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Abstract

Objectives

Various commercial anti-Spike SARS-CoV-2 antibody tests are used for studies and in clinical settings
after vaccination. An international standard for SARS-CoV-2 antibodies has been established to achieve
comparability of such tests, allowing conversions to BAU/ml. This study aimed to investigate the

comparability of antibody tests regarding the timing of blood collection after vaccination.

Methods

For this prospective observational study, antibody levels of 50 participants with homologous AZD1222
vaccination were evaluated at 3 and 11 weeks after the first dose and 3 weeks after the second dose
using two commercial anti-Spike binding antibody assays (Roche and Abbott) and a surrogate

neutralization assay.

Results

The correlation between Roche and Abbott changed significantly depending on the time point studied.
Although 3 weeks after the first dose, Abbott provided values three times higher than Roche, 11 weeks
after the first dose, the values for Roche were twice as high as for Abbott, and 3 weeks after the second

dose even 5-6 times higher.

Conclusions

The comparability of quantitative anti-Spike SARS-CoV-2 antibody tests is highly dependent on the timing
of blood collection after vaccination. Therefore, standardization of the timing of blood collection might
be necessary for the comparability of different quantitative SARS-COV-2 antibody assays.
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Introduction

Infectious diseases continue to pose a significant challenge for humanity, as the SARS-CoV-2 pandemic
has again demonstrated®. Nevertheless, in contrast to the past, diagnostic, therapeutic, and preventive
strategies are now being developed at an unprecedented rate to address these pandemic challenges.
Among all these strategies, however, one stands out: vaccination against SARS-CoV-2. Using new
technologies and extensive knowledge on active immunization against numerous pathogens, highly

efficient vaccines have been developed and applied within a few months?.

The vaccination aims to induce a SARS-CoV-2 specific immune response in analogy to a passed infection,
which should protect against disease or even better against infection. The methodically simplest way to
objectify a particular immune reaction is to measure infection- or vaccine-induced specific antibodies®*.
Thus, antibody tests have been used for SARS-CoV-2 to confirm prior infection or detect unreported
infections as part of seroprevalence surveys®’. Various antigens have been applied in this regard, which
fall into two classes: SARS-CoV-2 nucleocapsid-specific antibodies and antibodies directed against the
spike protein®. The latter antibodies, which are formed against components of the virus surface spike
protein, are induced by all COVID vaccines currently in use, making them an ideal surrogate for the

immune response after vaccination®.

The need to establish quantitative assays to detect vaccine-induced antibodies was pointed out early
on’. Furthermore, an international standard for SARS-CoV-2 antibodies (NIBSC 20/136) was issued by
the WHO to improve the comparability of such assays*!. Although there is currently no general
recommendation to determine antibody levels in all individuals after SARS-CoV-2 vaccination, this is
reasonable from a scientific perspective in the search for a correlate of protection and has been done in

numerous studies'?

19, Moreover, it is now known that suboptimal or even lack of response to
vaccination can occur in specific groups like immunocompromised patients?®2¢, These potential non-

responders might be identified in a first step by determining the antibody levels after vaccination.
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Unfortunately, there is little scientific evidence on the real-life comparability of different commercially

available quantitative test systems?’2°,

We could previously show that referencing the WHO SARS-CoV-2 antibody standard by reporting
standardized binding antibody units (BAU/mL) is insufficient for different test systems to provide
numerically comparable results?’. We demonstrated this in a strictly standardized study setting
concerning the time of blood collection and the vaccine used: three weeks after the first dose of
BNT162b2. It was expected and has already been shown that antibody responses are dependent on the
type of vaccine used3®3!, Moreover, time kinetics of post-vaccination antibody levels have been
described for different vaccines and various antibody assays'’*2"*’, However, whether and how these
influencing factors affect the comparability of different quantitative SARS-CoV-2 antibody tests has not
been systematically investigated. But answering these questions is fundamental to finding pragmatic

ways to compare results from various SARS-CoV-2 antibody tests.

