
The relationship between autoantibodies targeting GPCRs and the renin-angiotensin 
system associates with COVID-19 severity 

Otavio Cabral-Marquesa,b,c,*, Gilad Halpertd,s*, Lena F. Schimkea,*, Yuri Ostrinskio,d,s, Israel 
Zyskinde,f, Miriam T. Latting, Florian Tranh, Stefan Schreiberh, Alexandre H.C. Marquesa, Igor 
Salerno Filgueirasa, Desirée Rodrigues Plaçab, Gabriela Crispim Baiocchia, Paula Paccielli 
Freirea, Dennyson Leandro M. Fonsecab, Jens Y. Humrichi, Tanja Langei, Antje Mülleri, Lasse 
M. Giilj, Hanna Graßhoffi, Anja Schumanni, Alexander Maximilian Hackeli, Juliane Junkerk, 
Carlotta Meyerk, Hans D. Ochsl, Yael Bublil Lavim, Kai Schulze-Forsterk, Jonathan I. 
Silvergergn, Howard Amitald,p,q, Jason Zimmermanf, Harry Heideckek, Avi Z Rosenbergr, 
Gabriela Riemekasteni,*, Yehuda Shoenfeldo,d,s* 
aDepartment of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.  
bDepartment of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, 
São Paulo, SP, Brazil. 
cNetwork of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and 
Research Network (USERN), Sao Paulo, Brazil. 
dZabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Affiliated with the Sackler Faculty of 
Medicine, Tel-Aviv University, Tel-Hashomer, Israel 
eDepartment of Pediatrics, NYU Langone Medical Center, New York, NY, USA 
fMaimonides Medical Center, Brooklyn, NY, USA 
gDepartment of Biology, Yeshiva University, Manhatten, NY, USA 
hDepartment of Internal Medicine I, University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany 
iDepartment of Rheumatology, University Medical Center Schleswig-Holstein Campus Lübeck, Lübeck, Germany 
jDepartment of Internal Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway 
kCellTrend Gesellschaft mit beschränkter Haftung (GmbH), Luckenwalde, Germany 
lDepartment of Pediatrics, University of Washington School of Medicine, and Seattle Children's Research Institute, 
Seattle, WA, USA. 
mDepartment of Chemistry Ben Gurion University Beer-Sheva, 84105, Israel 
nDepartment of Dermatology, George Washington University, Washington, DC, USA 
oAriel University, Israel 
pSackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel 
qDepartment of Medicine B, Sheba Medical Center, Tel Hashomer, Israel 
rDepartment of Pathology, Johns Hopkins University, Baltimore, Maryland, USA 
sSaint Petersburg State University, Saint-Petersburg, Russia 
*Contributed equally 
 
Corresponding author:  
Yehuda Shoenfeld, MD, FRCP, MaACR 
Zabludowicz Center for Autoimmune Diseases, 
Sheba Medical Center, affiliated with the Sackler 
Faculty of Medicine, Tel-Aviv University  
Tel-Hashomer 5265601, Israel 
Email:  shoenfel@post.tau.ac.il 
Tel:            972-3-5308070 
Fax:           972-3-5352855 
 

Gabriela Riemekasten, MD 
Department of Rheumatology and Clinical 
Immunology,  
University of Lübeck, Lübeck, 23538, Germany 
Klinik für Rheumatologie 
Ratzeburger Allee 160 (Haus 40), 23562 Lübeck 
Email:  gabriela.riemekasten@uksh.de 
Tel.: ++49 (0)451 500 45200   
Fax: ++49 (0)451 500 45204 

Otavio Cabral-Marques, MSc, PhD 
Department of Immunology 
Institute of Biomedical Sciences - University of São Paulo 
Lineu Prestes Avenue, 1730, São Paulo, SP, 05508-900, Brazil 
Email: otavio.cmarques@usp.br  
Phone: +55 11 97464202 
Fax:+551130917397 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 26, 2021. ; https://doi.org/10.1101/2021.08.24.21262385doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2021.08.24.21262385
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

