitation
of the GK hardware is that a single shot weight applies for
all sectors in a given shot. While allowing multiple shots at
a single isocenter may increase BOT, it also provides more
flexibility in adjusting shot shape to achieve a uniform dose
distribution across the target.

Sector Size Optimization. In the SSO phase of the treat-
ment planning procedure, we optimize the sector collimation
parameters and weights for each shot. The 192 gamma emit-
ters in the GK helmet are arranged in eight independent sec-
tors of 24 sources. Each sector is equipped with a set of in-
dependently controlled collimators to adjust the aperture size
for each source. Changing the aperture size will modulate
the flux of gamma energy photons through that sector, ulti-
mately adjusting the shape of the dose distribution for each
shot. There are four collimator sizes available for each sector:
4mm, 8mm, 16mm, or blocked (0mm). Shot weight (i.e. ex-
posure time) is also considered as this parameter impacts the
overall size of each shot. Upon completion of the SSO phase,
the final dose is calculated and the treatment parameters are
imported into the clinical software.
The specific objective function we have constructed in this
phase simultaneously considers all possible collimator con-
figurations and exposure times (weight) for each shot at their
fixed isocenter locations. The individual terms of the function
are tuned such that minimizing it results in the maximization
of the clinical criteria of coverage, selectivity, gradient index,
and BOT. Special consideration is paid in this phase to dose
delivered to OARs.

Minimizing Dose to Healthy Tissue. Among the criteria
for evaluating treatment plans is the dose delivered to OARs
in the vicinity of the target which often have strict dose re-
strictions. However, common radiosurgical metrics of cover-
age, specificity, and gradient index do not directly consider
dose to these vulnerable structures. Thus, the sparing of dose
to healthy tissue and nearby OARs is included explicitly in
the objective function. For the target, a non-overlapping hol-
low shell called a rind is constructed that conforms to the
shape of the target by spatially dilating the target boundary
such that the rind volume matches the target volume. By min-
imizing dose to this shell, the selectivity and gradient index
of the dose distribution can be optimized, implicitly mini-
mizing dose delivered to tissue outside the target boundaries.
Figure 1 depicts examples of a tumor target, rind, and multi-
ple OARs in the general case and for a specific patient with
acoustic neuroma.
Further, dose to nearby OARs is explicitly minimized.
Penalty terms are included which consider all OARs together
and individually. Including separate terms for each OAR
ensures that dose is minimized in those regions regardless
of size. For example, the cochlea contributes a relatively
small number of voxels to the total volume of OAR in treat-
ments for acoustic neuroma; however, it is highly sensi-
tive to radiation dose resulting in substantial hearing loss or
tinnitus(27, 28). Explicit consideration of small OARs pro-
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Fig. 2. Averaged group data for manual forward planning and optimized Fwd-ROCKET and SP-ROCKET plans. Error bars indicate standard deviation. Significance indicated
by *: p<0.001; **: p<0.0005.

motes safe dose levels to these regions and limits negative
treatment side effects.

Statistical Analysis. A repeated-measures analysis of vari-
ance (ANOVA) was carried out to compare treatment metrics
across the three planning methods. P-values were consid-
ered significant at the 0.05 level (false discovery rate, FDR,
corrected). A Greenhouse-Geisser correction was used when
the data violated the assumption of sphericity. Coverage was
scaled to 95% for all plans in this analysis.

Results

Overall Results. Optimized treatment plan generation was
completed in an average of 51.2 ± 32.3s for SP-ROCKET
plans and 27.2 ± 12.3s for Fwd-ROCKET plans. In terms of
overall plan quality, optimized GK treatment plans demon-
strate equivalent or improved treatment metrics compared to
manual forward planning. For this analysis, coverage was set
to 95% for all plans.
Target selectivity was increased for all but four subjects
(91.8%) in the optimized plans compared to manual for-
ward planning. Average selectivity was significantly im-
proved in SP-ROCKET (0.840 ± 0.058, p=0.001) and Fwd-
ROCKET (0.834 ± 0.080, p=0.001) plans relative to for-
ward planning (0.801 ± 0.098). Mean gradient index did not
significantly differ between SP-ROCKET (3.046 ± 0.549,
p=0.174) and manual plans (2.813 ± 0.194) but was in-
creased in Fwd-ROCKET (3.644 ± 0.945, p< 0.0005) plans.
In 30 cases (61.2%), BOT was decreased in optimized SP-
ROCKET plans compared to manual forward planning. Av-
erage BOT, however, was not significantly different between
SP-ROCKET (49.47 ± 18.87min), Fwd-ROCKET (50.00 ±