In the present work, we aimed to expand knowledge on the comparability of quantitative anti-spike
SARS-CoV-2 assays using another commonly administered vaccine, AZD1222, combined with antibody
measurements at multiple time points: three weeks after the first vaccine dose, 11 weeks after the first
dose (immediately before the second dose), and finally three weeks after the second dose. Moreover,
pre- and post-booster levels were compared to SARS-CoV-2 specific T-cellular interferon y responses.
This design allowed us, utilizing two of the most commonly used commercially available assays applied in
post-COVID vaccination antibody studies, the Roche Elecsys SARS-CoV-2 S-ECLIA®¥*1and the Abbott Anti-
SARS-CoV-2 IgG 112%2%3 to examine in detail the comparability of the assays concerning the timing of

blood collection after vaccination.
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Methods

Study design and participants

We included sera of 50 participants in this prospective observational performance evaluation study.
Inclusion criteria were an age >18 years and willingness to donate blood in the course of the MedUni
Wien Biobank’s healthy blood donor collection (Medical University of Vienna ethics committee vote No.
404/2012). Incomplete follow-up samples and seropositivity for anti-nucleocapsid antibodies due to
infection with SARS-CoV-2 lead to exclusion. The study protocol was reviewed and approved by the
Medical University of Vienna ethics committee (1066/2021) and conforms with the Declaration of

Helsinki.

Laboratory methods

Blood samples were taken 3 weeks and 11 weeks (“pre-booster”) after the first dose of AZD1222, as well
as 3 weeks after dose 2. At pre- and post-booster time points, an additional amount of 4mL blood was
drawn to estimate T-cellular immunity (see Fig. 1). Blood samples were processed and stored according
to standard operating procedures by the MedUni Wien Biobank in an ISO 9001:2015 certified

environment .

Previous SARS-CoV-2 infection was assessed by the Roche Elecsys SARS-CoV-2 nucleocapsid ECLIA
(Roche, Rotkreuz, Switzerland) on cobas e801 modular analyzers (Roche)®. This assay detects total
antibodies against the viral nucleocapsid, which are induced after infection, but not after vaccination

with AZD1222.

Vaccine-induced antibodies against the viral spike protein were quantified using the Roche Elecsys SARS-
CoV-2 S-ECLIA® and the Abbott Anti-SARS-CoV-2 IgG 11**8, This Roche test is a quantitative (range: 0.4 —
2,500 BAU/mL) total antibody sandwich assay recognizing antibodies directed against the receptor-

binding domain (RBD) of the SARS-CoV-2 spike (S) protein and was performed on cobas e801 modular
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analyzers (Roche), samples >0.8 BAU/mL are considered diagnostically positive. As a deviation from the
product manual, samples exceeding the quantification range were manually pre-diluted at a dilution
factor of 1:10. The Abbott assay also quantifies anti-RBD specific IgG-antibodies (range: 1.0-11,360.0
BAU/mL) and was applied on an Abbott Architect i2000r (Abbott, USA). The assay’s threshold for

positivity is 7,1 BAU/mL.

Binding reactivities (Roche, Abbott) were compared to a well-described CE-IVD marked surrogate virus
neutralization test (GenScript cPass sVNT)*=>3, This sVNT quantifies the serum’s ability to inhibit

spike/ACE-2 interaction; results with an inhibition >30% are considered positive.

The T-cellular activity was estimated in pre- and post-booster whole blood samples using the
Quantiferon SARS-CoV-2 assay (Qiagen, Hilden, Germany >*). In brief, we quantified the interferon
(IFN)y-release after 21-hour incubation of 1 mL heparinized whole blood portions with two different
SARS-CoV-2 antigen mixtures (Agl, Ag2), and with a negative (“Nil”) and a mitogen control, using an
ELISA (Qiagen). For each patient and time point, IFNy-values of the Nil control were subtracted from the
SARS-CoV-2 specific antigen mixes results of the samples and presented as Ag1-Nil and Ag2-Nil,

respectively.

