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Abstract 

Background: Quantitatively describe the phenotype spectrum of pediatric disorders has 

remarkable power to assist genetic diagnosis. Here, we developed a matrix which provide this 

quantitative description of genomic-phenotypic association and constructed an automatic 

system to assist the diagnose of pediatric genetic disorders.  

Results: 20,580 patients with genetic diagnostic conclusions from the Children’s Hospital of 

Fudan University during 2015 to 2019 were reviewed. Based on that, a phenotype spectrum 

matrix -- cGPS (clinical Gene’s Preferential Synopsis) -- was designed by Naïve Bayes 

model to quantitatively describe genes’ contribution to clinical phenotype categories. Further, 

for patients who have both genomic and phenotype data, we designed a ConsistencyScore 

based on cGPS. ConsistencyScore aimed to figure out genes that were more likely to be the 

genetic causal of the patient’s phenotype and to prioritize the causal gene among all 

candidates. When using the ConsistencyScore in each sample to predict the causal gene for 

patients, the AUC could reach 0.975 for ROC (95% CI 0.972-0.976 and 0.575 for precision-

recall curve (95% CI 0.541-0.604). Further, the performance of ConsistencyScore was 

evaluated on another cohort with 2,323 patients, which could rank the causal gene of the 

patient as the first for 75.00% (95% CI 70.95%-79.07%) of the 296 positively genetic 

diagnosed patients. The causal gene of 97.64% (95% CI 95.95%-99.32%) patients could be 

ranked within top 10 by ConsistencyScore, which is much higher than existing algorithms (p 

<0.001). 

Conclusions: cGPS and ConsistencyScore offer useful tools to prioritize disease-causing 

genes for pediatric disorders and show great potential in clinical applications.  

Keywords: diagnostic system; genetic disorders; genotype; phenotype 
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Introduction 

The rapid and accurate identification of disease-causing genes is particular important to 

clinical geneticists, which could facilitate clinical decision-making, improve prognosis, and 

help with further family planning[1]. Exome-based NGS (next-generation sequencing), 

including WES (whole-exome sequencing) and CES (clinical exome sequencing), are cost-

effective options for detecting candidate disease-causing variants in genetic disorder 

patients[2-4].  Meanwhile, databases including OMIM[5], Orphanet[6], and human 

phenotype ontology (HPO)[7] have collected and summarized clinical phenotype for genetic 

diseases from previous studies, offering reliable phenotype reference for patient genetic 

diagnosis. However, these genomic-phenotypic recordings are rarely quantified (or 

weighted), making it difficult to be automatically applied in the priorization of disease-

causing gene.  

Currently, many algorithms have helped to calculate the association between genotype and 

phenotype. Phenolyzer [8], PhenoPro[9, 10], and Phen2Gene[11] focus on obtaining 

candidate gene lists by using clinical phenotypes to query database-derived information (such 

as OMIM and Ophanet); Exomiser (phenix, hiPHIVE)[12], Xrare[13] and Phen-Gen[14] 

were designed to prioritize genes and variants by estimating the variant’s pathogenicity and 

the consistency between patient’s phenotype with public reported. However,  most of these 

tools were evaluated on simulation dataset or small-scale public dataset and cannot reliably 

identify causal genes in real clinical dataset[15].   

The Children’s Hospital of Fudan University has been involving in clinical genetic tests with 

NGS since 2013, where the genetic diagnosis was made by experienced clinicians and genetic 

counselors. Several studies of disease cohort focusing on pediatric genetic disorders have 

been previously described and published[16, 17], sharing valuable experience and discoveries 
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in the diagnosis of pediatric genetic disorder.  These large-scale clinical findings provide 

huge resources for calculating the phenotype spectrum of pediatric genetic disorders and 

developing tools to assist genetic interpretation. In this study, we systematically summarized 

the genotype, phenotype and genetic diagnosis conclusion information of 20,580 patients, of 

which 3,507 were positive diagnoses. Based on this real large-scale cohort, we developed a 

matrix named cGPS (clinical Gene’s Preferential Synopsis), which provided a quantitative 

description of the clinical phenotypes that may be affected by each known disease-causing 

gene. Based on cGPS, we further provided an intuitive artificial intelligence system, 

"ConsistencyScore", which can successfully prioritize genes that might cause the patient’s 

clinical phenotype. In another independent validation cohort of 2,323 patients with 296 

positive genetic diagnosis, ConsistencyScore could rank the causal gene as first for 75.00% 

of the patients, and in the top 10 for 97.64%. In general, cGPS matrix and ConsistencyScore 

could be great resource and tool for clinical genetics community.  

 

Results 

1. Cohort for the automatic diagnostic system 

In total 23,251 patients from the CHFU were recruited, together with their genotypic, 

phenotypic and genetic-diagnostic information (Figure 1A). Based on these genetic 

diagnostic conclusions, we designed the cGPS matrix to quantify the spectrum of affected 

clinical categories when a certain gene was damaged by variants. With cGPS to describe 

genotype-phenotype associations, we further provided and tested its first clinical application 

– a patient-specific “ConsistencyScore” -- to automatically prioritize disease-causing genes 

for genetic disorder patients with hundreds of genes affected by variants identified with NGS 

(Figure 1B).  
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For the model generation cohort with 20,580 patients, 15,622 patients were tested by clinical 

exome sequencing (CES) and 4,958 by whole-exome sequencing (WES) (Table1). There 

were in total 12,583 males and 7,997 females, 79.7% of them were smaller than five years-

old (Supplementary Figure1A). A total of 3,507 patients (17.0%) had a positive genetic 

diagnosis result, which were referred to as genetic conclusions including P/LP-level variants. 

