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Abstract  
Previous studies suggest that the human gut microbiome is dysregulated in islet autoimmunity, 
preceding the clinical onset of type 1 diabetes (T1D). The microbiota of the gut plays an 
important role in the regulation of bile acid (BA) metabolism. However, not much is known 
about the regulation of BAs during progression to T1D. Here, we analyzed BAs in a 
longitudinal series of serum (n= 333) and stool (n= 304) samples, collected at 3, 6, 12, 18, 24 
and 36 months of age, from children who developed a single islet autoantibody (P1Ab), 
multiple islet autoantibodies (P2Ab), and controls (CTRs) who remained autoantibody (AAb) 
negative during the follow-up. In addition, we analyzed the stool microbiome by shotgun 
metagenomics in a subgroup of these children (n=111). Factor analysis showed that age had 
the strongest impact on BA and microbiome profiles. We found that, at an early age, the 
systemic BA (including taurine and glycine conjugates) and microbial secondary BA pathways 
were altered in the P2Ab group as compared to the P1Ab or CTR groups. Our findings thus 
suggest that dysregulated BA metabolism in early life may contribute to the risk and 
pathogenesis of T1D. 
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Introduction 

Bile acids (BAs) are amphiphilic molecules that are crucial physiological agents for facilitating 
the absorption of lipids in the small intestine. BAs are produced from cholesterol in the liver. 
Primary BAs such as cholic acid (CA) and chenodeoxycholic acid (CDCA) are conjugated with 
either glycine or taurine in the hepatocytes (de Aguiar Vallim et al, 2013). Gut microbes 
transform primary BAs to secondary BAs in the intestine (Ramírez-Pérez et al, 2017). Most of 
these BAs are re-absorbed back to the liver, while approximately 5% of the total BA pool is 
excreted via feces. Under normal physiological conditions, a small fraction (about 10%) of the 
BAs are re-circulated and enter the systemic (enterohepatic) circulation, where they act as 
ligands for receptors in the peripheral tissues, including farnesoid X receptor (FXR) and the 
membrane receptor known as Takeda G protein-coupled membrane receptor (TGR5) 
(Chiang, 2013; Makishima et al, 1999; Wang et al, 1999). FXR and TGR5 signaling plays a 
critical role in regulating the systemic lipid, glucose, and energy homeostasis (Jiang et al, 
2015; Shapiro et al, 2018). Dysregulation of systemic BA metabolism has been linked to 
multiple diseases, including fatty liver disease, cardiovascular disease, and type 2 diabetes 
(Chan & Wong, 2019; Shapiro et al., 2018; Zheng et al, 2021). Thus, the gut-microbiome-BA 
axis is increasingly recognized as a therapeutic target for treating metabolic and immune 
disorders (Chan & Wong, 2019; Gu et al, 2017; Targher et al, 2021). 

Previous metabolome and gut microbiome studies suggest that children who progress to islet 
autoimmunity and type 1 diabetes (T1D) later in life, are characterized by dysregulation of lipid 
metabolism (Lamichhane et al, 2018; Li et al, 2020; Oresic et al, 2008; Sen et al, 2020) and 
gut microbiota (Kostic et al, 2015; Siljander et al, 2019; Vatanen et al, 2016), suggesting that 
there is an interplay between host metabolism, the immune system, and the gut microbiome 
during early T1D pathogenesis. However, our understanding of both microbial and host 
regulation of BA pathways in the development of islet autoimmunity is still scarce (Kostic et 
al., 2015).  

Herein, we set out to investigate how microbial BA pathways are regulated in children who 
develop islet autoimmunity. We analyzed BAs and subject-matched microbiome profiles in a 
prospective series of samples, which included children who developed multiple autoantibodies 
(P2Ab) during follow-up and are thus at high risk of progression to T1D later in life (Ziegler et 
al, 2013), and those children who developed only one islet autoantibody (P1Ab) but did not 
progress to T1D during follow-up. We also included control children (CTRs) who remained 
islet autoantibody (AAb) negative during follow-up. 

Results 
Prospective study of bile acids and gut microbiome in children at risk for T1D 

We analyzed BAs prospectively in subject-matched stool (n= 304) and serum (n= 333) 
samples from three study groups: P1Ab (n=23), P2Ab (n=13), and CTR (n=38) (Figure 1). 
From each child, we analyzed stool and serum samples at six different time-points 
corresponding to the ages of 3, 6, 12, 18, 24, and 36 months. A total of 33 BAs, including both 
primary (glycine/taurine conjugates) and secondary BAs were assayed. Previously-published 
stool shotgun metagenomics data (whole-genome shotgun sequencing (WGSS)) from a 
subset of children (n=111 stool samples in total) (Kostic et al., 2015) were included in the study 
(Figure1). 