ABSTRACT 

The coronavirus disease 2019 (COVID-19) can evolve to clinical manifestations resembling 

systemic autoimmune diseases, with the presence of autoantibodies that are still poorly 

characterized. To address this issue, we performed a cross-sectional study of 246 individuals to 

determine whether autoantibodies targeting G protein-coupled receptors (GPCRs) and renin-

angiotensin system (RAS)-related molecules were associated with COVID-19-related clinical 

outcomes. Moderate and severe patients exhibited the highest autoantibody levels, relative to 

both healthy controls and patients with mild COVID-19 symptoms. Random Forest, a machine 

learning model, ranked anti-GPCR autoantibodies targeting downstream molecules in the RAS 

signaling pathway such as the angiotensin II type 1 and Mas receptor, and the chemokine 

receptor CXCR3 as the three strongest predictors of severe disease. Moreover, while the 

autoantibody network signatures were relatively conserved in patients with mild COVID-19 

compared to healthy controls, they were disrupted in moderate and most perturbed in severe 

patients. Our data indicate that the relationship between autoantibodies targeting GPCRs and 

RAS-related molecules associates with the clinical severity of COVID-19, suggesting novel 

molecular pathways for therapeutic interventions.  
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MAIN 

Autoantibodies have been identified in patients with coronavirus disease 2019 (COVID-

19), suggesting that the infection by severe acute respiratory syndrome virus 2 (SARS-CoV-2) 

can evolve to a systemic autoimmune disease1–5. For instance, high levels of antiphospholipid 

autoantibodies have been linked to severe respiratory disease by inducing neutrophil 

extracellular traps (NETs) and venous thrombosis4,6–9. High titers of neutralizing 

immunoglobulin G (IgG) autoantibodies against type I interferons (IFNs) have been reported in 

patients with life-threatening COVID-1910. Most recently, a wide range of autoantibodies in 

patients with COVID-19 have been characterized using rapid extracellular antigen profiling 

(REAP)11, a technology for comprehensive and high-throughput identification of autoantibodies 

recognizing 2,770 extracellular and secreted protein components of the exoproteome 

(extracellular protein epitopes)12. Wang, E. Y. et al11 showed that both healthy controls and 

COVID-19 patients have multiple autoantibodies against the exoproteome. While all patients 

with COVID-19 displayed reactivity against a larger number of proteins, those with severe 

disease had the highest reactive scores.  

These results are in line with our previous report13 on autoantibodies targeting the largest 

superfamily of integral membrane proteins in humans14, i.e., the G protein-coupled receptors 

(GPCRs) suggesting that these autoantibodies are natural components of human biology that 

become dysregulated in autoimmune diseases. Likewise, recent studies have detected functional 

antibodies against GPCRs in the sera of patients with COVID-19 and indicate that they may be 

associated with disease severity15–17. However, these investigations were not systemic, focusing 

only on two types of anti-GPCR autoantibodies and did not investigate their relationship with the 
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potential presence of autoantibodies targeting molecules of the immune and the renin-

angiotensin systems (RAS), which play a central role in the development of severe COVID-19.  

 

RESULTS  

Autoantibodies against GPCRs and renin-angiotensin system (RAS)-related molecules  

Here, we investigated the serum levels of autoantibodies targeting molecules belonging to the 

RAS (including GPCRs: MASR, AT1R, and AT2R as well as the entry receptor for the SARS-

CoV-2, Angiotensin-converting enzyme II [ACE-II])18–21. Furthermore, we assessed the 

concentrations of autoantibodies against GPCRs involved in chemotaxis and inflammation 

(CXCR322,23 and C5aR24), coagulation (PAR125), and neuronal receptors (ADRA1A, ADRB1, 

and ADRB2, ACHRMs)26–30, which have been implicated in the development of COVID-19 

disease (see Supp. Table 1 for abbreviations of autoantibodies and their targets). In addition, we 

investigated autoantibodies targeting receptors facilitating the infectivity of SARS-CoV-2, and 

its entrance into host cells (neuropilin-Ab)31. Finally, we explored the potential presence of 

autoantibodies against STAB1 (STAB-1-Ab) as a potential new candidate involved in COVID-

19 infectivity, which is a scavenger receptor still not investigated for any role in COVID-19. 