The positive genetic results involved 3,678 variants from 804 genes. Top diagnosed disease-

causing genes were ATP7B (n=343), SLC25A13 (n=121), NF1 (n=120), DMD (n=109) and 

SCN1A (n=108), consist 21.7% of all diagnosed patients (Supplementary Figure1B).   

Top three HPO terms were HP:0000952 (Jaundice, 16.3%), HP:0001250 (Seizure, 15.8%) 

and HP:0002904 (Hyperbilirubinemia, 15.2%) (Supplementary Figure1C). If summarize 

original HPO terms into root HPO terms under HP:0000118 (Phenotype abnormality), top 

three root HPO terms were HP:0000707 (Abnormality of the nervous system, 41.2%), 

HP:0025031 (Abnormality of the digestive system, 36.7%) and HP:0001939 (Abnormality of 

metabolism/homeostasis, 35.7%) (Supplementary Figure1D). For simplicity in both 

research and application, and by integrating original HPO terms with HPO root terms, 

patient’s clinical phenotypes were summarized into 19 pre-defined clinical categories 

(Supplementary Table 1).  The largest clinical category was nervous system (NV) that 

included 45.4% of the patients, followed by digestive system (DG, 36.6%), metabolism (MB, 

35.3%) and immune system (IM, 29.1%). One patient could be affected by phenotypes 

belongs to multiple clinical categories simultaneously. Overall, several clinical category pairs 

were highly overlapping (or often appear simultaneously in patient) such as digestive system 

and liver (DG and LV, 75.4%), jaundice and liver (JD and LV, 59.0%) and jaundice and skin 

(JD and SK, 51.7%) (Supplementary Figure2).  

2. Generation of cGPS matrix  
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The cGPS matrix is a knowledge-based score matrix which describes the probability to cause 

the phenotype of a clinical category when a certain gene is affected by genetic variants (See 

Methods for details). We could only use information from CCGT dataset or integrate with 

public databases (OMIM and GeneOrganizer) to generate cGPS matrix. Meanwhile, three 

phenotype manipulation strategies were considered, i.e based on original HPO terms, root HPO 

terms and 19 pre-defined clinical categories. Only 804 genes could get cGPS matrix if only use 

CCGT dataset and for those genes, when integrating public databases, the scores were highly 

consistent (all P<2e-16, Spearman Correlation Coefficient 0.76, 0.72, 0.53). Secondly, 

mean/median/max cGPS matrix score for genes between using 19 pre-defined clinical 

categories and HPO root terms, original HPO terms, were significantly highly consistent (all 

P<2e-16, Spearman Correlation Coefficient>0.7) but significantly higher score values were 

detected in the pre-defined clinical categories (all P<2e-16). Taking together, cGPS matrix 

based on pre-defined clinical categories showed as more robust with the integration of public 

databases and can bring better score discrimination for subsequent applications.  

In total 608 genes from cGPS matrix based on pre-defined clinical categories had maximum 

score higher than 0.5. Clinical categories that tend to co-occurrent also have similar cGPS 

pattern, such as jaundice (JD) & liver (LV), digestive system (DG) & metabolism (MB) 

(Supplementary Figure3A, categories were clustered on the left panel). cGPS score pattern 

for NV (nervous system) were different from all other categories, and it include the most related 

causal genes (359 genes with cGPS score > 0.5) and highly associated genes (147 genes with 

cGPS score > 0.7), followed by clinical categories such as DG (digestive), MB (metabolism), 

and LV (liver) (Supplementary Figure3B).  

3. Diagnostic performance of the automatic diagnostic system 
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To apply cGPS in genetic diagnosis, we designed three scores on patient-gene pair level, i.e 

PathogenicityScore, PhenotypeScore and ConsistencyScore (See Methods for details). Since 

genes in each patient could be labeled as P/LP, VUS or B/LB, we evaluated the score 

distribution of the patient-gene pairs under different labeling results.  For patient-gene pairs 

labeled as P/LP, all three scores were significantly higher than other labels (all P<2e-16). 

However, for patient-gene pairs with PathogenicityScore higher than 0.9, only 2.53% of them 

were reported as P/LP, but for PhenotypeScore and ConsistencyScore the percentages were 

19.7% and 80.2%, separately (Supplementary Figure4).  

We further tested the performance of ConsistencyScore (Figure 3A). Firstly, 

ConsistencyScore can achieve good performance in predicting P/LP-diagnosed sample-gene 

pairs in 6,174 testing dataset (AUC 0.965 for ROC with 95% CI 0.960-0.969, and AUC 0.281 

for precision-recall curve with 95% CI 0.255-0.311) (Figure 3B-C). Secondly, the gene’s 

rank ordered by ConsistencyScore in each sample could get better performance in predicting 

P/LP-diagnosed gene in 1,005 P/LP-diagnosed testing dataset (AUC 0.975 for ROC with 

95% CI 0.972-0.976, and AUC 0.575 for precision-recall curve with 95% CI 0.541-0.604) 

(Figure 3D-E). Meanwhile, 69.0% could rank 1 and 96.1% rank within top 10 (Figure 3F).   

In addition, the performance of ConsistencyScore to predict P/LP-diagnosed sample-gene 

pairs using pre-defined clinical categories were significantly higher than using HPO root 

terms (AUC 0.963 for ROC with 95% CI 0.959-0.967, P=0.02) and original HPO terms 

(AUC 0.956 for ROC with 95% CI 0.949-0.960, P=1e-4) (Supplementary Figure 

5A,B,F,G). Similar performance were shown for using gene’s rank ordered by 

ConsistencyScore in each sample compared with using HPO root terms (AUC 0.974 for ROC 

with 95% CI 0.971-0.975, P=0.3) and but higher than using original HPO terms (AUC 0.964 

for ROC with 95% CI 0.961-0.967, P=3e-7) (Supplementary Figure 5C,D,H,I). Besides, 

the performance of PathogenicityScore and PhenotypeScore to predict P/LP-diagnosed genes 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted August 28, 2021. ; https://doi.org/10.1101/2021.08.26.21261185doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.26.21261185


8 

 

were all significantly lower than ConsistencyScore in all comparisons (all P<2e-16) 

(Supplementary Figure 6). Specially for the precision-recall curve, the PathogenicityScore 

and PhenotypeScore were particularly worse, demonstrating their insufficient ability to make 

true P/LP predictions.  