Age-related changes in bile acid and microbiome profiles 
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In order to determine the contributions of various factors to the BA profiles, multivariable 
associations were tested for, applying linear models using co-variates including age, sex, and 
case status (P1Ab, P2Ab, or CTR), taking into account random effects within an individual 
sample/subject. Age showed the strongest impact (23 stool and 21 serum BAs at p < 0.05; 
Figure 2A), while five stool and one serum BA were different across case groups and one 
stool and four serum BA were different between sexes (Tables S1 and S2). Primary BAs, 
including cholic acid (CA) and chenodeoxycholic acid (CDCA), were decreased both in stool 
and in circulation with increasing age (Figure 2A). A similar trend was seen for deoxycholic 
acid (DCA), a secondary BA. Low levels of other secondary BAs (including their taurine and 
glycine conjugates) were observed during early infancy (3 and 6 months), which steadily 
increased at/after the first year of life (12 and 18 months) and remained stable at later ages 
(24 and 36 months) (Figure 2A).  

Gut microbial profiles follow the dynamic BA trajectories (Figure 2A-B, Table S3). Intuitively, 
age was the strongest factor associated with the composition of the infant gut microbiome 
(Figure S1). Several microbial species, at the strain level, were distinctively associated (n = 
17, p < 0.05) with age (Figure 2B, Figure S1); dominated by Ruminococcus, Alistipes, and 
Eubacterium species (spp.) which showed an increasing trend with age (Figure 2D). However, 
this did not stabilize at 36 months of age. On the other hand, the abundances of six out of 17 
microbes, including Bifidobacterium breve, (Figure 2D) were initially decreased during 3 to 12 
months of infancy and stabilized at 24 and 36 months of age. 

Alteration of the gut microbiome impacts bile acid metabolism in progression 
to islet autoimmunity 

Differential analysis showed that 41 microbial strains were altered (analysis of covariance, 
ANCOVA; Tukey’s honest significant differences (HSD), p.adjusted < 0.05) between the study 
groups (P1Ab and/or P2Ab and/or CTRs), at at least one time-point (Figure 3A). Of note, 25 
of 41 microbes were known to exhibit BA metabolic pathways annotated by the Assembly of 
Gut Organisms through Reconstruction and Analysis (AGORA) compendium (Heinken et al, 
2019; Magnusdottir et al, 2017; Noronha et al, 2019). Among these, several strains of 
Clostridium, Lachnospiraceae, Ruminococcus and Alistipes were predominant and were 
altered between the P1Ab and P2Ab groups (Figure 3A). Lower abundances of Clostridium 
and Lachnospiraceae strains and increased abundances of Ruminococcus strains were 
apparent between P1Ab vs. P2Ab at 18 months and/or 24 months of age.  

Pairwise metabolic modeling between microbes revealed that most of these microbes exhibit 
amensal (50%), parasitic (20%) and commensal (15%) relationships for cross-feeding and 
biotransformation of BAs in the human gut (Figure S2). Several strains such as Roseburia 
hominis A2-183, Roseburia inulinivorans DSM 16841, Ruminococcus bromii L2-63, 
Lachnospiraceae bacterium sp. 5_1_63FAA can only produce secondary BAs, whilst 
Anaerostipes hadrus DSM 3319, Bifidobacterium catenulatum DSM 16992, Bifidobacterium 
coryneforme DSM 20216, Clostridium bartlettii DSM 16795, Clostridium innocuum 2959, 
Collinsella aerofaciens ATCC 25986, Coprococcus eutactus ATCC 27759, Eggerthella lenta 
DSM 2243, Erysipelotrichaceae bacterium 5_2_54FAA, Erysipelotrichaceae bacterium sp. 
3_1_53, Eubacterium eligens ATCC 27750, Eubacterium hallii DSM 3353 can interact with at 
least 10 other microbial strains to carry out BA biotransformation (Figure S2). Interestingly, 
Alistipes spp. co-exhibited different kinds of microbial interaction, including amensalism, 
parasitism and commensalism for BA biotransformation (Figure S2). The BA pathways 
exhibited by these microbes include ten different reaction classes that can carry out 
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deconjugation, dehydrogenation, dehydroxylation and epimerization of BAs in the human gut 
(Figures 3B and S3).  

Regulation of secondary bile acid pathways before the emergence of islet 
autoantibodies 

In order to understand the interplay between the gut microbiome and BA biotransformation in 
the progression to islet autoimmunity, we developed personalized community microbiota 
models for each child. The community microbiota model comprises 25 abundant microbial 
strains and their BA reactions (Figure 3A, Figure S3). 

The community microbiota modeling suggested that the total BA reaction abundances were 
markedly decreased (Tukey’s HSD, p.adjusted < 0.05) in the P2Ab vs. P1Ab groups at 6 and 
12 months of age, i.e., before the median age of seroconversion (Figure 4A). Moreover, at 
this age, the predicted abundances of bile salt hydrolases (BSH) reaction(s) decreased in the 
P2Ab vs. P1Ab group. However, the abundances of these reactions peaked at 24 months of 
age (post seroconversion) (Figure 4B). At this age, several reactions in the alpha/beta 
dehydroxylation pathway (12-alpha-, 3-alpha-, 7-beta-hydroxysteroid dehydrogenases and 
cholate ligase) showed decreased abundances in the P2Ab group (vs. P1Ab). The 
abundances of these reactions peaked at 18 months of age (median age of seroconversion). 
7-alpha/beta hydroxylation pathways aid in the production of secondary BAs (e.g., DCA, HCA, 
HDCA and LCA) from primary BAs (e.g., CA and CDCA), respectively (Figures 3B and 4B). 