Statistical analysis

Continuous data are presented as median (interquartile range), and categorical data as counts
(percentages). Paired data are compared by Wilcoxon- and Friedman-Tests. Correlations are calculated
according to Spearman. Serological assays are compared by Passing-Bablok regressions, which assess
differences between two test systems by estimating the slope (systematic proportional differences) and
the intercept (systematic constant differences) of a linear regression line. There are no preconditions
regarding the distribution of the measured values and the measurement errors to be met. P-values <0.05

were considered statistically significant. All calculations have been performed using MedCalc 19.7
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(MedCalc bvba, Ostend, Belgium) and SPSS 26 (IBM, Armonk, USA). Graphs were drawn with Prism 9

(GraphPad, La Jolla, USA).

Results

Agreement between Roche and Abbott assays depends on the timing of blood collection

Blood samples of 50 individuals were collected 3 weeks and 11 weeks after the first dose of AZD1222 (11
weeks = "pre-booster”) and 3 weeks after the second dose (“post-booster”). Participant characteristics

and binding assay levels at all assessed time points are presented in Thl. 1 and Fig. 2.

In brief, Roche S antibody levels significantly increased from 13.55 BAU/mL (5.21-29.88) at 3 weeks after
the first dose to 60.20 (36.38-112.80) directly before the booster (all P<0.0001). 3 weeks after the
booster, the median levels were 895.50 (611.80-1681.00). With Abbott, results remained stable between
3 and 11 weeks after the first dose: 42.23 BAU/mL (26.00-78.99) and 32.88 (20.78-53.69), P=0.178, and
rose to 171.20 (123.40-278.70) 3 weeks after the booster (P<0.0001). Similar to the Abbott test, the
sVNT did not show significant changes between week 3 and 11 after the first dose but significantly
increased 3 weeks after the second dose: 47.1 % inhibition (35.5-60.6), 49.0 (35.2-62.4), 95.2 (92.1-97.9),
P3w post-booster vs. pre-booster or 3w after dose 1<0.0001. In terms of relative changes in antibody levels for individual
participants when comparing 3 and 11 weeks after the first dose versus 3 weeks after the second dose,
we observed a 14.2 (8.4-30.8) and 80.8 [27.4-191.0] fold change in titers for Roche, and a 4.9 (3.0-10.1)
and 4.5 [2.2-9.9] fold change for Abbott. Thus, the Roche test discriminated increases in antibody levels

between weeks 3 and 11 after the first dose: 4.7 (2.2-9.5), whereas Abbott did not: 0.8 (0.5-1.4).

3 weeks after the first dose, results from Roche and Abbott binding assays showed a moderate
correlation (p=0.755, P<0.0001). Passing-Bablok regression analysis revealed the following equation:
Abbott = 7.4 + 2.99*Roche, whereby only the slope of the equation was statistically significant (2.06 —

17); intercept: -4.0 — 13.9). The agreement between both tests improved markedly 11 weeks after the
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first dose, with the correlation coefficient rising to p=0.902, P<0.0001. Passing-Bablok regression
revealed that BAU/mL derived from Abbott were approximately half those measured by Roche: Abbott =
1.1+ 0.50 * Roche (intercept: -2.4 — 5.5, slope: 0.43 — 0.56). 3 weeks after dose 2, the correlation
between Roche and Abbott results remained excellent (p=0.950, P<0.0001); however, the conversion
between the values changed again, with Roche values approximately 5-6 times higher than Abbott

results: Abbott = 13.3 + 0.178 * Roche (intercept: -4.5 — 29.5; slope: 0.16 — 0.20). (Figure 3)

Correlation between binding assay and sVNT results

Next, we aimed to determine which of the two binding assays correlated better with neutralizing
antibodies, particularly 3 weeks after the first dose, where the agreement between Roche and Abbott
results was poorest. Neutralizing antibodies were estimated using the CE-IVD labeled cPass sVNT, with
30% inhibition as the threshold for positivity. 3w after the first dose, 6/50 (12%) participants yielded
results below this threshold, with a median inhibition of 47.1 % (35.5-60.6). At week 11, directly before
the booster, 4 of them rose above 30% inhibition, but two with initially positive results decreased below
the threshold, resulting in a total of 4 individuals (8%) below 30% inhibition. The median neutralizing
capacity remained nearly unchanged at an inhibition of 49.0 % (35.2-62.4). 3w after the booster dose, all
but one participant presented with at least medium neutralizing capacity (>60%, see Fig. 2). The median

increased to 95.2 % inhibition (92.1-97.9) at week 3 post booster; see Thl. 1 and Fig. 2b.