However, its multifunctionality during leukocyte trafficking, tissue homeostasis, and resolution 

of inflammation suggests it could be relevant for disease severity32,33. Figure 1A and Figure 1B 

represent how these autoantibody targets are interconnected by protein-protein interaction (PPI) 

or gene ontology (GO) relationships, respectively. 

We found significantly higher levels of autoantibodies directed against eleven receptors 

(Figure 1C), which are involved in the modulation of inflammation and the RAS (Figure 1D) 
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suggesting an association between autoantibodies against GPCRs and RAS-related molecules 

with COVID-19 severity.  In contrast, both controls and all COVID-19 disease groups were 

found to have a number of other autoantibodies at similar levels, most of them targeting neuronal 

receptors (ADRA1R, ADRB1,  ADRB2, CHRM3, and CHRM4)34–36, but also against the 

receptor for complement C5a (C5aR), a potent anaphylatoxin chemotactic receptor37, suggesting 

that severe COVID-19 is specifically associated with autoantibodies towards certain groups of 

GPCRs (Supp. Fig 1).  

 

Autoantibody stratification of COVID-19 severity using multivariate analyses 

 Next, we carried out principal component analysis (PCA) using a spectral decomposition 

approach38,39, to examine the correlations between variables (autoantibodies) and observations 

(individuals) while stratifying groups based on the autoantibody levels. This approach indicated 

that autoantibodies stratify COVID-19 patients according to disease severity (mild, moderate, 

and severe patients) (Figure 2A and 2C). While healthy controls and patients with mild 

COVID-19 present a closer autoantibody pattern, moderate and severe COVID-19 patients 

clustered together. In this context, autoantibodies such as ACE-II-Ab, AT2R-Ab, Brady-R1, 

CXCR3-Ab, MASR-Ab, M5R, neuropilin-Ab, PAR1-Ab, STAB-1Ab appeared to play a major 

role in stratifying COVID-19 by disease burden (Figure 2B-2D). Altogether, these results 

indicate that the association between autoantibodies against GPCRs and COVID-19-related 

molecules can be used as biomarkers for COVID-19 burden.   
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Machine learning classification of COVID-19 patients based on autoantibodies  

To further explore the potential of autoantibodies to predict COVID-19 outcomes, we 

performed Random Forest modelling, which is a machine learning approach that establishes 

outcomes based on predictions of decision trees40. The receiver operating characteristics (ROC) 

curve indicated a high false-positive rate for the classification of severe patients with the stable 

curve showing the highest error rate (out-of-bag or OOB) for this group (Figure 3A and 3B). 

I.e., in accordance with the PCA analysis, Random Forest classification of COVID-19 groups 

showed a higher error rate (low accuracy) when distinguishing moderate patients from those with 

severe COVID-19.  

Thus, we assigned moderate and severe COVID-19 patients to the same group to identify 

the most relevant autoantibody predictors of COVID-19 burden. Using this approach, the merged 

moderate/severe patient group showed the lowest error rate compared to healthy controls and 

mild COVID-19 patients. This model resulted in an OOB error rate of 22,95% for all groups and 

an area under the ROC curve of 0.93, 0.87, and 0.96 for healthy controls, COVID-19 mild, and 

COVID-19 moderate/severe groups, respectively (Figure 3C and 3D). Moreover, the Random 

Forest model ranked these 17 autoantibodies based on their ability to discriminate between 

healthy controls and COVID-19 disease severity groups. Follow-up analysis indicated CXCR3-

Ab, AT1R-Ab, MASR-Ab, M5R-Ab, and Brady-R1-Ab as the five most significant predictors of 

COVID-19 classification based on the number of nodes and gini-decrease criteria for measuring 

variable importance (Figure 3E and 3F). However, other autoantibodies such as PAR1-Ab and 