4. Performance of ConsistencyScore in MGHA corpus and local new independent 

validation dataset 

The Melbourne Genomics Health Alliance (MGHA) variant prioritization framework 

contains 47 samples with phenotype (HPO terms) and reported variant information[18]. We 

calculated ConsistencyScore for each reported gene (in total 59 genes) with estimated P/LP 

probability and not P/LP probability (Supplementary Figure 7A). In total 41 samples (53 

genes) had great P/LP predictions (marked as P) and 5 samples (5 genes) showed not 

significantly difference of ConsistencyScore between P/LP-reported and not P/LP-reported in 

CCGT dataset (Supplementary Figure 7B). Only one samples failed the prediction, i.e 

0204339 with NOTCH2. The patient was recorded to be affected with abnormalities in face 

and bone. However, the cGPS score for NOTCH2 (MIM:610205) is high in DG (digestive), 

LV (liver), JD (jaundice), though had score but low in SL (skeletal), MX (maxillofacial) and 

PD (polydactyly/abnormal of limbs). Lack of typical phenotype observed failed good P/LP 

prediction.  

To further show how the ConsistencyScore would help genetic diagnosis in real clinical 

practice, we further collected 2,323 patients (including 296 P/LP diagnosis, Figure 4). 

ConsistencyScore for P/LP patient-gene pairs from patients with P/LP conclusion (positive 

cases) were significantly higher than other patient-gene pairs in these positive cases (i.e., in 

patients with positive conclusions, genes labeled as P/LP compared with other labels), and 

higher than all patient-gene pairs in cases with no P/LP conclusions (P<2e-16). No 
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significantly difference was observed between the latter two groups. In 75.00% (95% CI 

70.95%-79.07%) of the patients with positive conclusion (described as P/LP-diagnosed 

patients), the ConsistencyScore could rank the P/LP genes as the first among other genes in 

that patients (defined as the ranked-first percentage in the following part). And in 97.64% 

(95% CI 95.95%-99.32%) of these P/LP-diagnosed patients, the ConsistencyScore could rank 

the P/LP genes within top 10 (Figure 4).  

From 296 P/LP-diagnosed patients, 268 of them were diagnosed with genes from the 

previous 804 P/LP genes in the model-generation cohort, i.e their PhenotypeScore and 

ConsistencyScore based cGPS matrix was mainly relied on observations provided in this 

study. The 28-remaining diagnostic-genes were never labeled as P/LP in genetic reports of 

our cohort and their cGPS matrix is mainly based on genotype-phenotype recordings from 

public databases. Here, the ranked-first percentage for these 268 cases could reach 80.22% 

(95% CI 75.27%-85.43%), and was significantly higher than the 28 not reported cases (P<2e-

16, Supplementary Figure8A). The difference demonstrated that the cGPS matrix originated 

from real P/LP observations do contribute greatly for the diagnosis of new cases. Besides, 

ConsistencyScore shows significant greater performance for CES platform than WES 

(ranked-first percentage 80.61% vs 67.93%, P = 6e-3) (Supplementary Figure8B). Disease-

causing genes with AD-inherited model (ranked-first percentage 68.15%) shows worse 

performance than AR (81.36%, P = 1.1e-4) and X-linked (79.07%, P = 5.5e-3, 

Supplementary Figure8C). Generally, the performance of ConsistencyScore was relatively 

robust in different scenarios, except for diagnosing genes that were not reported as P/LP 

before.  

Further, we compared the result of Exomiser(Phenix), Exomiser (hiPHIVE), Xrare and our 

previously published algorithm PhenPro on these 296 P/LP-diagnosed patients with default 

parameters.  Compared with other tools, ConsistencyScore shows the best performance in 
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identifying P/LP-diagnostic genes (Figure 4B). For the two scores only rely on phenotype 

information, PhenotypeScore had better performance than PhenoPro (ranked-first percentage 

51.69% v.s. 46.62%, P<2e-16). Xrare takes the pathogenicity potential of variants into 

consideration and thus performed better ranked-first percentage (62.16%) than the previous 

two methods, but it also made 25 false negative cases of which the disease-causing genes 

were absent in the final list. When checking different conditions, Exomiser (Phenix, 

hiPHIVE) shows relatively poor performance (about 20% ranked-first percentage) with 

default parameters and is worse for AR-inherited genes (4.23% ranked-first percentage, 

mainly because the inheritance model is not used in Exomiser) (Supplementary Figure8I). 

Besides, all tools had better performance for X-linked genes (Supplementary Figure8J). In 

general, ConsistencyScore has demonstrated its great power in assisting the disease-causing 

gene prioritization.  

 

Discussion 

Pediatric genetic disorders, such as congenital anomalies, are the leading cause of childhood 

death with age under five, especially for infants[19]. Genetic diagnosis of these disorders 

would help the clinical treatment and prognosis. Making genetic diagnosis requires precise 

and efficient identification of pathogenic variants in disease-causing genes. Currently the 

ability to identify variants is not a limitation, but the data interpretation is still a challenge. 

After accumulating a large amount of data, we could now summarize the experience in 

genetic diagnosis into an automatic tool, and share with our colleagues especially for the 

diagnosis of pediatric genetic disorders.  