As shown in Fig. 4, sVNT percent inhibition at 3 weeks after the first dose correlated with the Abbott
assay at p=0.887, P<0.0001; in contrast, the correlation with the Roche test was slightly lower at p=0.666
(P<0.0001). At 11 weeks after the first dose, sVNT results correlated very well with both assays (Abbott:
p=0.930, Roche: p=0.894, both P<0.0001). Similar results were observed at 3 weeks after the booster

(Abbott: p=0.877, Roche: p=0.837, both P<0.0001).

These data suggest that qualitative differences between early and late SARS-CoV-2 antibodies may affect

the comparability of serological tests.
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Relative changes of T-cellular responses, but not absolute IFNy-levels, correlate with

antibody levels

Finally, we examined the interactions between T-cellular and antibody responses (quantified with the
Abbott and the Roche test). For this purpose, we compared the changes between the time before the
booster (=11 after the first dose) and the time after the booster (3 weeks after the second dose). IFNy-
response to both used antigen mixtures (Agl and Ag2) increased after the booster shot: Agl-Nil 0.10
IU/mL (0.05 - 0.16) to 0.15 IU/mL (0.09 — 0.32), P<0.0001; Ag2-Nil 0.16 IU/mL (0.09 — 0.31) to 0.31 IU/mL
(0.16 —0.98), see Fig. 3 and Tbl. 1. Levels from both antigen mixtures correlated well with each other
(pre-booster p=0.725, P<0.0001; post-booster p=0.775, P<0.0001), see Fig. 5. Moreover, pre-booster
levels were in good agreement with post-booster levels (Ag1-Nil p=0.786, P<0.0001; Ag2-Nil p=0.832,

P<0.0001).

Pre-booster interferon y (IFNy)-levels only weakly correlated with antibody levels. In fact, most
correlations lacked statistical significance, and no relevant correlation was found 3 weeks after the
booster. In contrast, the relative changes of cellular and binding assay antibody responses, calculated as
100*(post-booster — pre-booster)/pre-booster, correlated significantly after incubation with Ag2;
however, for Agl statistical significance could not be reached (see Thl. 2). Interestingly, no such

correlation was observed for the sVNT.

Discussion

SARS-CoV-2 specific anti-spike protein assays have been and are still widely used for serological studies®’.
In contrast to seroprevalence studies, where discriminating between positive and negative is usually
sufficient, quantitative results are needed to adequately describe the response to SARS-CoV-2 vaccines
and, ideally, to find a protective correlate!®8, However, there is a major obstacle on the way to such a

protection correlate: the need for comparability of quantitative measurement results of different SARS-
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CoV-2 antibody tests'®!L, In the present work, we compared two commercially available and broadly
used CE-IVD marked SARS-CoV-2 antibody assays (Roche and Abbott). Both assays quantitate antibodies
directed against the RBD domain of the SARS-CoV-2 spike protein and were referenced against the first
WHO standard for SARS-CoV-2 antibodies, thus providing results in BAU/mL. We demonstrated in a
previous study after vaccination with BNT162b that despite the standardization of SARS-CoV-2 antibody
assays according to the first WHO standard for SARS-CoV-2 antibodies, the numerical values of different
test systems are not interchangeable?’. In the present work, we show for the first time that the problem
of comparability is even more profound because the conversion of results may change dramatically with

the time interval from vaccination.