23.67min), and manual forward planning (56.14 ± 27.77min;
p=0.062).
In all but three subjects (93.9%), maximum dose to the
cochlea was decreased in the optimized plans compared
to forward planning. On average, maximum dose to the
cochlea was decreased in both SP-ROCKET (4.20 ± 3.81Gy,
p<0.0005) and Fwd-ROCKET (4.41 ± 3.87Gy, p<0.0005)
relative to manual forward planning (5.03 ± 4.40Gy). Aver-
age values for maximum dose to the brainstem were not sig-
nificantly different across Fwd-ROCKET (10.44 ± 3.96Gy),
SP-ROCKET (10.61 ± 4.59Gy), and manual forward plans
(10.28 ± 4.18Gy; p=0.275). Average treatment metrics are
shown in Table 1 and depicted graphically in Figure 2.

Detailed Case Illustration. We present the results of three
subjects in detail which are representative of our proposed
planning method. These subjects were all treated for acous-
tic neuroma and span the range of tumor sizes which might
be treated by GK: A) 0.36cm3, B) 0.72cm3, and C) 5.02cm3.
Optimized treatment plans for these cases were computed
in approximately 70-100s. Table 2 presents treatment met-
rics for the manual forward plan which was delivered to
the patient and the optimized SP-ROCKET plan. These re-
sults demonstrate an improvement in treatment quality via
increased selectivity and decreased dose to OARs, the brain-

Table 1. Average metrics for manual forward planning and optimized Fwd-ROCKET
and SP-ROCKET plans. Coverage is scaled to 95% for all plans.

Manual Fwd-ROCKET SP-ROCKET
Selectivity 0.801 ± 0.098 0.834 ± 0.080 0.840 ± 0.058
Gradient Index 2.813 ± 0.194 3.644 ± 0.945 3.046 ± 0.549
BOT (min) 56.14 ± 27.77 50.00 ± 23.67 49.47 ± 18.87
Brainstem Max Dose (Gy) 10.28 ± 4.18 10.44 ± 3.96 10.61 ± 4.59
Cochlea Max Dose (Gy) 5.03 ± 4.40 4.41 ± 3.87 4.20 ± 3.81
Planning Time (s) – 27.2 ± 12.3 51.2 ± 32.3
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stem and ipsilateral cochlea.
DVH plots for these patients are shown in Figure 3, depicting
both manual and SP-ROCKET treatment plans. The slope of
the SP-ROCKET tumor dose curve closely mirrors the man-
ual reference plan. Decreased rind dose and gradient index in
the SP-ROCKET plan indicate a sharper dose drop-off out-
side of the target. The plots also show substantial decreases
in dose throughout the volumes of the brainstem and cochlea,
demonstrating enhanced treatment safety due to a decreased
likelihood of adverse treatment effects related to healthy tis-
sue exposure.
Figure 4 depicts the dose distributions for the acoustic neu-
roma case illustrations using both manual forward planning
and optimized SP-ROCKET planning. The isodose lines
demonstrate that there is substantial dose sparing to nearby
OARs, particularly the cochlea, while maintaining strong
conformity of the prescription dose to the target volume.

Discussion
In this work we have presented ROCKET, a novel method
of automatic GK treatment planning using QUBO-based
stochastic optimization. Our results demonstrate that per-
sonalized treatment plans can be generated efficiently with
quality that is comparable or improved compared to man-
ually generated treatment plans. Specifically, when target
coverage is matched between the two approaches, ROCKET
treatment plans show improved selectivity and safety through
decreased dose to nearby OARs without increasing treat-
ment delivery time. This is accomplished by employing
an approach where i) shot isocenter positions are automat-
ically generated and ii) shot shapes are optimized to maxi-
mize clinical quality. Automatic GK treatment planning with
ROCKET is thus shown to be a robust clinical tool which
may enhance the efficiency of clinical radiotherapy treatment
planning. While we have demonstrated the use of ROCKET
in optimizing GK planning, which tend to be complex and
time consuming, this tool is applicable to other types of radi-
ation planning and is non-proprietary to the manufacturers of
the GK.
The results presented in this paper are unique as we have
demonstrated the ability to generate radiation treatment plans
with a substantial time-saving profile while preserving and
improving treatment quality. An important feature of our
QUBO-based approach is the ability to generate candidate
shot isocenters for the optimization. This provides a practi-
cal advantage as entire treatment plans may be generated with

Table 2. Treatment metrics for sample acoustic neuroma patients with tumor vol-
umes A) 0.36cm3, B) 0.72cm3, and C) 5.02cm3. *: Time estimated by treating
neurosurgeon.