STAB-1-Ab were also strong predictors of COVID-19 severity. The interaction between anti-

CXCR-3 and anti-AT1R autoantibodies was the most frequent interaction occurring in the 

decision trees obtained by the Random Forest model (Supp. Figure 2A and 2B). Altogether, 
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these results show that autoantibodies targeting GPCRs and COVID-19 associated molecules 

perform well as predictors of COVID-19 disease severity and raises the question of whether 

these autoantibodies against key functional molecules play a significant role in COVID-19 

pathophysiology.  

 

Disruption of autoantibody correlation signatures in severe forms of COVID-19 

We have recently reported that hierarchical clustering signatures of anti-GPCR 

autoantibody correlations are associated with physiological and pathological immune 

homeostasis41. Based on this concept, we investigated the correlation signatures in healthy 

controls and patients with COVID-19 to explore if changes in autoantibody relationships 

correlate with disease burden. Bivariate correlation analysis revealed a progressive loss of 

normal correlation signatures from mild to oxygen-dependent COVID-19 patients. In other 

words, patients with mild COVID-19 exhibited only minimal differences in the autoantibody 

correlation signatures when compared to healthy controls (Figure 4A). Patients with moderate 

COVID-19 started to clearly exhibit new relationships among autoantibodies while the severe 

group displayed the most different topological correlation pattern. Topologically, a positive 

correlation predominated among the autoantibodies. Of note, autoantibodies targeting nine 

different molecules presented significant changes in the total correlation distribution, which was 

determined by the distribution of a pairwise correlation between autoantibodies (Figure 4B). In 

summary, while the autoantibody network signatures were relatively conserved in patients with 

mild COVID-19 compared to healthy controls, these were disrupted in moderate and most 

perturbed in severe patients (Supp. Figure 3) 
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To better understand these changes in autoantibody correlation signatures, we performed 

canonical-correlation analysis (CCA), which is a multivariate statistical method to determine the 

linear relationship between two groups of variables42. CCA was carried out splitting 

autoantibodies into two groups: those against molecules belonging or influencing the RAS 

(Dataset X) compared with those autoantibodies targeting other GPCRs, neuropilin, and STAB1 

(Dataset Y). This approach confirmed the changes in autoantibody relationship patterns revealed 

by Bivariate correlation analysis. In addition, the CCA indicated changes based on COVID-19 

severity are in agreement with the Random Forest model. For instance, in this multivariate 

correlation approach autoantibodies targeting CXCR3 showed Spearman's rank correlation 

coefficient >0.6 only in the moderate and severe groups (Figure 4C). In this context, while 

Brady-Ab only appeared in the severe group, AT1R-Ab, MASR-Ab, and M5R-Ab exhibited 

changes in their correlation patterns that were only observed in the severe group.  

 

DISCUSSION 

The precise mechanisms by which the SARS-CoV-2 infection triggers the production of 

autoantibodies remains unknown. However, a potential antigenic cross-reactivity (molecular 

mimicry) between SARS-CoV-2 and human tissues has been hypothesized43–48. Furthermore, the 

hyperinflammatory reaction triggered by this virus results in tissue damage causing systemic 

immune-related manifestations that have been reported in patients with COVID-1949. When 

compared with patients manifesting mild disease, those with moderate COVID-19 symptoms, 

present with strong antibody production and high titers of neutralizing antibody50,  but, as shown 

here, also with an increased production of autoantibodies. Thus, our work reinforces the concept 

that SARS-CoV-2 infection may trigger a life-threatening autoimmune disease, suggesting that 
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this occurs against multiple functional molecules with key functions in immune and vascular 

homeostasis1–3,51. While we found no differences in the levels of autoantibodies against neuronal 

receptors such as ADRA1A, ADRB1, ADRB2, CHRM3, and CHRM4, those targeting other 

GPCRs and RAS-related molecules were significantly dysregulated when comparing controls 

with moderate and severely affected COVID-19 patients. In this context, while we have 

previously reported that anti-AT1R has agonist properties13,41,52,53, the mechanistic action of the 

other autoantibodies we identified remains to be investigated. For instance, we hypothesize that 

antibodies against CXCR3 might block the migration of immune cells that express CXCR3, such 

as natural killer cells, as well as CD4+ and CD8+ T cells that are critical for the killing of viruses 

in the lung54–57. However, if antibodies against CXCR3 have agonistic properties, potentializing 

CXCL9/CXCL10/CXCL11 signaling, they could exacerbate deleterious hyperinflammation.  