Using samples from 50 individuals vaccinated with AZD1222, we could show that both assays detected
SARS-CoV-2 specific antibodies in all but two participants 3 weeks after the first dose. Both non-
responders were taking immunosuppressive drugs, which numerous studies have shown can lead to a
decreased to absent response to the vaccine®*®!, However, after the booster dose, the antibody levels
markedly increased and reached detectable levels in all participants (Table 1 and Figure 2A). So, in
contrast to people with previous COVID®27%, the second dose was required in our SARS-CoV-2 naive
population (negative for anti-nucleocapsid antibodies at all timepoints) to induce high antibody levels.
The median relative change of individual antibody levels 3 weeks after the first versus 3 weeks after the
second dose was nearly 20-times higher for Roche than for Abbott (80.8 vs. 4.5-fold change); see also
Figure 2B. Despite targeting the same antigen (RBD) and converting to the same units (BAU/mL) using
the first WHO standard for SARS-CoV-2 antibodies, not even the relative increases in antibody levels
turned out to be comparable. The limited comparability of serological assays after vaccination is not
specific for the AstraZeneca vaccine, as it was also observed after immunization with Pfizer/BioNTech

BNT162b2%.

10
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Furthermore, when looking at the difference between 3 and 11 weeks after the first vaccination dose, it
was found that both the Abbott test and the cPass sVNT did not detect an increase in antibodies (Figure
2). In contrast, antibody levels measured by the Roche test increased >4-fold during this period. This
discrepancy could be either explained by the inability of the Abbott and sVNT assays to distinguish such
small changes in antibody concentration or the possibility that the Roche assay detects not only
guantitative but also qualitative changes of the antibodies formed. Because previous studies failed to
demonstrate a continuous increase in antibody levels for AZD1222 later than three weeks after
vaccination, the Roche total antibody sandwich assay may also be sensitive to qualitative changes in
nascent antibodies, in contrast to the Abbott IgG-specific assay'®®®. This hypothesis is also supported by
the observation that in direct comparison with the sVNT, the Roche assay underestimated inhibitory
capacities at week 3 (Figure 4), which is discussed in detail below. Thus, overall, the assays studied show
significant differences in the kinetics of antibody levels, which has been reported previously but was only
rarely demonstrated from the same sample with different assays?®®’. Although the correlation between
Roche and Abbott improved over time, their relationship changed significantly depending on the time of
blood sampling (Figure 3). At the first time point, Roche measured three times lower values in BAU/mL
than the Abbott assay, 11 weeks after the first dose, Roche measured twice as high as Abbott, and

finally, after the booster, Roche was median 5-6 times higher than Abbott.

As shown in numerous studies before, detection of SARS-CoV-2 anti-spike binding antibodies correlates
well with the presence of functional neutralizing antibodies, so we wanted to examine differences
between Roche and Abbott assays in this regard %73, The agreement between the results of the binding
antibody assays and the neutralization test surrogate was generally good (Figure 4). In particular, at 11
weeks after the first vaccination, the correlation was excellent; after the booster, the correlation was
technically limited due to many participants reaching the plateau of the sVNT. However, the worst

correlation was found for the first antibody response 3 weeks after the first dose, and here Roche

11
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performed significantly worse than Abbott. This finding may be important because the improvement in
Roche/sVNT correlation from p=0.666 to p=0.894 between 3 and 11 weeks after the first dose may
indicate reduced sensitivity of the Roche assay for early antibodies. In other words, the discrepancy
mentioned above that only Roche showed increasing antibody levels between 3 and 11 weeks after the
first dose, while the other two tests showed identical or even slightly decreasing levels (Figure 2), could
mean that the Roche test requires more matured antibodies to allow binding. It seems understandable
that the binding of antibodies to two antigens, as necessary in the Roche sandwich test, places higher
demands on the binding ability of antibodies than is the case in a typical anti-lgG-based detection

method.

In line with previous studies, the second dose of AZD1222 substantially enhanced the initial antibody
response in our cohort 31%%74 Therefore, we wanted to investigate the relationship between the
antibody levels and the cellular responses elicited by the booster. For this purpose, we used a SARS-COV-
2 Quantiferon IFN-y release assay similar to those known from tuberculosis diagnostics and compared
the pre-booster and post-booster timepoints. As previously shown”, the second vaccination dose
induced an increase in cellular reactivity (Figure 5). However, we found only weak, mostly statistically
non-significant correlations between antibody levels and IFN- y levels before the booster and no

correlation at all after the booster (Table 2).