The community modeling also suggested that the total fecal secretion potential (FSP) of 
secondary BAs was significantly decreased (Tukey’s HSD, p.adjusted < 0.05) in P2Ab (vs. 
P1Ab) group at 12 months of age (Figure 4C). Taken together, secondary BA production 
seems to be decreased in the P2Ab group as compared to P1Ab and/or CTR group(s) with 
the emergence of islet autoantibodies. 

Targeted measurements of BAs revealed a decrease in secondary BA levels in 
progression to islet autoimmunity 

Next, we sought to determine specific BA concentration differences between the three study 
groups in the longitudinal series of stool and serum samples. We detected several differences 
in BA concentrations between the study groups. In particular, taurine and glycine conjugates 
of secondary BAs (e.g., GHDCA, GUDCA, TUDCA, THDCA) were decreased in the P2Ab 
group at 6 and 12 months of age in stool samples, as compared to the CTR or the P1Ab 
groups (Figure 5A). The levels of GLCA, wMCA and LCA were higher in P2Ab than in P1Ab 
at 18 months of age. No clear differences were seen for the primary BAs, which further 
suggests that subsequent steps of BA dehydroxylation and secondary BA production were 
(dys)regulated in the P2Ab group (Figure 3B). However, these differences were less 
pronounced in the serum samples as compared to the stool samples (Figure 5). Moreover, 
there was no persistent longitudinal trend with respect to the differences in BA levels between 
the groups throughout follow-up, with the exception of TwMCA which was persistently 
decreased in P2Ab vs. P1Ab and CTR groups.  

Next, we compared the total stool and serum BA concentrations in the P1Ab and P2Ab groups 
in samples obtained before and after the appearance of the first islet autoantibody, 
respectively. Pairwise analysis (paired t-test, p < 0.05) revealed that, before the emergence 
of islet autoantibodies, the total BA pool, both in stool and serum, was lower in the P2Ab group 
(Figure 5B-C).  
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Association between BAs, gut microbes and their exchange potentials shows 
unique patterns of regulation in the P2Ab group 

At 12 months of age, the UDCA exchange potential of the gut microbiota was positively 
associated with several species of Alistipes and Eubacterium, particularly Eubacterium 
ventriosum ATCC 27560 (p.adjusted < 0.05). Furthermore, it was positively associated with 
the GLCA levels (a downstream product) in stool (Figure 6A). At 18 months, the UDCA 
exchange potentials were strongly associated with Roseburia hominis A2-183 and Roseburia 
inulinivorans DSM 16841ı (p.adjusted < 0.05), whilst inversely associated with the conjugated 
and/or unconjugated secondary BAs in the stool samples (Figure 6B). Clostridium bartlettii 
DSM 16795 was positively associated with the exchange potential of T (DCA) at 12 months, 
whereas there was an inverse association at 18 months. Several species of Alistipes were 
inversely associated (p.adjusted < 0.05) with TLCA (p.adjusted < 0.05) (Figure 6A-B). 

Discussion  
By combining targeted metabolomics and metagenomics data, we show that host-microbial 
BA co-metabolism is dysregulated in the progression to islet autoimmunity and overt T1D. Our 
findings suggest that children who progress to multiple islet autoantibodies (P2Ab) during 
follow-up, and are thus at high risk of developing T1D later in life (Ziegler et al., 2013), have 
distinct and persistently-altered systemic BA concentrations and species abundances in the 
gut microbiome, as compared to those children who develop, at most, a single islet 
autoantibody (P1Ab), or those who remained negative for islet antibodies (CTRs) during the 
follow-up. 

Our results reveal that children who progressed to multiple islet autoantibodies later in life had 
decreased concentration of conjugated BAs (GHDCA, GUDCA, TUDCA, and THDCA) in early 
life. In line with this, tauroursodeoxycholic acid (TUDCA), a conjugated secondary BA, was 
observed to reduce the incidence of diabetes development by improving the glucose utilization 
and metabolism in the streptozotocin administered C57BL/6 mice (Bronczek et al, 2019). Our 
personalized community metabolic modeling of the gut microbiota identified specific 
differences in the BA pathways of P2Ab vs. P1Ab or CTR groups. Several intermediary 
reactions of 7-alpha/beta hydroxylation and bile salt hydrolase (BSH) pathways were altered 
at or before the age of seroconversion. Alteration of relative abundances of BSH levels are 
associated with the occurrence and development of various diseases in humans (Song et al, 
2019). Here, we revealed that the activity of BSH may be related to the development of islet 
autoimmunity and risk of clinical T1D. Furthermore, our results show that in the P2Ab (vs. 
P1Ab) group, reaction abundances of 7-alpha/beta hydroxylation pathway remained lower at 
6 and 12 months of age, which gradually increased at later time-points. BSH pathways are 
key gatekeepers of BA transformation in the gut (Foley et al, 2019). We found stool 
concentration of secondary BAs, particularly UDCA, DCA, HDCA and their glycine and/or 
taurine conjugates, were downregulated in P2Ab vs. P1Ab and/or CTR groups. Decreased 
fecal secretion potentials (FSPs) of the secondary BAs in the P2Ab group during early life 
further support the view that a decrease in secondary BA levels at or before the age of 
seroconversion might occur due to a decrease in the metabolic potential of the microbiota-
encoded 7-alpha/beta hydroxylation pathway, which aids in the transformation of secondary 
BAs.  

