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 25 
ABSTRACT 26 
 27 
Aim: The purpose of the study was to determine aerosol exposure generated by coughing in 28 

operation room environments to create a quantitative limit value for high-risk aerosol-generating 29 

medical procedures. 30 

Background: Coughing is known to produce a significant amount of aerosols and is thus commonly 31 

used as a best reference for high-risk aerosol-generation. Accordingly, procedures during which 32 

aerosol generation exceeds the amount of aerosol generated in instances of coughing are seen as 33 

high-risk aerosol generating procedures. However, no reliable quantitative values are available for 34 

high-risk aerosol-generation. 35 
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Methods: Coughing was measured from 37 healthy volunteers in the operating room environment. 36 

Aerosol particles generated during coughing within the size range of 0.3–10 µm were measured 37 

with Optical Particle Sizer from 40cm, 70cm, and 100cm distances. The distances reflected 38 

potential exposure distances where personnel are during surgeries.                     39 

Results: A total of 306 coughs were measured. Average aerosol concentration during coughing was 40 

1.580 ± 13.774 particles/cm3 (range 0.000 – 195.528).  41 

Discussion: The aerosol concentration measured in this study can be used as a limit for high-risk 42 

aerosol generation in the operating room environment when assessing the aerosol generating 43 

procedures and the risk of operating room staff´s exposure for aerosol particles. 44 

 45 
ABBREVIATIONS: Aerosol generating procedure (AGP), operating room (OR) 46 
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INTRODUCTION  72 
 73 
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Airborne transmission has recently been recognized as an important transmission route of COVID-74 

19 as well as for many other respiratory infections such as tuberculosis and influenza [1-4].  75 

Aerosol particles, which can potentially carry pathogens, are generated for example when breathing, 76 

talking, and coughing, but also presumably during certain surgical procedures performed in the 77 

respiratory tract area where infective pathogens are known to be found. Fear about the spread of 78 

COVID-19 during surgeries has led, for example in the field of otorhinolaryngology, to 79 

cancellations of surgeries, minimization of staff in the operating room (OR), and changes in 80 

personal protective equipment (PPE) guidelines during the current pandemic [5-7].   81 

 82 

Traditionally, aerosols have been defined as particles smaller than 5µm in size that can remain in 83 

the air for long periods of time and spread far into space. However, environmental factors have a 84 

significant effect on the dispersion of aerosols and there has been a recent debate regarding whether 85 

all particles below 100µm should be considered as aerosols [8, 9]. Overall, aerosol generation is a 86 

continuum from the smallest aerosols to larger droplet-sized particles, depending on source. 87 

Nonetheless, smaller aerosols are present in higher number and tend to spread the farthest and 88 

particles smaller than 5µm have been found to carry the majority of pathogens [10-12]. Findings 89 

related to COVID-19 support this assumption: SARS-CoV-2 has been detected in particles 0.25–90 

1.0 μm, 1–4 μm, and > 4 μm. Most results are obtained by PCR, but infectious virus has also been 91 

detected in viral culture [13-15]. These facts together make small (<5 µm) particles most 92 

challenging for infection control measures[16]. 93 

 94 

When assessing the risk of infection, the infectious dose associated with the pathogen, the time of 95 

exposure and the number of pathogens should be considered. However, both infectious doses of 96 

different airborne pathogens and the number of infectious pathogens contained in aerosol particles 97 

are yet widely unknown and require further investigation before they can be reliably used as part of 98 
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a risk assessment for airborne diseases. Therefore, procedures performed in health care, such as 99 

surgeries, have been classified as potentially aerosol-generating procedures (AGP) or high-risk 100 

AGPs based mainly on the area to be operated and the instruments used, with no degree of 101 

quantification [17, 18].  102 

 103 

Coughing is known to produce a potentially infectious amount of aerosols and it has recently been 104 

used as a quantitative reference for high-risk aerosol generation during surgeries and other clinical 105 

procedures [19-21]. It could be said that the current list of aerosol generating procedures is not valid 106 

as knowledge of aerosol generation has changed during the pandemic. Many questions persist about 107 

quanta and epidemiology in each disease. Procedures in which aerosol generation exceeds the 108 

amount of aerosol concentration produced by coughing are those that could be considered t high-109 

risk aerosol generating procedures (AGP) until further knowledge is obtained [22].  This definition 110 

does not take a position on the infectious dose, but together with the exposure time provides an 111 

estimate of the potential exposure to airborne pathogens  112 

The amount of exposure received by OR staff during the procedure is a key factor in aerosol risk 113 

assessment, rather than the total aerosol concentration generated, as highly effective ventilation 114 

does lower exposure. Therefore, the purpose of our study was to determine an adequate and 115 

quantitative value for high-risk AGPs from the perspective of OR staff by measuring the amount of 116 

particle concentration that a person in the OR is exposed to. The results of this study can be applied 117 