Anyhow, the results of our work underscores recent studies3,6,10,12 that report the generation of 

autoantibodies following SARS-CoV-2 infection. Importantly, our data indicate that an 

additional immunological layer is present where autoantibodies targeting GPCRs and RAS-

related molecules are associated with COVID-19 burden. This association sheds new light on the 

proposed immuno-hematological mechanisms underlying the development of COVID-19 

infection, which is based on the abnormal activation of the ACE-II/Angiotensin II (Ang 

II)/AT1R/RAS axis together with a reduction of the ACE-II/ Angiotensin-(1-7)/MASR branch 

occurring together with several immunological dysregulation events58.  

The Random Forest model revealed the interaction between autoantibodies targeting 

CXCR3 and AT1R as the most important predictors of COVID-19 severity. There is an essential 

biological connection between CXCR3 and AT1R. Blocking  AT1R impairs the release of 

several chemokines, including CXCL10, the ligand for CXCR359, a chemokine receptor highly 
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expressed by effector T cells controlling  the traffic and function of CD4+ and CD8+ T cells 

during inflammation60–63. Further, CXCR3 has been strongly associated with both autoimmune 

and inflammatory diseases64. Meanwhile, increased levels of Ang II together with the 

hyperactivation of its receptor (AT1R) have been associated with unfavorable COVID-19 

disease16,65. This pathological mechanism has been explored as a therapeutic approach for 

COVID-19 by clinical trials with Losartan, an AT1R antagonist8,66. AT1R orchestrates several 

important immunological functions and Losartan treatment has been previously demonstrated to 

have immunomodulatory properties. Ang II is the main effector molecule of RAS that upon 

binding to AT1R promotes vasoconstriction, inflammation, oxidative stress, coagulation, and 

fibrosis, all playing an important pathological role during SARS-CoV-2 infection19.  

Furthermore, our work indicates a change in the relationship between autoantibodies 

targeting GPCRs and RAS that associate with COVID-19 severity, which was shown by 

increasing disruption of autoantibody correlations according disease burden. This observation 

provides new insights into the biology of autoantibodies, which is in line with our previous 

observation that GPCR-specific autoantibody signatures associate with physiologic and 

pathologic immune homeostasis41. Further, as several epitopes on highly interrelated GPCRs are 

likely overlapping67, a change in the correlation structure might indicate that new epitopes are 

targeted in severe COVID-19. These epitopes could have different functional properties. 

However, this also represents a limitation of our work that demand future investigations. 

Although we have previously assessed how these autoantibodies act in the context of systemic 

autoimmune diseases13,41,52,68–72, mechanistic investigations are missing to characterize how all 

these autoantibodies can simultaneously affect (i.e., stimulating or blocking) their targets in the 

context of COVID-19. For instance, future evaluation will be necessary to determine if they have 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 26, 2021. ; https://doi.org/10.1101/2021.08.24.21262385doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.24.21262385
http://creativecommons.org/licenses/by-nc-nd/4.0/


synergistic effects in the presence of endogenous ligands as maybe the case with anti-CXCR3 

autoantibodies and CXCL9/CXCL10/CXCL11. Since GPCRs comprise the largest superfamily 

of integral membrane proteins in humans14, it is also possibly that several additional anti-GPCR 

autoantibodies remain to be discovered. Likewise, several SARS-CoV-2 strains have been 

identified73 and it will be important to investigate whether they induce different autoantibody 

patterns that may contribute to disease outcomes. Of note, autoantibodies are present in healthy 

individuals and immunization with GPCR-overexpressing membranes can induce the production 

of autoantibodies targeting GPCRs41. Thus, another important issue to be addressed is whether 

the recently developed vaccines against COVID-1974 could induce the production of anti-GPCR 

autoantibodies.  