We also found that BA concentrations are strongly dependent on the age of the children. In 
agreement with previous findings (Backhed et al, 2015; Milani et al, 2017), we observed that 
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the abundances of gut microbes (with the exception of a few strains) gradually increased with 
the age of the children. Interestingly, many of these microbes are involved in the 
biotransformation of BAs (Heinken et al., 2019; Magnusdottir et al., 2017). Recently, a study 
characterized the age-dependent gut microbial and metabolic changes in the murine 
gastrointestinal tract (van Best et al, 2020), where BAs were identified as a major driver for 
the early maturation of the gut microbiome. 

We acknowledge some limitations of our study, such as the relatively small sample size, as 
well as the effect of a lack of full, systematic understanding of the impact of confounding 
lifestyle factors (e.g. diet) and these factors’ relationship with BA host-co-metabolism. 
Nevertheless, we report BA changes in a longitudinal setting, defining the time-course of 
changes in BA metabolism with respect to the onset of islet autoimmunity. It is, however, clear 
that these findings need to be investigated and replicated in other, larger studies and in 
heterogeneous populations.  

In summary, our findings suggest that dysregulated BA metabolism in early life may contribute 
to the risk and pathogenesis of T1D. BA metabolism may also be an underlying link between 
the gut microbiome and host (lipid) metabolism during the period preceding seroconversion to 
positivity for islet autoantibodies and overt T1D. 

Methods 
Clinical study setting 

The DIABIMMUNE study recruited 832 families in Finland (Espoo), Estonia (Tartu), and 
Russia (Petrozavodsk) with infants carrying HLA alleles that conferred risk for autoimmunity. 
The subjects involved in the current study were chosen from the subset (n = 74) of international 
DIABIMMUNE study children who progressed to at least a single AAb (P1Ab, n = 23), who 
progressed to multiple islet AAb (P2Ab, n = 13), and controls (CTRs, n = 38), i.e. the children 
who remained islet AAb-negative during the follow-up in a longitudinal series of samples 
collected at 3, 6, 12, 18, 24 and 36 months from each child (Kostic et al. 2015). The study 
groups were matched for HLA-associated diabetes risk, sex, country and period of birth.  

This study was conducted according to the guidelines in the Declaration of Helsinki. The Ethics 
Committee of the Hospital District of Helsinki and Uusimaa approved the study protocol. All 
families provided written informed consent prior to sample collection. 

Quantification of bile acids  

The bile acids were measured in serum and fecal sample as described previously (Jäntti et al, 
2014; Salihović et al, 2020). Briefly, 20 μL of serum, or fecal homogenate (prepared by adding 
1:20 (m/v) ultrapure water to 50 mg of feces) was filtered through a Ostro Protein Precipitation 
and Phospholipid Removal 96-well plate (Waters Corporation, Milford, USA), using 100 μL of 
cold methanol contemning the internal standard mixtures (LCA-d4, TCA-d4, GUDCA-d4, 
GCA-d4, CA-d4, UDCA-d4, GCDCA-d4, CDCA-d4, DCA-d4, GLCA-d4). The eluent was 
collected and evaporated to dryness and the residue was re-suspended in 20 μL of a 40:60 
MeOH: H2O v/v mixture. The analyses were performed on an ACQUITY HSS T3 (2.1×100 
mm, 1.8 μm) column, Waters (Milford), coupled to a triple quadrupole mass spectrometer 
(Waters Corporation, Milford, USA) with an atmospheric electrospray interface operating in 
negative ion mode. Separation was performed using gradient elution with 0.1 % formic acid in 
water (v/v) (A) and 0.1 % formic acid in acetonitrile:methanol (3:1, v/v) (B) at a flow rate of 0.5 
mL/ min. Gradient program was 0 min 15 % B, 0-1 min; 30 % B, 1- 16 min; 16-18 min; 70 % 
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B, 18–23 min 100 % B, and equilibrium time between runs was 7 min. The injection volume 
was 5 μL and the column was kept at 35 °C. An external calibration with nine calibration points 
(0.0025–600 ng/mL) was carried out for use in quantitation. 

Analysis of islet autoantibodies  

Four diabetes-associated autoantibodies were analyzed from each serum sample with specific 
radiobinding assays: insulin autoantibodies (IAA), glutamic acid decarboxylase antibodies 
(GADA), islet antigen-2 antibodies (IA-2A), and zinc transporter 8 antibodies (ZnT8A) as 
described previously (Knip et al, 2010). Islet cell antibodies (ICA) were analyzed with 
immunofluoresence in those subjects who tested positive for at least one of the 
autoantibodies. The cut-off values were based on the 99th percentile in non-diabetic children 
and were 2.80 relative units (RUs) for IAA, 5.36 RU for GADA, 0.78 RU for IA-2A and 0.61 RU 
for ZnT8A.  