In contrast, the percent cellular response (fold change) to the booster correlated significantly with the
percent antibody response (p=0.33 for both binding assays), see Table 2. This finding suggests that the
increase of antibodies after a booster shot, which is detected by both binding assays, can be
substantiated by an accompanying cellular reaction. In contrast, we found no correlation between the
relative changes in cellular and sVNT response, which might be partly explained by the limited
measurement range of the sVNT. However, since not all antibodies formed are functionally active

neutralizing antibodies (NAbs), even not all of those specifically directed against the RBD domain of the

12
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spike protein, the binding antibodies may be superior to the measurement of NAbs here as a correlate

for cellular activation.

This study has several strengths and limitations: although 50 participants might be considered a
relatively small cohort, we have shown in previous work that this number is sufficient for such
comparative approaches and that our data could be replicated in much larger cohorts?’’®. One strength
of our study is that we followed exact time points for blood sampling in the context of a prospective
observational study. Furthermore, our cohort using AZD1222 (inducing significantly lower median
antibody levels than, e.g., BNT162b2) has the advantage of a broader distribution of values across the
measurable spectrum with a very low proportion of results above 1,000 BAU/mL. As this value
represents the upper limit of referencing with the WHO SARS-CoV-2 antibody standard, a linear
relationship is no longer guaranteed for values above this, leading to unwanted biases in comparing

different antibody tests.

In summary, with the present work, we show for the first time that the comparability of quantitative
anti-spike SARS-CoV-2 antibody tests is highly dependent on the timing of blood collection. Therefore, it
does not seem feasible to compare different quantitative SARS-COV-2 antibody results without

standardization of the time of collection.
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Legends to Figures and Tables

Fig. 1: Study flow chart. Anti-Spike(S)-antibody (Ab) assays: Roche S, Abbott S. Infection with SARS-CoV-2
was ruled out by detection of antibodies against the SARS-CoV-2 nucleocapsid (N) using the Roche N

ECLIA. W... weeks; sVNT... surrogate virus neutralization test.

Fig. 2: A Antibody levels (Roche, Abbott) and percent inhibition in a surrogate virus neutralization test
(sVNT) 3w (weeks) after the first dose of AZD1222, pre-booster (11w after the first dose), and 3w post-
booster. Dotted Lines indicate the test systems’ thresholds for positivity (Roche: 0.8 BAU/mL, Abbott 7.1
BAU/mL, sVNT 30%) and, in the case of Roche, the upper level of quantification (2,500 BAU/mL). Green
lines represent the group median. ****... P<0.0001 in Wilcoxon tests. B Longitudinal changes of individual
Roche, Abbott, and cPass surrogate virus neutralization test (sVNT) results: 3w (3 weeks) after the first
dose, before the booster dose, and 3w after the booster dose. According to the manufacturers, Roche
results 215 BAU/mL correlate with a positive neutralization test, Abbott results >2149,1 BAU/mL
correspond to a neutralization titer of at least 1:80; 30% inhibition is considered the sVNTs threshold for
positivity. Results are, according to the manufacturer, categorized into low (30-60%), medium (60-90%),

and high (>90%) neutralizing capacity (all levels indicated by dotted lines).

Fig. 3: A Passing-Bablok regression for Roche and Abbott results; readings were converted to BAU/mL.
The dotted lines are the 95% confidence intervals (Cl) for the regression lines. The dashed lines represent
lines of equality. B Linear regression (+95% Cl) of logarithmic results from Roche and Abbott.