ACMG has provided guideline for the interpretation of variants for a certain patient with 

genetic disorders. Two main aspects are essential: whether the variant is pathogenic to 
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damage the function of a certain gene or to gain new disturbing function that would cause 

disease, and whether the patient’s clinical phenotypes could match the expected symptom of 

the disorder that was caused by this gene. Unlike other phenotype-based tools discussed in 

this study, cGPS is a genetic-driven assessment that “predict” the possible phenotypes for 

patient with genetic testing. Based on the “prediction” or “expectation” of the clinical 

phenotype, the genetic counselor could decide whether a variant is the causal. Clinicians 

could effectively make follow-up plans to focus on the occurrence and development of these 

clinical phenotypes, and update the genetic diagnosis report when new phenotypes appear. 

Here, cGPS calculation process is independent to clinical categories’ design, and in this 

study, we tried one pre-defined clinical categories, which showed better performance than 

original HPO terms and HPO root terms. Most pre-defined categories could directly match 

the settings of clinical department, while others (such as jaundice) are common clinical 

phenotypes. However, designed categories are intersected to each other, which may be biased 

in ConsistencyScore calculation. We checked the performance of P/LP-diagnosed gene’s 

rank ordered by ConsistencyScore in each sample in the testing dataset and found no 

significant difference of performance found between any pair of clinical categories (in total 

19*18/2=171 pairs, all adjusted P>0.1). Besides, in the genetic screening scenario, cGPS 

matrix could act as a reference to design sequencing panels with specified clinical phenotype 

category. In cGPS calculation, not only P/LP-diagnosed samples were used but all samples 

were useful in estimating background phenotype distribution.  

The value of ConsistencyScore could get good discrimination of P/LP-diagnosed genes to 

VUS and negative ones but within one sample, we strongly suggest to consider gene’s rank 

ordered by ConsistencyScore first to avoid possible false negative predictions. The AUC for 

ROC by using ConsistencyScore to predict sample-gene pairs only in 1,005 P/LP-diagnosed 

testing dataset (AUC 0.964 for ROC with 95% CI 0.959-0.967) was nearly the same by using 
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all testing samples in Figure 3A, but was significantly lower than using gene’s rank in Figure 

3C (P=2.2e-13), which demonstrated better choice of gene’s rank in practice. However, in the 

public validation MGHA corpus, no original genotype information available and we could 

only calculate ConsistencyScore for the reported genes and estimate whether the value could 

be a good P/LP prediction. The results showed that 53/59 (89.8%) of the P/LP-reported genes 

could get higher P/LP probability than not (OR>2), partially demonstrating the reliability of 

ConsistencyScore.  

Meanwhile, there are already many tools for prioritizing disease-causing genes from patients’ 

sequencing data. Among them, Exomiser is one of the earliest and Xrare is one of the latest 

software. The calculation of PhenotypeScore is inspired from algorithms that calculate patient 

similarity to diagnosis new case. Here, cGPS could act as a summary of previous patient’s 

phenotype profile. In this study we also compared our previously published algorithm 

PhenoPro. Instead of using simulated dataset (which was used to evaluate these algorithms in 

their own research), in this study we tested them in a large-scale clinical cohort which could 

reflect the complicated clinical conditions and provide more objective results for clinical 

application. The ConsistencyScore show the best performance among different scenarios and 

even the PhenotypeScore could outperforms PhenoPro. Xrare missed the disease-causing 

gene for 25 patients, including G6PD (in 5 patients) and GJB2 (in 4 patients). The allele 

frequency of these missed variants are around 0.3%~0.5% in East Asian[20]. That might be 

the missed reason because Xrare applied population allele frequencies as features in the 

model. As a result, pathogenic variants with relatively higher local allele frequency might be 

missed. Finally, cGPS and ConsistencyScore were straightforwardly designed, transparent in 

the application process, requires little calculation (finish in seconds) and could easily be 

incorporated into other pipelines. By comparison, Exomiser took about one minute and Xrare 

took 5.3 minutes per sample on average.  
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Limitations and future directions 

Firstly, in the PathogenicityScore designing process, the treatment for protein truncation 

variants is relatively simple. We are trying to include strategies to predict nonsense-mediated 

mRNA decay for improvement. Besides, the choice for missense variants was currently based 

on REVEL and more scores such as CADD could also be tried. Secondly, the performance of 

ConsistencyScore in the testing dataset is lower than the validation dataset, which is because 

of 33% percent more samples included in the cGPS matrix generation. The performance 

increased slowly with more samples included but how many samples are sufficient enough to 

get a robust cGPS matrix need to be further explored. Thirdly, for patients that 

ConsistencyScore was failed to prioritize the P/LP genes, in only 7 patients the P/LP genes 

were out of top 10. Here we selected one for detailed discussion. This patient was diagnosed 

as Leukodystrophy, hypomyelinating, 7 [MIM: 607694] caused by variant on POLR3A. 

However, in the model-generation dataset no patients were P/LP-diagnosed as POLR3A and 

the cGPS was calculated by referring phenotype recordings from public databases, making 

this gene rank lower than others. Updating cGPS with more P/LP-diagnosed patients will 

improve the performance. Finally, how to quantify the pathogenicity of CNV is still a future 

direction.  