Case A Case B Case C
Manual SP-ROCKET Manual SP-ROCKET Manual SP-ROCKET

Number of Shots 6 6 14 14 22 26
Coverage 0.95 0.95 0.95 0.95 0.95 0.95
Selectivity 0.68 0.84 0.75 0.84 0.93 0.93
Gradient Index 3.04 3.38 3.01 2.71 2.60 3.02
BOT (min) 31.4 25.1 37.0 37.8 47.6 39.1
Brainstem Max Dose (Gy) 4.40 5.51 6.82 6.26 12.08 12.68
Brainstem Mean Dose (Gy) 0.89 1.07 1.00 0.83 3.56 4.16
Cochlea Max Dose (Gy) 9.85 5.98 11.59 10.24 10.49 8.04
Cochlea Mean Dose (Gy) 5.53 3.92 7.78 7.22 6.80 6.07
Planning Time 90min* 72.7sec 120min* 80.2sec 180min* 103.2sec
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Fig. 3. Dose-volume histograms for the acoustic neuroma case illustrations. Manual
forward planning is depicted by the dashed line while the optimized SP-ROCKET
planning is depicted by the solid line. Dose curves are shown for the tumor, brain-
stem, and cochlea.

a single computational platform. A recent work has simi-
larly reported simultaneous optimization of sector duration
and isocenters in radiotherapy planning based on an integer
programming model(29). QUBO-based solvers, as we use
this study, have reported computational benefits relative to
these techniques, however(15, 16). Existing approaches to
radiotherapy optimization have relied upon non-QUBO SP
methods for isocenter determination, including adaptations
of the grassfire and skeletonization algorithms(30–33). Oth-
ers have chosen to focus on shot shape optimization while
avoiding manipulation of shot positions(34, 35). The Fwd-
ROCKET plans presented in this work demonstrate that our
SSO on its own has a positive impact on treatment quality
with short computation times. ROCKET may thus be incor-
porated on its own with other geometry-based, non-QUBO
isocenter generation approaches to enhance treatment plan-
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Fig. 4. Dose distributions for the acoustic neuroma cases A, B, and C using manual forward planning (top row) and optimized SP-ROCKET planning (bottom row). 5, 10, 15,
and 20 Gy isodose lines are shown. Segmentations are shown for the tumor, brainstem, and cochlea. Background is a T1-weighted image in axial view.

ning.
The computational techniques used in this study have pre-
viously been demonstrated to be effective in other ra-
diotherapy modalities, namely intensity modulated radia-
tion therapy(18), and this work expands on their utility.
ROCKET is thus applicable to radiotherapy planning op-
timization in general and is not restricted a single modal-
ity or hardware platform. Reports have also shown these
computational approaches to be powerful in other applica-
tions such as medical image segmentation(36), finance(37),
telecommunications(38, 39), and computer science(40).
Other techniques for automatic treatment planning have
been reported based on simulated annealing, linear program-
ming, mixed-integer programming, or piecewise penalty
methods(29, 34, 35, 41, 42). These models may achieve
clinically acceptable plans in terms of quantitative met-
rics but may have shortcomings in terms of computation
time, hardware limitations, or long delivery times. QUBO
solvers like ROCKET have previously demonstrated advan-
tages relative to these techniques for solving combinatorial
optimization problems such as radiotherapy treatment plan
generation(15, 16).

Limitations. A limitation of this study that may be identi-
fied is a disparity in the dose kernels used for calculation of
the dose distribution between the manual treatment plans and
the DA. The dosimetry software used in the clinical Leksell
GammaPlan™ software (TMR10) is proprietary on behalf of
the manufacturer and not shared publicly. We did not have
direct access to this dose kernel and thus had to reconstruct it
locally by generating phantom plans in the clinic with single
sectors of each collimator size and summing the contributions
of each sector individually for more complex shot arrange-

ments. We believe that our estimation of the dose kernel is
robust but recognize the potential for disparity.
Another potential limitation is the choice of metrics used for
evaluation of radiosurgery plans. The primary metrics incor-
porated in our optimization scheme were coverage, selectiv-
ity, and gradient index as those are the primary metrics used
in the clinic. Other quantitative metrics have been formulated
for plan evaluation which may be more appropriate, depend-
ing on the diagnosis, size, and location of the tumor(19, 43–
45). We note that this limitation applies to both the manual
reference plans and those generated by ROCKET.

Conclusions
We have developed a procedure for generating GK radio-
surgery treatment plans automatically using a QUBO-based
optimization platform called ROCKET. Personalized treat-
ment plans were generated rapidly and demonstrate equiv-
alent or improved treatment quality compared to manual for-
ward planning. This tool has great potential for the automatic
preparation and enhancement of clinical workflow in radio-
surgery treatments.
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