Taxonomic / phylogenetic profiling and metagenomic analysis 

Raw metagenomic sequencing data was retrieved from 
(https://diabimmune.broadinstitute.org/) (NCBI BioProject ID: PRJNA231909) (Kostic et al., 
2015). Stool (n = 111) samples were common between the published metagenomics data 
(Kostic et al., 2015), and the stool BAs measured in the present study. Metagenomic data form 
the matched samples (n=111) were considered for further analysis.  

As stated in (Kostic et al., 2015), host genome‒contaminated reads and low-quality reads are 
already removed from the raw sequencing data using kneadData v0.4. Taxonomic microbiome 
profiles were determined using MetaPhlAn2 (Truong et al, 2015) using default parameters.  

Genome-scale community modeling of human gut microbiota 

Previously, genome-scale metabolic modeling (GSMM) using an Assembly of Gut Organisms 
through Reconstruction and Analysis (AGORA) approach has been used to elucidate the role 
of gut microbiota in BA biotransformation in humans (Heinken et al., 2019). In addition, it has 
been used to estimate the metabolic capabilities of gut microbes and related pathways under 
different biological conditions (Magnusdottir et al., 2017).  

We used GSMM to model the dynamics of BA metabolism aided by human gut microbiota 
under various conditions. In order to reduce the complexity of community modeling, we 
included genome-scale metabolic models (GEMs) of 25 abundant gut microbes (strains) that 
have BA metabolic pathways, and were significantly (ANCOVA; Tukey’s HSD p.adjusted < 
0.05) altered between the study groups (P1Ab, P2Ab and CTRs), at at least one time-point 
(Figure 3A). All the microbial-GEMs obtained were retrieved from the ‘AGORA_BA’ 
compendium (v1.03) (Heinken et al., 2019; Magnusdottir et al., 2017), stored at the Virtual 
Metabolic Human Database (VMH) (Noronha et al., 2019) and assessed for further analysis. 

Next, we developed personalized community models for each individual by contextualizing the 
community microbiota model with the metagenomic abundances of the microbes estimated 
for each individual/sample. A detailed protocol for integration of metagenomic abundances 
into a community microbiota model has been described elsewhere (Baldini et al, 2019; 
Heinken et al., 2019; Magnusdottir et al., 2017). We performed three types of analysis, (1) 
Modeling the primary growth of the individual microbe based on Average European Diet (AED) 
(Magnusdottir et al., 2017; Noronha et al., 2019), (2) Microbe-microbe pairing (co-growth) of 
25 abundant microbial strains, to determine the joint ability of the microbes for BA 
biotransformation, and (3) Personalized community modeling at an individual sample level 
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using metagenomics data. The simulation results were divided for three different study groups 
(P1Ab, P2Ab and CTRs). GSMM was performed using the COBRA Toolbox (Heirendt et al, 
2017) and the Microbiome Modeling Toolbox (MMT) (Baldini et al., 2019) deployed in MATLAB 
Inc., version R2017a.  

The 25 abundant microbial-GEMs were coupled into a community microbiota model using the 
‘joinModelsPairwiseFromList’ function implemented in the MMT (Baldini et al., 2019). A 
common luminal compartment ‘[u]’ was introduced that enabled metabolite exchanges and 
cross-feeding between the microbes. The composition of AED was retrieved from (VMH). The 
intestinal luminal uptake rates were constrained by the dietary fluxes using ‘useDiet’ function. 
The paired models were allowed to exchange conjugated bile acids (BAs), while the uptake of 
other metabolites was limited. Different types of metabolic interactions were estimated by the 
‘simulatePairwiseInteractions’ function deployed in MMT with a minimum growth rate 
difference of 10% between the microbes. Each microbial model (GEM) was allowed to grow 
on its own, and as a pair under anaerobic conditions. Flux Variability Analysis (FVA) using 
‘fastFVA’ function was performed to assess maximum and minimum fluxes incurred by the BA 
reactions in a paired model. The paired models that carried fluxes through the BA exchange 
reactions were selected and grouped by their genus (Figure S2). 

Several metabolic reconstruction/models such as Recon3D (Brunk et al, 2018), the small 
intestinal epithelial cells (sIECs) (Sahoo & Thiele, 2013) model, and the VMH database and 
bibliographic references were mined, and putative BA transporters in the human gut were 
identified. The BA transporters and exchange reactions were added. Recon3D as a host 
model was coupled with the community microbiota model using the 
‘createMultipleSpeciesModel’ function coded in MMT, subsequently the flux coupling 
constraints were added. A compartment ‘[b]’ for body fluids was introduced. Sanity checks 
were performed using the COBRA Toolbox. All community microbiota models were able to 
carry out basic metabolic tasks, including exchange and transport of BAs. The average 
metabolic reactions and metabolites of a microbiota community model was 15,800 and 13,900 
respectively. 