 

Conclusions 

The findings of this study suggest that an automatic diagnostic system based on quantifying 

phenotype spectrum can be used as a prospective tool for disease-causing gene’s 

prioritization in pediatric disorders.  
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Methods 

1. Participants and source of the data 

This study developed an automatic diagnostic system for pediatric genetic disorders. We 

generated a predictive model based on a retrospective cohort with 20,580 patients (from 2015 

to 2019) from the Children’s Hospital of Fudan University (CHFU). The model was further 

validated in an independent cohort of another 2,323 patients (from January 2020 to April 

2020) from the CHFU. Patients underwent genetic tests were recruited, dominated by the 

Chinese Han population (>99.9%). Patients were enrolled based on the following criteria: 1) 

age under 18 years old and 2) was suspected of genetic disorders by his/her physician. 

Informed consent was obtained from the parents of each patient. Genetic counselling was 

performed by physicians prior to the testing. Each patient would receive a genetic diagnostic 

report with confirmed genetic diagnose conclusions. In this study, the latest version of 

information (genotype, phenotype and genetic diagnose) was used if any update exists. The 

patients’ age was represented by the age at the time of the genetic testing. The clinician 

reviewed the clinical record and would exclude the patient if the phenotype record was not 

clear.  

2. Genetic testing in Children’s Hospital of Fudan University 

2.1 Sequencing, variant calling and pre-filtering  

DNA libraries of CES used the Agilent SureSelectXT Human ClearSeq Inherited Disease Kit 

and WES used Agilent SureSelectXT Human All Exon V5 Kit, respectively. Sequencing was 

performed on the Illumina HiSeq 2500 with 125 bp (2015-2016.3) or X10 with 150 bp 

(2016.3-2020) pair-end sequencing. The basic quality statistics were shown in 

Supplementary Table 1.   
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Data analysis pipelines were published in our previous studies [16, 17]. In this study, only 

SNVs and small insertions and deletions (InDels) were included. Briefly, raw reads were 

mapped to hg19 with BWA [21]and further processed by GATK3 to obtain SNVs and InDels 

for each sample. Except for those annotated in HGMD[22], ClinVar[23] and our internal 

curated databases, variants were filtered by exon region extended by 15 bp. Allele 

frequencies from 1KG (1000g2015aug), ExAC (exac03nontcga) and gnomAD 

(gnomad211_genome) were downloaded from the ANNOVAR database and annotated to 

variants. Next, variants with high homozygous reporting counts and high allele frequencies 

from the 1000 Genome (1KG), ExAC, gnomAD and internal databases were removed. The 

remaining variants will be used to calculate internal allele frequency and further annotated by 

ANNOVAR[24], VEP[25], and inheritance pattern if parental samples were available. 

Further filtration steps were detailed described in previous publication [16], including the 1) 

genes not in the black list; 2) the zygosity for the variant does not fit the gene’s inheritance 

model, e.g heterozygous variants in AR-inherited genes; 3) for family-based samples, the 

variants are not homozygous in parents; or for AD-inherited genes, the variant does not 

inherited from parental samples; 4) low quality or out-side capture region or high allele 

frequency variants not in the white list. The white list includes all public reported pathogenic 

variants. This step could leave approximately dozen genes (median 40) per-sample for further 

manually review.  

2.2 Phenotype processing procedure 

The HPO terms for each patient sample from 2015-2016 were curated manually by clinicians. 

From 2017, a semiautomatic system was applied to extract HPO terms from the electronic 

medical record. The core of this system was the local sematic database. The English version 

was initially from HPO database (start from version 2016-04-01, update each year), and the 

Chinese version was initially from CHPO database (start from version 2016-03, update if 
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CHPO updated). If the phrase cannot match the existing semantic database, the clinical 

phenotypes in Chinese were translated into English, transferred into UMLS standard phrases 

by MetaMap [26] and converted to HPO terms [7].  Then, the new matching items would be 

added into database after manually curation. In total 574 new phrases were added till now. 

When applying the system, all queried HPO terms would be curated by clinicians before 

assigning to the patient sample.  

In the following cGPS matrix calculation, the HPO terms could be directly used or 

summarized into predefined groups. Three strategies were tested in this study. The first one 

was to use the original HPO terms. The second one was to summarized the HPO terms into 

their root terms (the first level child nodes under HP:0000118: Phenotype abnormality).  The 

third one was to summarize the HPO terms into 19 predefined clinical categories. The 

category settings were based on clinical departments and the frequency of phenotypes. A 

detailed description of the 19 clinical categories and related HPO terms can be found in 

Supplementary Table 2. For each HPO term listed in this relationship table, all recursive 

child terms would also be included. Some HPO terms could belong to multiple categories 

(e.g., HP:0002090, Pneumonia, belongs to both RP and IM), and some HPO terms could not 

match any of the clinical categories (e.g., HP:0001622, Premature birth). For those 20,580 

patients, we obtained a 19-column binary table indicating the affected clinical category.  

2.3 Genetic diagnose procedure 

The standard for variant classification as P/LP (pathogenic/likely pathogenic) was based on 

the ACMG guidelines but with some adjustment, described in our previous work[17]. 

Specifically, 1) the variant would likely explain the indication for testing and may be 

responsible for the patient’s clinical presentation, and 2) the variant has the same amino acid 

change as a previously established pathogenic variant regardless of nucleotide change; or 
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protein truncating variant (nonsense, frameshift, canonical +/−1 or 2 splice sites, initiation 

codon) in a gene where loss of function (LOF) is a known mechanism of disease; and 3) the 

variant is de novo (both maternity and paternity confirmed) in the proband with a negative 

family history or is inherited from the parents. If the parents are not available for the 

confirmation of de novo or compound heterozygous status of pathogenic variants identified in 

the proband, the variant would be downgraded and classified as LP. Variants classified as 

VUS (variant of unknown significance) was defined as the evidence of pathogenicity for the 

variant is insufficient, or the related disease does not exactly match the patient’s clinical 

phenotype.  