3w... 3 weeks; BAU/mL... binding antibody units per milliliter

Fig. 4: Linear regression lines (+95% confidence intervals) for c-pass surrogate virus neutralization test
(sVNT) results and logarithmic binding assay results (top panel: Abbott, bottom panel: Roche). The dotted
vertical line represents the sVNT’s threshold for positivity (30% inhibition). According to the

manufacturers, Roche results 215 BAU/mL correlate with a positive neutralization test, Abbott results

26


https://doi.org/10.1101/2021.08.26.21262426

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

>149,1 BAU/mL correspond to a neutralization titer of at least 1:80 as indicated by horizontal dotted

lines. 3w... 3 weeks; BAU/mL... binding antibody units per milliliter

Fig. 5: A Logarithmic IFNy levels after stimulation of 1ImL heparinized whole blood with Quantiferon
SARS-CoV-2 antigen mixture 1 (Ag1), antigen mixture 2 (Ag2), Nil (negative control) and mitogen control,
as well as Nil-corrected levels (Ag1-Nil, Ag2-Nil). Green lines indicate medians. B Pairwise comparisons of
Ag1-Nil and Ag2-Nil in response to the booster shot. **** <0.0001. Green lines indicate medians. C Linear
regression curves (+95% confidence intervals) of Ag1-Nil and Ag2-Nil before and after the booster shot.

3w... 3 weeks

Thl. 1: Participant characteristics and surrogates of humoral (Roche, Abbott, sVNT) and cellular (IFNy)
immunity. P-values were derived from Friedman-tests.
3w... 3 weeks; BAU/mL... binding antibody units per milliliter; immunosuppr... immunosuppressive; sVNT...

surrogate virus neutralization test; IFNy... interferon y

Thbl. 2: Correlation Table. Spearman’s p of rank correlations between Nil-corrected interferon y (IFNy)-
levels after incubation with Quantiferon SARS-CoV-2 antigen mixtures 1 (Ag1-Nil) or 2 (Ag2-Nil) and
antibody levels. sVNT... surrogate virus neutralization test. % response... 100*(post-booster — pre-

booster)/pre-booster
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Median (interquartile range) or counts (%)

Female sex 43 (86%)
Age [years] 35.5(29-49)
Immunosuppr. drugs 2 (4%)

3w post dose 1

pre-booster

3w post-booster

P-value

Roche [BAU/mL]

13.6 (5.2-29.9)

60.2 (36.4-112.8)

895.5 (611.8-1681.0)

<0.0001

Abbott [BAU/mL]

42.2 (26.0-79.0)

32.9(20.8-53.7)

171.2 (123.4-278.7)

<0.0001

SVNT [% inhibition]

47.1(35.5-60.6)

49.0 (35.3-62.4)

95.2 (92.1-97.9)

<0.0001

IFNy Ag1-Nil [IU/mL]

0.10 (0.05-0.16)

0.15 (0.09-0.32)

<0.0001

IFNy Ag2-Nil [IU/mL]

0.16 (0.09-0.31)

0.31(0.16-0.98)

<0.0001

Thl. 1: Participant characteristics and surrogates of humoral (Roche, Abbott, sVNT) and cellular
(IFNy) immunity. P-values were derived from Friedman-tests.
3w... 3 weeks; BAU/mL... binding antibody units per milliliter; immunosuppr...

immunosuppressive; sVNT... surrogate virus neutralization test; IFNy... interferon y
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Pre-booster | Abbott Roche SVNT
Ag1-Nil 0.236 (P=0.100) | 0.258 (P=0.071) | 0.217 (P=0.130)
Ag2-Nil 0.287 (P=0.044) | 0.243 (P=0.089) | 0.252 (P=0.077)
Post-booster | Abbott Roche SVNT
Ag1-Nil 0.037 (P=0.796) | 0.101 (P=0.485) | -0.001 (P=0.995)
Ag2-Nil 0.067 (P=0.642) | 0.095 (P=0.510) | 0.024 (P=0.868)
% response Abbott Roche SVNT
Agl-Nil 0.251 (P=0.082) | 0.247 (P=0.087) | 0.196 (P=0.178)
Ag2-Nil 0.333 (P=0.018) | 0.325 (P=0.021) | 0.164 (P=0.255)

Thbl. 2: Correlation table. Spearman’s p of rank correlations between Nil-corrected interferon y
(IFNy)-levels after incubation with Quantiferon SARS-CoV-2 antigen mixtures 1 (Ag1-Nil) or 2
(Ag2-Nil) and antibody levels. sVNT... surrogate virus neutralization test. % response... 100*(post-
booster — pre-booster)/pre-booster
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