The fecal secretion potential (FSP) of a BA reaction is given by FSPij = Ai × vj (eq.1), where 
'FSPij' denotes the estimated potential of 'jth' BA in 'ith' species. A and v represent the relative 
abundance of a species and absolute flux potential (mmol/gDw/day), respectively (Heinken et 
al., 2019; Kumar et al, 2018). FSP determines the metabolic efficiency of a particular reaction, 
under a specified condition. The total FSP determines the metabolic capability/potential of the 
gut microbes in a community to perform a particular task. Likewise, BA reaction abundances 
in a community model was estimated by the ‘calculateReactionAbundance’ function coded in 
MMT (Heinken et al., 2019; Noronha et al., 2019). 

Statistical analysis 

The R statistical programming language (v4.0.4) and MATLAB Inc., (vR2017a) was used for 
data analysis. The ‘Heatmap.2’, ‘boxplot’, 'beanplot', ‘gplot’, and ‘ggplot2’ R libraries / 
packages were used for data visualization.  

Impact of clinical / demographic factors on stool microbiome  

The effect of different factors such as age, sex, presence of antibodies, age of T1D onset, 
duration of breast feeding, HLA-risk class on the microbiome abundances were evaluated for 
each sample, and the % of explained variance (EV) was estimated. The data were log2-
transformed, centered to zero mean and unit variance (autoscaled). The relative contribution 
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of each factor to the total variance in the dataset was estimated by fitting a linear regression 
model, where the normalized abundances of the microbes were regressed to the factor of 
interest, and thereby median marginal coefficients (R2) were estimated. This analysis was 
performed using the ‘Scater’ package in R (v4.0.4). Age was found to be a confounding factor 
(>10% EV). 

Differential abundant analysis of the microbiome and BAs across multiple conditions 

The metagenomic and BA data were log2-transformed. By combining analysis of covariance 
(ANCOVA) adjusted for ‘age’ as a covariate, and posthoc Tukey’s HSD test (controls for Type 
I family-wise error rates at p < 0.05), we were able to identify differentially abundant microbes 
(p.adjusted < 0.05) between a paired condition (e.g. P2Ab vs. CTRs). This analysis was 
performed by ‘aov’ and ‘TukeyHSD’ functions deployed in the ‘stats’ package (R v4.0.4). 
Multivariable associations using linear models were performed using 'MaAsLin2' R package 
(Mallick et al, 2021). The locally-weighted regression plot was made using smoothing 
interpolation function loess available from ggplot2 package in R. Loess regression was 
performed using ‘loess’ function deployed in the ‘stats’ package (R v4.0.4). 

Bivariate correlation analysis 

‘RcmdrMisc’ package was used to estimate Spearman’s correlation between the BA 
intensities in the stool, community BA exchange reaction potentials, and related microbial 
abundances. The p-values were adjusted for FDR at (p.adjusted < 0.05). Results are plotted 
using ‘heatmap.2’ function of ‘gplots’ package (v.3.0.4). 
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Figure legends 
Figure 1. Outlines of analytical study flow. This illustrates the number of serum and stool 
samples collected for targeted BA measurement at each time-point. The samples were 
stratified into P1Ab, P2Ab and CTR groups. Moreover, this shows the age at seroconversion 
among the children taking part in this study. 

Figure 2. Age-related changes in the bile acid and microbiome. (A) The loess curve plot 
of BAs over time (3, 6, 12, 18, and 24) between stool and serum samples. This panel plots, 
separately, representative primary, secondary and conjugated BAs that changed significantly 
over time (p < 0.05). (B) Bar plots showing correlation coefficients for the association between 
age and different microbes. Red represents inverse correlations while blue represents positive 
correlations as obtained by multivariate linear regression using MaAsLin2 R package. (C-D) 
The loess curve plot of selected microbes over time. 

Figure 3. Microbial strains in progression to islet autoimmunity. (A) A heatmap showing 
the log2 fold changes (FCs) in the strain-level abundances of the gut microbes in P1Ab vs. 
CTRs, P2Ab vs. CTRs and P2Ab vs. P1Ab groups at 6, 12, 18, 24 and 36 months of the follow-
up. Red, blue and yellow color denotes increase, decrease and no change in the abundances 
between the differential conditions, respectively. Statistical significance was assessed by 
ANCOVA adjusted for ‘age’ as a covariate, and Tukey’s HSD (p.adjusted < 0.05). Microbes 
with BA pathways (annotated by the AGORA compendium) are marked with light blue color. 
(B) An illustration of BA metabolism and related pathways in the humans. 

Figure 4. Regulation of bile acid reactions in progression to islet autoimmunity. (A,C) 
Beanplots showing the levels of total BA reaction abundances and the total fecal secretion 
potentials (FSPs) predicted by the community microbiota models in CTRs, P1Ab and P2Ab 
groups at 6, 12, 18, 24 and 36 months of the follow-up. The black dotted line denotes the 
mean of the population. The black dashes in the bean plots represent the group mean. ‘*’ 
denotes significant differences (ANCOVA + Tukey’s HSD, p.adjusted < 0.05). (B) Locally 
Weighted Scatterplot Smoothing (LOWESS) plot showing the longitudinal trend of an 
individual BA reaction abundance in the CTRs (light blue), P1Ab (yellow) and P2Ab (orange) 
groups during the follow-up. The shaded area around the curves depicts the 95% confidence 
interval. 