The cohort records the patient's genetic testing conclusions and corresponding clinical 

phenotypes. Among them, the phenotypes come from the patient's clinical records and would 

be updated during the genetic consultation process. The conclusion of each genetic testing is 

completed in the following four steps: 1) A junior and a senior genetic counsellors would 

jointly write conduct the preliminary testing conclusion; 2) The lab director would review the 

conclusion and issue the report; 3) When necessary, the lab director would discuss the genetic 

testing conclusions with the patient ’s clinician, and update the report; 4) For some patients, 

an updated conclusion would be issued according to the follow-up performance.  

3. Framework for ConsistencyScore in assisting disease-causing gene prioritization 

For simplicity, we named the model generation cohort as CCGT (Children’s Clinical Genetic 

Testing) Database. This study aims to use ConsistencyScore as the predictor to prioritize 

P/LP genes from all candidate genes (genes with variants that were identified by NGS and 

passed the basic filtering including variant QC, target region of sequencing and population 

allele frequency). The framework included two steps: 1) calculate the cGPS matrix based on 

clinical genetic reports from CCGT database and public reported databases; and 2) calculate 
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the ConsistencyScore based on the cGPS, the genotype, and the phenotype data of each 

patient.  

3.1 The calculation of cGPS matrix 

The cGPS(clinical Gene’s Preferential Synopsis) is a knowledge-based informative matrix 

which quantifies the gene’s contribution to each clinical category (HPO term or HPO root 

terms or predefined clinical categories), designed as follows:  

Assuming M samples from K clinical categories (HPO terms or HPO root terms or predefined 

clinical categories), with N genes that were known to cause diseases.   

Firstly, for each sample m, 

a. Sk represents the observation of each clinical category k, which is a binary value with 

value 1 indicating the existence and otherwise 0.  

b. 𝑅𝑅𝑛𝑛 is the genetic diagnose level of gene n, if gene is diagnosed as P/LP, the value is 1. 

Specially, for each patient, the original genetic diagnose label at variant-level was directly 

assigned to gene-level.  

Secondly, we applied Naïve Bayes to define cGPSk,n as follows, which represents the gene 

n’s ability to cause the observation of a specific affected category k if it is the disease-causing 

gene:  

 cGPS𝑘𝑘,𝑛𝑛 = 𝑃𝑃(𝑆𝑆𝑘𝑘 = 1|𝑅𝑅𝑛𝑛 = 1) =
#(𝑅𝑅𝑛𝑛 = 1 ∩ 𝑆𝑆𝑘𝑘 = 1)

#(𝑅𝑅𝑛𝑛 = 1) + 𝛼𝛼  

where #() represents the set size, e.g #(𝑅𝑅𝑛𝑛 = 1) represents the number of patients that were 

diagnosed by gene n. 𝛼𝛼 is set as 0.5 to distinguish the condition for the same proportion and 

more observations will have higher score (e.g 2/(2+0.5) > 1/(1+0.5)). Each cGPS score will 
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provide a p-value representing the confidence of significance by odds ratio between 

#(𝑅𝑅𝑛𝑛=1∩𝑆𝑆𝑘𝑘=1)
#(𝑅𝑅𝑛𝑛=1)+𝛼𝛼

 and #(𝑅𝑅𝑛𝑛≠1∩𝑆𝑆𝑘𝑘=1)
#(𝑅𝑅𝑛𝑛≠1)+𝛼𝛼

.  

The purpose of the following steps was to assist prioritization of disease-causing genes. 

Considering that some genes were never reported as P/LP in the score-generation dataset that 

would cause the cGPS matrix to zero, false negative results were obtained in the testing 

dataset for future application. Thus, we added the relationship between genes and clinical 

synopsis recorded in OMIM, which was collected and curated in two public databases, 

GeneOrganizer[27] and HPO. We only included “confident” recordings between genes and 

clinical categories.   

For each gene 𝑛𝑛, the modified cGPS𝑘𝑘,𝑛𝑛 score for each recorded clinical category 𝑘𝑘 was 

calculated as follows: 

cGPS𝑘𝑘,𝑛𝑛 = �

#(𝑅𝑅𝑛𝑛=1∩𝑆𝑆𝑘𝑘=1)+𝑓𝑓(𝑆𝑆𝑘𝑘=1)
#(𝑅𝑅𝑛𝑛=1)+𝛼𝛼+1

 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝑘𝑘,𝑛𝑛 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
#(𝑅𝑅𝑛𝑛=1∩𝑆𝑆𝑘𝑘=1)

#(𝑅𝑅𝑛𝑛=1)+𝛼𝛼
𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝑘𝑘,𝑛𝑛 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖𝑖𝑖 𝑁𝑁𝑁𝑁𝑁𝑁 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

     

Where 1 in the denominator represents one “fake” observation of 𝑅𝑅𝑛𝑛 = 1 . 𝑓𝑓(𝑆𝑆𝑘𝑘 = 1) in the 

numerator represents “fake” observation of 𝑅𝑅𝑛𝑛 = 1 ∩ 𝑆𝑆𝑘𝑘 = 1.  

3.2 The calculation of ConsistencyScore 

For each sample m and K clinical categories (HPO terms or HPO root terms or predefined 

clinical categories), for each gene 𝑛𝑛, we defined:  

a. 𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 describes the variant or gene’s potential ability to cause disease. 

For each variant 𝑣𝑣, the PathogenicityScore𝑣𝑣 is assigned by the REVEL [9] score. For 

variants with PTV (protein truncating variants, VEP annotated as stop_gained, 

frameshift_variant, splice_acceptor_variant, splice_donor_variant), the 

PathogenicityScore𝑣𝑣 is set at 1. For variants annotated with splice_region_variant, the 
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PathogenicityScore𝑣𝑣 is set at 0.5.  