In conclusion, this study identifies new autoantibodies which are dysregulated by SARS-

CoV-2. Our data also indicates that anti-GPCR antibodies represent potential new clinically 

relevant biomarkers that predict COVID-19 severity. The disruption of autoantibody network 

signatures in severe patients suggests a progressive loss of autoantibody homeostasis that 

accompanies the progression of the disease triggered by SARS-CoV-2-induced immune 

dysregulation. Since a better understanding of the COVID-19 pathogenesis may open new 

avenues to improve diagnostic options75,76, the results reported here may provide new insights to 

improve the clinical management of COVID-19 patients.   
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ONLINE METHODS 

Patient Cohort: 

We included 246 adults from Jewish communities across 5 states of the United States of 

America, who had developed symptomatic COVID-19 disease before receiving any SARS-CoV-

2 vaccine and participated in an online survey developed to determine the most common 

symptoms and outcomes of SARS-CoV-2 infection77,78. Details about the survey study, patient 

demographics and symptoms have been previously described77,78. 77 randomly selected age- and 

sex-matched healthy controls (SARS-CoV-2 negative and without symptoms of COVID-19) 

were included in this study and their autoantibody data were compared to 169 individuals who 

were SARS-CoV-2 positive (determined by positive nasopharyngeal swab). The SARS-CoV-2 

infected cohort formed the COVID-19 mild (n=74; fever duration ≤ 1 day; peak fever of 37.8 C), 

COVID-19 moderate (n=63; fever duration ≥ 7 day; peak fever of ≥ 38.8 C) and COVID-19 

severe (n=32; severe symptoms and requiring supplemental oxygen therapy) groups. Disease 

severity for SARS-CoV-2 positive individuals was based on the World Health Organization 

(WHO) severity classification. All healthy controls and patients provided written consent to 

participate in the study, which was performed in accordance with the Declaration of Helsinki and 

approved by the IntegReview institutional review board. In addition, this study followed the 

Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) reporting 

guideline. 

 

Detection of IgG autoantibodies 
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Human IgG autoantibodies against 14 different GPCRs (AT1R, AT2R, MASR, Brady-R1, 

alpha1-adr-R, beta1-adr-R, beta2-adr-R, M3R, M4R, M5R, CXCR3, PAR1, C5a-R, N1R), 2 

molecules serving as entry for SARS-CoV-2 (ACE-II, neuropilin), as well as antibodies against 

the transmembrane receptor STAB-1 were detected from frozen serum using commercial ELISA 

Kits (CellTrend, Germany) according to manufacturer’s instructions, as previously described79. 

Briefly, duplicate samples of a 1:100 serum dilution were incubated at 4 °C for 2 h. The 

autoantibody concentrations were calculated as arbitrary units (U) by extrapolation from a 

standard curve of five standards ranging from 2.5 to 40�U/ml. The ELISAs were validated 

according to the Food and Drug Administration’s Guidance for Industry: Bioanalytical Method 

Validation. 

 

Interaction network and enrichment analysis of autoantibody targets 

The interaction network of 17 GPCR-autoantibody targets was built using the online tool string80 

(https://string-db.org/).  Gene ontology (GO) enrichment analysis of the 17 autoantibody targets 

was performed using GO Biological Process 2021 analysis through the Enrichr webtool81–83. 

Circos Plot of antibody targets and pathway association was built using Circos online tool84 .  

 

Differences in autoantibody levels 

Box plots showing the different expression levels of 17 anti-GPCR-autoantibodies from COVID-

19 patients (mild, severe and oxygen-dependent groups) and healthy controls were generated 

using the R version 4.0.5 (The R Project for Statistical Computing. https://www.r-project.org/), R 
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studio Version 1.4.1106 (R-Studio. https://www.rstudio.com/), and the R packages ggpubr, 

lemon, and ggplot2. Statistical differences of autoantibody levels were assessed using t-test. 