Figure 5. Systemic alterations in bile acid profiles in progression to islet autoimmunity. 

(A) A heatmap showing the log2 fold changes (FCs) in BA profiles in P1Ab vs. CTRs, P2Ab 
vs. CTRs and P2Ab vs. P1Ab groups at 6, 12, 18, 24 and 36 months of follow-up. Red, blue 
and yellow color denotes increase, decrease and no change in the intensities of BAs between 
the differential conditions, respectively. Statistical significance was estimated by ANCOVA 
adjusted for ‘age’ as a covariate, and Tukey’s HSD (p.adjusted < 0.05). (B-C) Boxplot showing 
the total intensities of BAs before and after seroconversion in P1Ab and P2Ab groups. 
Statistical significance was estimated by a paired t-test (p < 0.1). 

Figure 6. Cross-correlation between the gut microbiome, BA exchange potentials and 
their systemic (stool) levels in progression to islet autoimmunity.  

Correlation plots showing bivariate Spearman’s correlations between the gut microbiome 
(metagenomics) and/or BA exchange potential (microbiota community model) and/or level of 
BA (lipidomics) in the stool samples of P2Ab (n=111) group at 12 and 18 months. Red, blue 
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and white/yellow color represents positive, negative and no correlation respectively. The white 
‘dot’ depicts that the correlation is statistically significant (p.adjusted < 0.05). 
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Figure 1 
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Figure 4 
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Figure 5 

 

  

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted August 23, 2021. ; https://doi.org/10.1101/2021.08.20.21262371doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.20.21262371


21 
 

Figure 6 

 

 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted August 23, 2021. ; https://doi.org/10.1101/2021.08.20.21262371doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.20.21262371


22 
 

 

 

 

 

 

 

 

 

 

Supplementary Notes 
Lamichhane et al., 

  

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted August 23, 2021. ; https://doi.org/10.1101/2021.08.20.21262371doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.20.21262371


23 
 

Figure S1. Factor analysis and identification of confounding factors affecting the 
microbiome. A density plot showing sample-wide distribution of (% of explained variances 

(EVs)) of various clinical and demographic factors associated with the normalized 

metagenomic analyzed in (n=111) stool samples. 
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Figure S2. Modeling of pairwise interactions between 25 selected gut bacterial strains 
(co-growth) subjected. (A) The predicted relationship between all possible pairs of examined 

bacteria engaged in BA de-conjugation and BA biotransformation. Amensalism: In the paired 

simulation, one microbe grows slower than the other does, but their growth is not mutually 

dependent. Parasitism: One microbe grows faster than another does. Competition: In the 

paired simulation, both microbes exhibit slower growth as compared with their individual 

growth. Neutralism: Independent and unaffected growth of the microbes in the paired 

simulations. Commensalism: Growth of one microbe is faster and unaffected by the other. The 

definitions of mentioned concepts are derived from (Magnusdottir et al., 2017). (B) Gut 

bacterial strain pairs that can biotransform BAs were grouped by their genus. 
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Figure S3. Bile acid reaction classes exhibited by the 25 abundant microbes. The BA 

reactions/pathways exhibited by human gut microbes spans between 10 different reaction 

classes that can carry out deconjugation, dehydrogenation, dehydroxylation and epimerization 

of BAs in the gut. 
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Table S1. Multivariate associations using linear models were performed with co-variates 

including age, sex, and case status (P2Ab or P1Ab or CTRs) in stool. 

 
Metadata Features coefficient P value Q value 
Age LCA 1.765868 3.19E-35 3.95E-33 

Age HCA -0.71767 1.96E-23 1.21E-21 

Age CA -1.01563 2.19E-20 9.04E-19 

Age CDCA -0.9442 3.85E-19 1.01E-17 

Age HDCA 1.017782 4.07E-19 1.01E-17 

Age GLCA 0.488118 5.37E-19 1.11E-17 

Age GDHCA -0.18543 1.16E-15 2.05E-14 

Age TDCA 0.451116 1.21E-10 1.88E-09 

Age OXODCA -0.58323 2.75E-10 3.79E-09 

Age UDCA 0.807496 1.29E-09 1.52E-08 

Age GUDCA 0.549565 1.35E-09 1.52E-08 

Age DCA -0.5483 7.77E-09 8.03E-08 

Age THCA -0.50224 8.87E-09 8.46E-08 

Age TaMCA -0.64066 1.05E-08 9.29E-08 

Age GHDCA 0.531877 4.10E-08 3.39E-07 

Age bMCA -0.5654 6.81E-08 5.28E-07 

Age TLCA 0.238253 5.38E-07 3.93E-06 

Age oxoHDCA -0.42934 4.05E-05 0.000279 

Age GHCA -0.1721 8.74E-05 0.00057 

Age TDHCA -0.16553 0.000214 0.001328 

Age GCDCA 0.203357 0.001128 0.006658 

Age GDCA 0.203259 0.001189 0.006701 

Age aMCA -0.1961 0.001382 0.007451 

Case GUDCA -0.66431 0.009749 0.050371 

Case GHDCA -0.6725 0.014903 0.073919 

Case TUDCA -0.7258 0.026109 0.11991 

Case HDCA -0.54519 0.028887 0.12793 

Case THDCA -0.65175 0.044398 0.189841 

sex HDCA -0.26414 0.017872 0.085236 
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Table S2. Multivariate associations using linear models were performed with co-variates 

including age, sex, and case status (P2Ab or P1Ab or CTRs) in serum. 
 