In sample m the PathogenicityScore𝑚𝑚,𝑣𝑣 is: 

PathogenicityScore𝑚𝑚,𝑣𝑣

= �1 −
(1 − PathogenicityScore𝑣𝑣) ∗ (1 − PathogenicityScore𝑣𝑣) ,𝑣𝑣 𝑖𝑖𝑖𝑖 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖 𝑚𝑚

PathogenicityScore𝑣𝑣, 𝑣𝑣 𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖 𝑚𝑚  

At gene level, the score is calculated as follows: 

PathogenicityScore𝑚𝑚,𝑛𝑛 = 1 −� (1 − PathogenicityScore𝑚𝑚,𝑣𝑣′)
𝑣𝑣′∈𝑛𝑛

 

Where 𝑣𝑣′ represents the possible variants in gene 𝑛𝑛.  

b. 𝑃𝑃ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 describes gene’s average phenotype matching effect with no 

consideration of the pathogenicity. For gene n in sample m, we averaged the cGPS to this 

sample’s observed affected clinical category (𝑆𝑆𝑚𝑚,𝑘𝑘 = 1):  

PhenotypeScore𝑚𝑚,𝑛𝑛 =
∑ cGPS𝑘𝑘,𝑛𝑛 𝑆𝑆𝑚𝑚,𝑘𝑘
𝐾𝐾
𝑘𝑘=1

∑ 𝑆𝑆𝑚𝑚,𝑘𝑘
𝐾𝐾
𝑘𝑘=1

 

c. 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 describes the consistency between gene n’s predicted affected 

clinical category to the sample’s observed affected clinical category, defined as:  

ConsistencyScore𝑚𝑚,𝑛𝑛

= max(PhenotypeScore𝑚𝑚,𝑛𝑛, 0.01) ∗ max (PathogenicityScore𝑚𝑚,𝑛𝑛, 0.01) 

We set the minimum 𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜and 𝑃𝑃ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 as 0.01 to avoid zero in 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 that could not be distinguished for ranking. Higher 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 

value represents better consistency between the predicted affected clinical category to the 

observed ones and higher possibility that gene n could be the disease-causing for sample m. 

Considering that in real practice we need to find the disease-causing variants from the 

disease-causing gene, for variants from the same gene, variant-level PathogenicityScore𝑚𝑚,𝑣𝑣 
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could be used for ranking inside of each gene m. In this study, the evaluation and comparison 

are all at gene-level.  

3.3 Evaluation of ConsistencyScore in disease-causing gene’s priorization 

Firstly, we randomly chose 70% (14,406) of the samples as the training score-generation 

dataset to calculate cGPS matrix and applied them to the remaining (6,174) samples as the 

testing dataset.  

Secondly, for each sample m and gene n, the prediction task is to find out disease-causing 

sample-gene pairs where 𝑅𝑅𝑚𝑚,𝑛𝑛 = 1. Meanwhile, we could obtain 

PathogenicityScore𝑚𝑚,𝑛𝑛, PhenotypeScore𝑚𝑚,𝑛𝑛 and ConsistencyScore𝑚𝑚,𝑛𝑛 for each sample-

gene pair, which we will use as the prediction score. As three strategies were used to 

calculate cGPS matrix score, here the ConsistencyScore𝑚𝑚,𝑛𝑛 were separately calculated based 

on cGPS matrix score from different strategies and evaluated. Here, one evaluation strategy is 

to merge all possible sample-genes pairs and to find out whether the higher prediction score 

could extract out P/LP-diagnosed sample-gene pairs, i.e the disease-causing gene for each 

sample. Besides, for each sample m containing at least one gene with 𝑅𝑅𝑚𝑚,𝑛𝑛 = 1, all candidate 

genes were ranked according to their original prediction scores, and the gene’s rank within 

each sample were treated as the new prediction score to evaluation the performance.  ROC 

and prevision-recall curves were used to evaluate the performance. 

Finally, we applied the prediction framework in a totally independent cohort with 2,323 

patients starting from Jan. 2020 to March. 2020 (not covered in the aforementioned model-

generation cohort). CGPS matrix were recalculated by using all patient samples. In addition, 

these 2,323 patient samples went through the normal genetic testing procedure to give report 

category labels manually for each variant. In total 296 patients had manually reviewed P/LP-

diagnosed genes. For each diagnosed patient sample, we ranked the ConsistencyScore 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted August 28, 2021. ; https://doi.org/10.1101/2021.08.26.21261185doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.26.21261185


22 

 

(calculated by using predefined clinical categories) in descending order and obtained the 

ranking value of the final diagnosed disease-causing gene. For each patient sample with 

multiple P/LP-diagnosted genes, we use the minimum ranking value. Then, for all 296 patient 

samples, we could summarize the percentage of samples that has the final disease-causing 

gene with ranking value within top N, where N could be 1,2,3…10.  

3.4 Comparison for other tools in disease-causing gene’s priorization 

For PathogenicityScore, PheotypeScore, ConsistencyScore and PhenoPro the calculation was 

based on candidate variant list after the filtration step detailed described above. For the usage 

of Exomiser, we downloaded source code from https://data.monarchinitiative.org/exomiser/ 

with version 7.2.1. For the usage of Xrare, we downloaded docker image named xrare-pub-

2015.docker.tar.gz and followed instructions from https://web.stanford.edu/~xm24/Xrare/. 

Considering that the algorithms contain their own filtration step, for Exomiser (Phenix, 

hiPHIVE) and Xrare, we ran the algorithms by directly input the original VCF file and HPO 

terms with default parameters. Similarly, we summarized the rank for the causal gene in each 

candidate list produced by each algorithm for evaluation.  