 

 

 

Principal Component Analysis  

Principal Component Analysis (PCA) with spectral decomposition38,39 was used to measure the 

stratification power of the 17 autoantibodies to distinguish between COVID-19 (mild, moderate 

and severe patients) and healthy controls. PCA was performed using the R functions prcomp and 

princomp, through factoextra package (Principal Component Analysis in R: prcomp vs 

princomp. http://www.sthda.com/english/articles/31-principal-component-methods-in-r-

practical-guide/118-principal-component-analysis-in-r-prcomp-vs-princomp/).  

 

Machine learning model and autoantibody ranking  

We employed Random Forest model to construct a classifier able to discriminate between 

controls, mild, severe, and oxygen-dependent COVID-19 patients. This approach aimed to 

identify the most significant predictors for severe COVID-19. We trained a Random Forest 

model using the functionalities of the R package randomForest (version 4.6.14)85. Five thousand 

trees were used, and the number of variables resampled were equal to three. Follow-up analysis 

used the Gini decrease, number of nodes, and mean minimum depth as criteria to determine 

variable importance. The adequacy of the Random Forest model as a classifier was assessed 
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through out of bags error rate and ROC curve. For cross-validation, we split the dataset in 

training and testing samples, using 75% of the observations for training and 25% for testing. 

 

Autoantibody correlation signatures: Bivariate and multivariate correlation analysis  

Bivariate correlation analysis of autoantibodies for each group (controls, mild, severe, oxygen-

dependent COVID-19 patients) was performed using the corrgram, psych, and inlmisc R 

packages. In addition, multilinear regression analysis of relationships between different variables 

(auto-antibodies) was performed using the R packages ggpubr, ggplot2 and ggExtra. Circle plots  

were also build using the R packages qgraph, ggplot2, psych, inlmisc to visualize the patterns of 

Spearman’s rank correlation coefficients between autoantibodies. CCA86 of autoantibodies 

against molecules associated with RAS, other GPCRs and SARS-CoV-2 entry molecules was 

performed using the R packages CCA and whitening86. CCA is a classic statistical tool to 

perform multivariate correlation analysis. We used log-transformed antibody levels to carry out 

both bivariate correlation and CCA analysis. 
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Figure 1: Autoantibodies against GPCRs and COVID-19-associated molecules are significantly different between healthy controls and COVID-19 patients.
(A) Interaction network of anti-GPCR-autoantibody targets. Purple molecules represent GPCRs involved in the angiotensin-activated signaling pathway and
blue are those involved in regulation of blood pressure. Grey are molecules belonging to other gene ontology categories. Line color indicates the type of
interaction evidence: dark-green represents gene neighborhood, light-green denotes text mining, black indicates co-expression, blue shows gene co-
occurrence, purple evidences protein homology, and pink marks experimental determined. (B) Circos plot illustrates the functional relationship between
the antibody targets and their biological functions as indicated by gene ontology (GO) enriched terms (denoted by letters and legends).Complete list of
associations are described in Supp. Table 1. Thickness of rectangles in each small outer circles is proportional to their involvement of autoantibody targets
and in multiple pathways. The inner circle represents genes and datasets with more connections to each other. The colors, numbers and percentage on the
outer circles denote how pleiotropic and the respective each gene/pathway association. (C) Box plots of 11 antibodies with significantly different
expression levels (illustrated in D with functional associations of their targets) in at least one group of COVID-19 patients (mild, moderate or severe group)
compared to healthy controls. Significant differences between groups are indicated by asterisks (* p ≤ 0.05, ** p ≤ 0.01 and *** p ≤ 0.001).
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A B