by comparing the concentration and size distribution of aerosol produced during surgical 118 

procedures with the concentration produced by coughing and by estimating the duration of the 119 

operation. In the future, as information on infectious doses of various airborne diseases increases, 120 

this can be combined with risk assessment. 121 

 122 
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METHODS We recruited 37 healthy volunteers to cough in OR and measured the particle 123 

generation during coughing. In addition, 15 patients’ involuntary cough episodes were measured 124 

separately when they woke up from general anesthesia or were under local anesthesia. Coughs 125 

during extubations were excluded. We compared volitional and involuntary coughing to ensure that 126 

there was no significant difference between these allowing a more accurate quantitative assessment 127 

of volitional coughs. All measurements were conducted in the Helsinki University Hospital, 128 

between December 2020 and February 2021. The ORs had Recair 4C ventilation system with 129 

HEPA-14 filtration, and ultra-clean ventilation in the laminar area of 1210–1298 l/s generating 400 130 

- 572,83 air changes per hour. Measurements were performed with the Optical particle sizer (OPS), 131 

model TSI model 3330 measuring the size range from 0.3 to 10 µm and flow rate of 1l/min.  132 

 133 

OPS was situated 40 cm, 70 cm, and 100cm from the volunteers to reflect the same distances and 134 

thus same particle amounts which OR staff, operating physicians, or assisting nurses are exposed to 135 

during surgical operations. Involuntary cough measurements were performed an average of 124 cm 136 

(range 40–180 cm) from the patient. No additional collection methods, for example funnels, were 137 

used to reflect the actual particle exposure in a certain spot (OR personnels´mouth) in the OR 138 

environment. Volunteers were asked to cough as hard as possible for three to five times from each 139 

distance. Each cough episode was measured separately ensuring that the particles from previous 140 

coughs had time to clear from the OR. Coughs were directed towards the OPS device, and particle 141 

concentration was measured with a 5- or 10-second scale interval. For each cough, several 142 

measurements were collected for 10 seconds. 143 

 144 

The size dependent aerosol concentrations measured with OPS were normalized with respect to the 145 

sizing bin widths within 0.3 to 10 µm. The particle number size distributions and total particle 146 

concentrations per cubic centimeter were calculated. The particles were categorized based on the 147 
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diameter as follows: <1 µm, 1–5 µm, and >5 µm. Due to infection risk being related to cumulative 148 

aerosol exposure, the mean was calculated for each patient at each coughing distance as a statistical 149 

representative. Pairwise comparisons between voluntary and involuntary coughing were calculated 150 

using unpaired Student’s t-test with Benjamini-Yekutieli procedure for multiple comparisons with 151 

5% false discovery rate[23]. Prior comparisons the data was log10 normalized. The analyses were 152 

performed using Microsoft Excel 2016 (Microsoft Corporation, Redmond, Washington, USA), and 153 

GraphPad Prism version 9.0.2 for Mac (GraphPad Software, San Diego, California USA) or 154 

RStudio version 1.3.959 (R Foundation for Statistical Computing, Vienna, Austria). Measured 155 

minimum concentration in all size classes was 0.000. A p-value <0.05 was considered to be 156 

statistically significant. STROBE reporting guidelines were followed when preparing the 157 

manuscript. 158 

 159 

All procedures that involved human participants were conducted in accordance with the ethical 160 

standards of the institutional or national research committee and the 1964 Declaration of Helsinki 161 

and its later amendments or comparable ethical standards. The Ethics Committee of Helsinki 162 

University Hospital approved the study protocol (HUS/1701/2020). All participants provided 163 

written informed consent prior to their participation.  164 

 165 

RESULTS AND ANALYSIS A total of 306 coughs were measured from 37 healthy volunteers. 166 

The detailed information about particle concentrations when coughing from different distances are 167 

presented in Table 1. All background concentrations were very low (maximum mean total 168 

concentration 0.0053 particles/cm³) which enabled the accurate evaluation of particle concentration 169 

generated during the procedure. The comparison of involuntary coughs from 15 patients to 170 

volitional coughs are presented in Figure 1.  Mean particle concentration during involuntary coughs 171 

was 0.140 p/cm³ ± 0.332 (range 0.006–1.308) for particles <1 µm, 0.025 p/cm³ ± 0.068 (range 172 
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0.000–0.270) for particles 1–5 µm and 0.002 p/cm³ ± 0.006 (range 0.000–0.024) for particles >5 173 

µm. These measurements were compared with volitional coughs to determine whether the collected 174 

data also describes involuntary coughing. There were no significant differences between volitional 175 

and involuntary coughing at any particle size category (p=0.244–0.883). 176 

 177 

Table 1.  Observed particle concentration during volitional coughing from different distances 178 

 179 

SD, standard deviation. 180 
 181 

 
Measured cough episodes, n 

 
All 

(n=74) 