3.5 Application of ConsistencyScore in MGHA corpus 

In MGHA corpus, no original genotype files in VCF format could be obtained. Thus, we 

directly calculate ConsistencyScore (with cGPS matrix score from pre-defined clinical 

categories) for each reported gene in each sample. For each reported gene, we obtained the 

distribution for P/LP-reported and not P/LP-reported ConsistencyScore from CCGT dataset 

and calculated the P/LP and not P/LP probability for the calculated ConsistencyScore in 

MGHA corpus. We defined predictions with P/LP probability significantly higher than not 

P/LP probability as a P/LP prediction (OR>2). For the HPO terms recorded, we manually 

check their status in the current HPO database and replace ones with “obsolete” condition to 
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the replaced terms and “alt_id” ones to the main term. i.e replace “HP:0002281” to 

“HP:0002282”, “HP:0005549” to “HP:0001875”, “HP:0008012” to “HP:0000545”, 

“HP:0008538” to “HP:0000407”, “HP:0006996” to “HP:0006989”.  

4. Statistical analysis 

All statistical analysis was performed by R version 3.6.1. Student’s t-test was used for 

pairwise numeric vector comparison, realized by t.test() in R. The confidence interval (CI) for 

the percentage of cases were performed by bootstrap strategy with 1000 times. If the original 

sample size is smaller than 10, no CI is provided. The comparison for prediction performance 

was realized by the proportion test for the ranked-first percentage, realized by prop.test() in 

R. The CI and comparison between AUC values (ROC) were used by R package pROC by 

setting method= ‘delong’. For the precision-recall curve, the CI was obtained by bootstrap 

strategy with 1000 times and the comparison between AUC values were tested by t.test() for 

the bootstrapped result vector.  

 

 

Figure Titles and Legends 

Figure 1. Flow chart for (A) study design and (B) predictive model design.  (A) In this 

study for developing and validating a predictive model to prioritize disease-causing genes, 

two cohorts were recruited, for model-generation and independent validation. (B) The 

generation of predictive model. Data collection: Variants analysis with exome sequencing 

was performed and clinical information was automatically extracted into HPO terms with 

manual review. Clinical diagnosis was made by genetic counselors on candidate list after 

automatic variant filtration step. 20,580 genetic testing cases were collected from FDCH from 

2015-2019, from which 3,507 cases were with P/LP clinical diagnosis, in total 804 genes 
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have been ever P/LP reported.  The HPO terms were further summarized into clinical 

categories. This information was collected from one center with unified standard and were 

further summarized into genotype, phenotype and diagnose-level. Generation of cGPS 

matrix: The cGPS matrix score was calculated from all P/LP-diagnosed samples in CCGT 

dataset and public database (OMIM and geneOrganizer). The score ranges from 0-1 and 

higher scores indicate higher correlation between the gene and the clinical category. 

Application to automatic diagnoses for genetic disease:  cGPS matrix could further assist the 

automatic prioritizing of disease-causing genes by calculating PhenotypeScore for each 

candidate gene. The final ConsistencyScore that incorporate PhenotypeScore and 

PathogenicityScore could be used for disease-causing gene’s priorization, and higher score 

genes could have higher probability of disease-causing. Detailed procedure could be found in 

Methods. Abbreviation. P/LP: pathogenic/likely pathogenic. VUS: variant of unknown 

significance.  

Figure 2. Performance ConsistencyScore in predicting P/LP-diagnosed genes in training 

and testing dataset. (A-B) Testing the performance of ConsistencyScore to predict 

diagnostic sample-gene pairs in training and testing dataset. (C-D) Testing the performance 

of gene’s rank ordered by ConsistencyScore in each sample to predict diagnostic sample-gene 

pairs in training and testing dataset. ROC curves (A,C) and precision-recall curves (B,D) 

were used to evaluate the performance. AUC values with 95% CI were shown in each sub-

figure. (E) The percentage of cases with final diagnostic-genes within top candidate number 

(1,2…10) in training dataset (blue) and testing dataset (red). The cGPS matrix was calculated 

by using only training dataset with original HPO terms summarized into 19 pre-defined 

clinical categories. In A-B, all samples were used for evaluation. In C-E, only samples with 

P/LP-diagnostic genes were used for evaluation.  
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Figure 3. Performance evaluation ConsistencyScore in priorization disease-causing 

genes from an independent dataset with 296 P/LP-diagnosed patients. (A) Application of 

ConsistencyScore in a new independent dataset. Count of samples and percentage of the 

reported P/LP-diagnosed genes within top 1,3,5,10 of each sample’s candidate variant list 

were shown with 95% CI. In 296 samples, the 75% manually reported P/LP-diagnosed genes 

had the highest ConsistencyScore value. (B) The percentage of cases with final diagnostic-

genes within top candidate number (1,2…10) produced by each algorithm were shown, with 

95% CI bar. Compared with other tools, ConsistencyScore could get the best performance.  
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Table1. Characteristics of patients in the model generation and validation cohort.  
 
 Model generation cohort 

(N=20580) 
Validation cohort 

(N=2323) 
Overall 

(N=22903) 
Platform       

CES 15622 (75.9%) 1811 (78.0%) 17433 (76.1%) 
WES 4958 (24.1%) 512 (22.0%) 5470 (23.9%) 

Gender       
Female 7997 (38.9%) 851 (36.6%) 8848 (38.6%) 
Male 12583 (61.1%) 1472 (63.4%) 14055 (61.4%) 

Age       
Mean (SD) 957 (1400) 1030 (1370) 964 (1400) 
Median [Min, Max] 203 [0, 6560] 354 [0, 6540] 212 [0, 6560] 

Positively diagnosed       
N 17073 (83.0%) 2027 (87.3%) 19100 (83.4%) 
Y 3507 (17.0%) 296 (12.7%) 3803 (16.6%) 
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