C D

Figure 2

Figure 2: Autoantibodies stratify COVID-19 patients by disease severity. (A) Principal Component Analysis (PCA) with spectral
decomposition based on 17 different anti-GPCR-autoantibodies shows the stratification of severe and oxygen-dependent COVID-19 patients
from mild COVID-19 patients and healthy controls. Variables with positive correlation are pointing to the same side of the plot, contrasting
with negative correlated variables, which point to opposite sides. Only highly contributing to the stratification of severe and oxygen-
dependent patients from mild COVID-19 and healthy controls are shown. Confidence ellipses are shown for each group/category. (B) Graphs
of variables (antibodies) obtained by PCA analysis of COVID-19 mild, moderate and severe group and healthy controls, indicating
autoantibodies highly associated with moderate and severe COVID-19 (C) Biplot of individuals and variables of same groups as in A.
Individuals with a similar profile are grouped together. (D) Scree plot showing the percentage of variances explained by each principal
components (PCs). The x-axis shows the number of PCs and the y-axis the percentage of explained variances.
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Figure 3: Ranking autoantibodies as predictors of COVID-19 severity. (A) Receiver operating characteristics (ROC) curve of 17 antibodies from
COVID-19 mild, moderate, and severe patients compared to healthy controls. (B) Stable curve showing number of trees and out-of-bag (OOB)
error rate of 30,05%.(C) ROC curve of the same antibodies as in (A) from mild COVID-19 and moderate/severe COVID-19 patients compared to
healthy controls with an area under the curve (AUC) of 93,1% (for controls), 87,7% (for mild) and 96,2% (for moderate/severe), respectively. (D)
Stable curve showing number of trees and OOB error rate of 22,95%. (E) Variable importance scores plot based on gini decrease and
number(no) of_nodes for each variable showing which variable (antibody) presents a higher score to predict COVID-19 severity.
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Figure 4A
severe

Figure 5: Autoantibody correlation signatures associate with disease burden. (A) Correlation matrices of the 17 antibodies (denoted by numbers as per legend)
for controls and COVID-19 groups. The color scale bar represents the Spearman's rank correlation coefficient. (B) Box plots of autoantibodies with significantly
changes in correlations in relation to the other 16 autoantibodies: those belonging to the RAS are placed in upper row; autoantibodies targeting the other GPCR
are exhibited in the lower row. Antibodies with highest or lowest correlations and thus contributing more to changes in the correlation pattern of the severe
COVID-19 group are denoted. (C) Canonical-correlation analysis (CCA of autoantibodies. Correlation between autoantibodies against molecules belonging or
influencing the RAS (dataset X, in green) versus the other autoantibodies (those targeting th other GPCRs, neuropilin, and STAB1; dataset Y, in blue).
Autoantibodies corrrelations are plotted based on their corrrelation (that range from -1 to 1) with the first 2 canonical variates (x-CV1 and xCV2 or y-CV1 and y-
CV2). Note, that this values ranging from -1 to 1 are not the same as the Spearman's rank correlation coefficient. Only autoantibodies with a correlation  0.6 of
Spearman's rank correlation coefficient are shown while those with a correlation < 0.6 (grey points) have their names omitted.
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Supp. Fig 1

Autoantibodies against GPCRs which do not differentiate between COVID-19 and healthy controls. Box plots of 6 antibodies which were not significantly 
different between COVID-19 patient groups and healthy controls.
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Scatter plots with marginal density plots display the relationship between different autoantibodies. Correlation coefficient (⍴) and significance level (p-
value) for each correlation are shown within each graph.
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Supp. Fig 4

Effects of COVID-19 severity on autoantibody correlations. The relationships among the different autoantibodies in sera from healthy controls, COVID-19
mild, moderate, and severe patient groups as shown by circular networks based on Spearman’s rank correlation coefficients for autoantibodies. The
nodes in the graphs represent variables (each autoantibody), and a line between two nodes indicates the Spearman’s rank correlation coefficient. The line
width indicates the strength of the association, with stronger correlations indicated by thicker and greener lines. Only correlations >0.6 are shown.
Multiple connections of nodes indicate clustering.
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