Metadata Feature Coefficient P value Q value 
Age TDCA 0.810951 4.84E-34 5.61E-32 

Age HCA -0.615 5.16E-29 2.99E-27 

Age GLCA 0.366212 3.35E-25 1.29E-23 

Age TaMCA -0.66722 7.47E-21 2.17E-19 

Age GUDCA 0.692191 2.46E-18 5.72E-17 

Age THCA -0.4358 5.13E-16 9.92E-15 

Age UDCA 0.584086 6.06E-15 1.00E-13 

Age GHDCA 0.650438 2.03E-13 2.95E-12 

Age X7oxoHDCA -0.33823 3.78E-11 4.88E-10 

Age GDCA 0.992672 7.50E-11 8.70E-10 

Age TLCA 0.16878 9.46E-10 9.98E-09 

Age HDCA 0.503645 4.96E-09 4.79E-08 

Age X7OXODCA -0.35812 6.31E-08 5.63E-07 

Age TCA -0.38511 1.41E-07 1.17E-06 

Age TwMCA 0.239079 1.54E-07 1.19E-06 

Age TCDCA -0.54483 3.05E-07 2.21E-06 

Age CDCA -0.28592 8.93E-07 6.10E-06 

Age GHCA -0.24791 1.23E-06 7.92E-06 

Age TUDCA 0.24461 1.94E-06 1.19E-05 

Age THDCA 0.235196 2.78E-06 1.61E-05 

Age wMCA -0.06713 0.007594 0.040039 

Case HDCA -0.5611 0.02448 0.118321 

sex TDHCA 0.019688 0.004911 0.027125 

sex GHCA 0.159941 0.013417 0.067668 

sex GCA 0.16621 0.034349 0.159378 

sex THCA 0.137237 0.04182 0.186583 
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Table S3 Multivariate associations using linear models were performed with co-variates 

including age, sex, and case status (P2Ab or P1Ab or CTRs) in the stool microbiome 

dataset. 

 

 

Metadata feature coef pval qval 
Age t__GCF_000296465 0.004602 0.000156 0.07719 
Age t__GCF_000154465 0.007676 0.000153 0.07719 
Age t__Ruminococcus_gnavus_unclassified -0.02405 0.000309 0.101766 
Age t__GCF_000311925 0.001811 0.000427 0.105464 
Age t__Bifidobacterium_breve_unclassified -0.02191 0.000804 0.132415 
Age t__GCF_000190535 0.002788 0.000776 0.132415 
Age t__GCF_000146185 0.006975 0.00144 0.182298 
Age t__GCF_000469345 0.000243 0.00169 0.182298 
Age t__Veillonella_parvula_unclassified -0.00865 0.001845 0.182298 
Age t__Escherichia_coli_unclassified -0.01997 0.002691 0.221572 

Age 
t__Streptococcus_mitis_oralis_pneumoniae_un
classified -9.06E-05 0.003431 0.260742 

Age t__GCF_000265365 0.002121 0.006453 0.455398 
Age t__Bacteroides_ovatus_unclassified 0.018325 0.011665 0.638927 
Age t__GCF_000153885 0.000159 0.012934 0.638927 
Age t__GCF_000209875 0.008028 0.012914 0.638927 
Age t__GCF_000468015 0.000374 0.011642 0.638927 
Age t__GCF_000185705 3.22E-05 0.010589 0.638927 
Case t__GCF_000159975 0.009565 0.001704 0.182298 
Case t__GCF_000157995 0.000447 0.002104 0.188982 
Case t__GCF_000218385 0.000305 0.010119 0.638927 
Case t__GCF_000190535 0.006662 0.021796 0.800568 
Case t__GCF_000242155 -0.00049 0.022627 0.800568 
Case t__GCF_000205025 0.00103 0.022923 0.800568 
Case t__Lactobacillus_ruminis_unclassified 0.002381 0.030614 0.800568 
Case t__Faecalibacterium_prausnitzii_unclassified 0.032737 0.035679 0.800568 
Case t__GCF_000239295 0.001043 0.037556 0.800568 
Case t__Bacteroides_ovatus_unclassified 0.042377 0.039878 0.800568 
Case t__GCF_000169035 -0.0067 0.042992 0.800568 
Case t__Streptococcus_parasanguinis_unclassified 0.000385 0.048034 0.800568 
sex t__Lactococcus_lactis_unclassified 0.000553 0.037624 0.800568 

sex 
t__Streptococcus_mitis_oralis_pneumoniae_un
classified -6.30E-05 0.039398 0.800568 

sex t__Clostridium_symbiosum_unclassified 0.000892 0.046542 0.800568 
sex t__GCF_000157995 0.000111 0.047607 0.800568 
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