 40 cm from 
source  

70 cm from 
source 

100 cm from 
source  

    (n=37) (n=15) (n=22) 
Total particle 
concentration Median 0.055 0.055 0.026 0.070 
(particles/cm³) Mean ± 

SD 1.706 ± 10.802 0.923 ± 5.078 0.091 ± 0.136 4.12 ± 18.771 

  Range 0.000 − 88.157 0.013 − 30.973 0.000 − 0.466 0.016 − 88.157 
<1�m particle 
concentration Median 0.044 0.043 0.026 0.053 
(particles/cm³) Mean ± 

SD 1.692 ± 10.791 0.906 ± 5.030 0.087 ± 0.133 4.111 ± 18.770 

  Range 0.000 − 88.141 0.011 − 30.668 0.000 − 0.454 0.011 − 88.141 
1−5�m particle 
concentration Median 0.008 0.008 0.002 0.013 
(particles/cm³) Mean ± 

SD 0.013 ± 0.035 0.017 ± 0.049 0.004 ± 0.004 0.013 ± 0.006 

  Range 0.000 − 0.304 0.000 − 0.304 0.000 − 0.012 0.004 − 0.028 
>5�m particle 
concentration Median 0.000 0.000 0.001 
(particles/cm³) Mean ± 

SD 0.001 ± 0.001 0.001 ± 0.001 NA 0.001 ± 0.001 

  Range 0.000 − 0.005 0 .000 − 0.005 0.000 − 0.004 
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 182 

Figure 1: Volitional coughing vs. involuntary coughing. (A) Average aerosol size distributions presented with the 183 
background (dotted line) during volitional and anesthesia coughs (involuntary) expressed as mean (line) with 95% 184 
confidence interval (envelopes). (B) Total concentrations and concentrations of <1µm, 1–5µm and >5µm aerosols 185 
during volitional and anesthesia coughs (involuntary), presented as median with interquartile range (box) and range 186 
(whiskers). Volitionally coughing patients, n=37 (coughs n=306); involuntary coughing patients, n=15 (coughs n=15). 187 
c, concentration; Dp, particle diameter; N, particle number 188 
 189 

DISCUSSION  190 

In this study we defined a quantitative estimate for high-risk AGP when assessing the risk of 191 

exposure of OR staff. By considering the time spent on the OR, as well as the risk of the patient's 192 

possible airborne disease, a rough risk assessment of the staff's risk during the procedure was 193 

formed. As information on the pathogens contained in aerosol particles as well as infectious doses 194 

of airborne diseases increases, these factors can later replace the role of coughing in the risk 195 

assessment. Our methodology provides a numeric limit value for the exposure faced by a staff 196 

member in an OR environment already considering the environmental factors that affect aerosol 197 

dispersion in the space. Thus, the values we measured can be used as a reference when assessing 198 

other AGPs that OR staff are exposed to [24].  199 

Our results in relation to the aerosol concentration generated by coughing and the role of coughing 200 

as an aerosol generating behaviors (AGBs) are in a line with a recent systematic review. However, 201 
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we have a higher number of records, we made the systematic distance-dependent evaluation, and 202 

we systematically determined aerosol concentrations, which collectively strengthen our study [25].  203 

In our study, the highest aerosol concentrations were observed at 100 cm distance. This is probably 204 

due to the methodology: the flow rate of OPS is 1l/min. When measuring particles with high 205 

acceleration at close range, some particles bypass the device and are not recorded. When distance 206 

increases further, the acceleration of the particles is reduced, and they are observed more accurately. 207 

However, OPS is currently the most suitable and used measuring device, especially in OR 208 

conditions, so when examining the generation of aerosols during surgical procedures its use is 209 

justified despite the limitations.  210 

The large range and personal differences of the particle concentrations observed in our study is 211 

naturally seen in different respiratory activities and related to heterogeneity of the cough[26]. 212 

However, taking into account similar concentrations of volitional and involuntary coughs, we can 213 

state that the presented data is well representative of the average aerosol concentrations generated 214 

during coughing. A previous study of Lee et al. showed that infected patients generated a greater 215 

number of particles when coughing compared to the healthy ones[27]. Thus, it could be stated that 216 

the particle concentration seen in our results is the minimum value to determine the limit of AGP. 217 

Whether the definition for AGP is useful at all can be discussed. Understanding humans as aerosol 218 

generators during normal respiratory activities has grown and the term aerosol generating behaviors 219 

(AGBs) are proposed alongside the AGP [25] However, statistics from around the world show that 220 

surgeries involving mucus membranes and respiratory track area were significantly reversed during 221 

the COVID-19 pandemic due to the fear of infection. Thus, quantitative variables used for risk 222 

assessment are a step forward from previous intuitive measures toward more comprehensive risk 223 

assessment. 224 
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CONCLUSION This study provides a standard for aerosol concentration and size distribution for 225 

aerosols generated when coughing to act as reference for high-risk aerosol generation during 226 

surgical procedures performed in the OR. 227 
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